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Abstract

Multiple system atrophy (MSA) is a rare neurodegenerative disease with a fatal out-

come. Nowadays, only symptomatic treatment is available for MSA patients. The

hallmarks of the disease are glial cytoplasmic inclusions (GCIs), proteinaceous aggre-

gates mainly composed of alpha-synuclein, which accumulate in oligodendrocytes.

However, despite the extensive research efforts, little is known about the pathogen-

esis of MSA. Early myelin dysfunction and alpha-synuclein deposition are thought to

play a major role, but the origin of the aggregates and the causes of misfolding are

obscure. One of the reasons for this is the lack of a reliable model of the disease.

Recently, the development of induced pluripotent stem cell (iPSC) technology

opened up the possibility of elucidating disease mechanisms in neurodegenerative

diseases including MSA. Patient specific iPSC can be differentiated in glia and neu-

rons, the cells involved in MSA, providing a useful human disease model. Here, we

firstly review the progress made in MSA modelling with primary cell cultures. Subse-

quently, we focus on the first iPSC-based model of MSA, which showed that alpha-

synuclein is expressed in oligodendrocyte progenitors, whereas its production

decreases in mature oligodendrocytes. We then highlight the opportunities offered

by iPSC in studying disease mechanisms and providing innovative models for testing

therapeutic strategies, and we discuss the challenges connected with this technique.
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1 | INTRODUCTION

Multiple-system atrophy, also known as MSA, is an adult onset

severe neurodegenerative disease characterized by glial cytoplas-

mic inclusions (GCIs) and progressive cellular death in selected

areas of central nervous system (CNS), more specifically the stria-

tonigral, olivopontocerebellar and central autonomic pathways. The

clinical presentation mirrors these alterations and comprises parkin-

sonism, cerebellar ataxia, pyramidal features and autonomic symp-

toms in various degrees.1 Two main clinical subtypes can

be identified and characterized by either a prevalence of parkinso-

nian symptoms (MSA-P) or a prevalence of cerebellar ataxia

(MSA-C).2

The estimated incidence ranges from 0.1 to 2.4 cases per

100 000 person-years, the mean value being 0.6-0.7/100 000.1,3

Prevalence has been reported to span between 1.9 and 4.9 per

100 000, according to different population studies.4,5 MSA-P

accounts for approximately two-thirds of the cases in European

countries, with regional differences,2,6,7 whereas MSA-C is far more

common in Japan.8
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Symptom onset occurs usually in the sixth decade, and the med-

ian survival from that time is estimated to be 9.8 years.9,10

In the majority of cases, MSA appears sporadically in the popula-

tion. However, some cases have been reported of Japanese, German

and American families showing a genetic transmission of the dis-

ease.11-16 Despite these findings, no disease-causing mutation could

be identified in these studies.

COQ2 is a gene that encodes the enzyme parahydroxybenzoate-

polyprenyl transferase, which catalyses one of the final reactions in

the biosynthesis of coenzyme Q10 (ubiquinone). Intriguingly, whole

genome sequencing of a Japanese family and large case-control ser-

ies revealed that COQ2 variants may be associated with an

increased risk of MSA in East Asia.17,18

However, other groups failed to report the same correlation

between MSA and COQ2 variants in western countries.19-21 These

findings notwithstanding, the role of COQ2 in the pathogenesis of

MSA remains unclear.

In addition to that, Gaucher disease-causing mutations of GBA

(glucocerebrosidase) gene were recently sequenced in 969 MSA

patients and in 1509 control subjects, demonstrating an association

between many GBA variant and MSA, as it happens in Parkinson’s

disease (PD).22

Finally, genomewide association studies (GWAS) have pointed

out possible correlation between alpha-synuclein encoding gene

(SNCA) polymorphisms and MSA.23,24 However, the largest MSA

GWAS did not find any relevant association.25 Additional studies

with more samples may shed new light on potentially significant

associations in future.

At a histopathological level, the main features of MSA are selec-

tive neuronal loss and axonal degeneration, alpha-synuclein

immunoreactive inclusions and gliosis. The pathologic hallmark of

MSA is insoluble GCIs, whose main proteinaceous component is

alpha-synuclein.26 Thus, the presence of GCIs characterizes MSA as

a “synucleinopathy,” together with PD and Lewy Body Dementia

(LBD). In contrast to inclusions in PD and LBD, however, GCIs pre-

dominantly accumulate in oligodendrocytes.27 Other relevant pro-

teins that can be found in aggregates are p25alpha/TPPP, LRRK2

and tau protein.28,29

GCIs are diffusely distributed in specific anatomical regions of

the CNS. More specifically, the pyramidal, striatonigral, corticocere-

bellar and preganglionic autonomic systems are affected in a prefer-

ential manner.30 GCIs are also widely present in the motor cortex,

despite mild levels of cellular degeneration.31

Nonetheless, glial alterations in the white matter are not limited

to oligodendrocytes, but involve also astrocytes and microglia. In

fact, the extent of reactive astrocytosis and activated microglia paral-

lels the degree and anatomical distribution of GCIs and neurodegen-

eration.32,33

Neuronal cytoplasmic inclusions (NCIs) and neuronal nuclear

inclusions (NNIs) can also be found in MSA, although less frequently

than GCIs.34 They are mainly found in cortical, subcortical, cerebellar

and brainstem nuclei, being especially prevalent in the pons and infe-

rior olivar nucleus.35

2 | THE PATHOGENESIS OF MULTIPLE
SYSTEM ATROPHY

To this day, the pathogenic mechanisms that lead to the develop-

ment of MSA are yet to be unravelled. Nevertheless, there is com-

pelling evidence that MSA is a primary oligodendrogliopathy, which

encompasses alpha-synuclein misfolding and aggregation, early mye-

lin dysfunction and axonal disease (Figure 1).36,37

Early myelin dysfunction is suggested by the finding that p25al-

pha (TPPP), usually found in myelin sheaths, relocates in the oligo-

dendrocyte soma in the first stages of the disease.38 Moreover, the

co-localization of p25alpha and MBP is noticeably decreased in MSA

brains, and total MBP content is reduced. The presence of p25alpha

in the body of the cell could then enhance the aggregation of alpha-

synuclein.39

The interaction between p25alpha and alpha-synuclein may

result in the formation of GCIs, which in turn interferes with oligo-

dendrocyte survival and neuronal support. Alpha-synuclein is thought

to play a major pathogenic role in the disease, although it is unclear

whether it is normally expressed in oligodendrocytes. Analysis of

postmortem healthy controls’ brains yielded contrasting results:

in situ hybridization techniques failed to detect alpha-synuclein

mRNA expression in glial cells,40,41 whereas a recent study identified

SNCA mRNA in oligodendrocytes using qPCR.42 Djelloul and col-

leagues sought evidence of the expression of alpha-synuclein in

oligodendrocyte lineages derived from mouse embryonic stem cells

(ESC) and human-induced pluripotent stem cells (iPSCs) and in oligo-

dendrocytes from mice postnatal forebrains. They found that alpha-

synuclein was expressed in oligodendrocytes progenitors, but its

levels decreased during maturation and were absent in the final

stages of differentiation.43

The origin of GCIs’ alpha-synuclein in MSA therefore is not clear.

One hypothesis is that it results from endogenous overexpression in

oligodendrocytes, notwithstanding that many studies contradict this

view. The in situ hybridization studies previously described did not

retrieve SNCA mRNA in MSA patients’ white matter.40,41 Analysis

by qPCR revealed the presence of alpha-synuclein transcripts but

the difference with PD patients and healthy controls was not statis-

tically significant.42 Furthermore, in vitro culturing of MSA-derived

iPSCs showed that, as in control and PD-derived lines, alpha-synu-

clein was expressed in the first stages of oligodendrocytes’ develop-

ment but not in the premyelinating phase.43 On the contrary,

upregulation of synuclein expression has been demonstrated to

impair the correct maturation of the oligodendrocyte.44

Another theory claims that alpha-synuclein might be produced in

neurons and then taken up by oligodendrocytes. Several studies

advocate this hypothesis, showing that oligodendrocytes are capable

to absorb neuronal secreted or exogenously added alpha-synuclein

both in vitro and in vivo.45,46 Under physiological conditions, alpha

synuclein is primarily produced by neuronal cells as an unfolded pro-

tein.47 Several studies showed that alpha-synuclein aggregates can

transmit from neuron to neuron,48 astroglial cells 49 and oligoden-

droglial cells,47 thus supporting the hypothesis of neuronal
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transmission. Oligodendrocytes are then able to take up alpha-synu-

clein via endocytotic mechanisms.50 Hansen and colleagues provided

evidence that alpha-synuclein may propagate from cell to cell and

exert a seeding effect on the endogenous protein, thereby contribut-

ing to the spread of the pathology.51 This discovery, along with a

recent study by Prusiner and colleagues, suggests that alpha-synu-

clein could disseminate in a prion-like fashion.52

The connection between alpha-synuclein accumulation and neu-

rodegeneration is still a matter of debate. According to some studies,

alpha-synuclein may have a role in activating intrinsic and extrinsic

apoptotic pathways within oligodendrocytes.53,54 Oligodendrocytes’

dysfunction then affects neuronal survival,55 for example through a

reduction in glial derived neurotrophic factor (GDNF).56 Moreover,

in vitro studies demonstrated that alpha-synuclein aggregates directly

induce neuronal dysfunction and apoptosis.48,57,58 Desplats and col-

leagues demonstrated the formation of inclusion bodies in neurons after

alpha-synuclein uptake, possibly through lysosomal dysfunction, and

apoptosis of involved neurons.48 Another study showed that exogenous

alpha-synuclein fibrils induce pathological alpha-synuclein accumulation,

neuron loss and diminished levels of synaptic proteins.58 Klucken and

colleagues found that inhibition of autophagy with bafilomicin A1

increased toxicity, measured as the release of adenylate kinase, in neu-

rons transfected with C-terminal modified a-synuclein.59 Impairment of

autophagic pathways has already been reported in nigral neurons of PD

patients’ brains 60 and evidence for a potential role of autophagy in

MSA pathogenesis is emerging from in vitro and in vivo studies.61,62

Furthermore, there is evidence that also inflammatory response,

whose main actors are microglia and astrocytes, plays an active role

in perpetuating and extending brain damage. Activated Iba-1-positive

microglia and GFAP-positive astrocytes are shown to colocalize with

GCIs.63 Moreover, treatment of primary astrocytes with alpha-synu-

clein triggered astrogliotic changes, whereas extracellular alpha-synu-

clein is phagocytosed by microglia inducing microgliosis and

production of reactive oxygen species (ROS).64 In particular, the Toll-

like receptors 2 and 4 are reported to interact with alpha-synuclein

and exhibit upregulation in MSA patients.65-67 Finally, it is suggested

that the release of cytotoxic products by activated glia may favour

alpha-synuclein misfolding and aggregation.68

In the light of the recent progress on the pathophysiological

mechanism, we now have a better understanding of how oligoden-

drocytes’ dysfunction and alpha-synuclein accumulation develop in

the human CNS. However, as symptoms in MSA patients appear to

be caused by neuronal degeneration, and not by demyelination in

oligodendrocytes, the molecular interactions between the degener-

ated oligodendrocytes have to be better elucidated.

Among the hypothesized mechanisms, oligodendrocytes’ dys-

function might cause neuronal death through the activation of neu-

roinflammatory mechanisms 63-67 and the loss of neurotrophic

support.56 Neuronal dysfunction because of a-synuclein inclu-

sions48,57,58 and autophagy impairment60-62 also act synergistically,

leading to neuronal death in the striatonigral, olivopontocerebellar

and central autonomic pathways.31 This secondary neurodegenera-

tion may explain the typical symptoms observed in MSA patients,

the lack of response to L-DOPA and the rapid progression of this

disease.

Demyelination plays an important role in advanced MSA,33 and

recent studies found that intracellular alpha-synuclein delays oligo-

dendrocytes maturation and myelination by downregulating myelin-

gene regulatory factor and myelin basic protein (MBP).44,69 Myelin

dysregulation is often followed by axonal degeneration,36 as demon-

strated by transgenic animal models.70,71

Several other mechanisms have been examined as potentially

pathogenic, such as proteasome system inhibition.72 A recent field

of investigation is focusing on exosomes, small extracellular vesi-

cles which are involved in the reciprocal communication between

oligodendrocytes and neurons, in neural trophic support and in

the regulation of microglial response. Exosomes appear able to

catalyse and accelerate the nucleation of alpha-synuclein. Exo-

somes are also suspected of playing a role in the prion-like spread

of proteins, such as alpha-synuclein, in neurodegenerative dis-

eases.73-75

In conclusion, many pathways, from gene expression to protein

transport and inflammatory response, appear to be involved and to

interact over the course of the disease. However, further investiga-

tions are needed to establish their precise role and weight in the

pathogenesis of MSA.

F IGURE 1 Hypothetical features of multiple system atrophy pathophysiology. Early in the course of the disease, p25alpha relocalizes into
the oligodendroglial soma. Subsequently, altered expression or uptake of alpha-synuclein in oligodendrocytes and interaction with p25alpha
causes the formation of glial cytoplasmic inclusions, which eventually determine oligodendroglial dysfunction and loss of neurotrophic support.
Misfolded alpha-synuclein can also be taken up by neurons, with the formation of neuronal cytoplasmic and nuclear inclusions. Defective
autophagic clearance mechanisms promote the accumulation of intracellular alpha-synuclein at an increased rate. Together with microglial
activation, these factors ultimately lead to neurodegeneration and neuronal death
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3 | INDUCED PLURIPOTENT STEM CELLS
IN NEURODEGENERATIVE DISEASES

In 2006, Takahashi and Yamanaka for the first time successfully

reprogrammed somatic cells, mouse fibroblasts at the beginning, into

embryonic like cells, the so-called iPSCs.76 The induction of pluripo-

tency in vitro can be achieved by overexpression of defined cocktail

of pluripotency-associated genes, or reprogramming factors, namely

Oct3/4, Sox2, Klf4 and c-Myc (OSKM), that are transduced in

somatic cells, usually fibroblasts, with a retroviral or lentiviral sys-

tem.77,78 This procedure allows to obtain cells similar to ESCs in

morphology, proliferation, surface antigens, gene expression, epige-

netic status and telomerase activity.

The mechanisms by which reprogramming factors exert their

action have not been completely elucidated. Oct3/4 and Sox2

upregulate stemness genes and suppress differentiation-associated

genes, acting synergistically.79 The role of Klf4 and c-Myc is less

clear, but it has been proposed that Klf4 favours epithelial transition

by binding to specific genes, while c-Myc seems to be involved in

the regulation of cellular proliferation, metabolism, and biosynthetic

pathways.80,81

The advantages of iPSCs over ESCs are numerous and relevant.

Firstly, while the use of ESCs is limited by ethical concerns because

of their embryonal origin, iPSCs are produced from adult cells and

thus they overcome this issue. Secondly, they retain the same genetic

makeup as the original source. Therefore, they allow the production

of patient-specific disease models and provide hope for the develop-

ment of therapies based on autologous iPSCs transplantations.

The challenges of this technique are the relative low efficiency

of the protocol, the risk of mutations following the genomic integra-

tion of transcription factors, the potential tumour risk if used as cell

source for transplantation, and the possibility of incomplete repro-

gramming.

Remarkably, the discovery of iPSCs has paved the way for direct

pharmacological reprogramming, a technique that was pioneered in

2016 by Zhang et al82 Further studies are needed to perfect this

method. However, there is a hope that the absence of genetic

manipulation could reduce the risk for genomic alterations.

iPSCs have already provided successful and patient-specific

models of different neurodegenerative diseases. Thanks to their

pluripotent phenotype, iPSCs can be differentiated in the various

cellular lines that are preferentially affected in the different diseases.

Neuronal and glial models of PD,83-86 Huntington’s disease,87-89

amyotrophic lateral sclerosis90-92 and Alzheimer’s disease93-95 have

already been realized.

4 | MODELLING MULTIPLE SYSTEM
ATROPHY IN VITRO: PRIMARY CELL
CULTURE AND LINES

One factor that makes MSA such a puzzling disease is the difficulty

to obtain reliable disease models. This is mainly because of its

complex neuropathologic features and to the lack of a recognized

genetic background. Moreover, different cell lineages are involved.

Despite the fact that aggregates are located mainly in oligodendro-

cytes, it is not clear whether alpha-synuclein originates from neurons

or glial cells. Both pharmacological (by stereotaxic injection of toxins)

and transgenic mouse models have been developed in the

past.70,71,96-104 However, those models were not able to precisely

recapitulate biological and clinical features of the disease. Moreover,

drugs that work in animals may not yield the same results in human

trials. Thus, there is a strong need for a precise and human-derived

in vitro model of MSA.

4.1 | Primary cell models

At first, in vitro studies were based on primary oligodendrocytic lin-

eages, such as OLN-93,105 derived from transformed rat oligodendro-

cytes or primary glial lineages, such as CG4,61,69 from rat brain and

U737,106 obtained from human glioblastoma-astrocytoma specimens.

Clonal cell lines were genetically modified so to overexpress alpha-

synuclein, as primary human and rat oligodendrocytes do not express

significant levels of alpha-synuclein (Table 1). In an early study, Ste-

fanova and colleagues transfected glial cultures with vectors pDSred-

N1 or pEGFP-N1 yielding plasmids encoding human wild-type and C-

terminally truncated form of alpha-synuclein. They found that the

overexpression of human alpha-synuclein produced widespread fibril-

lar a-synuclein aggregates and cellular damage, and that C-terminally

truncated form is much more prone to form aggregates than the full-

length alpha-synuclein. Unsurprisingly, they also observed that overex-

pression of alpha-synuclein enhanced cell death rates and increased

cell susceptibility to oxidative stress. Notably, these changes took

place both in astrocytes and in oligodendrocytes.106

Subsequently, Kragh and colleagues obtained a successful model

of glial degeneration by co-expressing human alpha-synuclein and

p25alpha in a rat oligodendroglial cell line, using the vector pET-

11d.106 As explained above, p25alpha appears to be implicated in

early myelin dysfunction in MSA and to induce alpha-synuclein

aggregation.39 In their study, they observed that coexpression of

alpha-synuclein and p25alpha caused a retraction of microtubules

from the cellular processes to the perinuclear region after the trans-

fection. This phase was followed by a lasting induction of apoptotic

markers with microscopically detectable caspase-3 activation and

nuclear chromatin condensation. Microtubules rearrangement was

dependent on coexpression of alpha-synuclein and p25alpha, as cells

tolerated alpha-synuclein expression and reacted only marginally to

the expression of p25alpha. Moreover, it was observed that phos-

phorylation of alpha-synuclein at Ser-129 is critical for its toxic

effect, as the expression of phosphorylation-deficient S129A mutant

resulted in absent microtubules retraction. This is an important find-

ing as Ser-129 phosphorylation hallmarks alpha-synuclein pathology

in tissues107 and was shown to mediate alpha-synuclein inclusion

formation in neurons.108

May and colleagues also developed a cellular model of MSA by

overexpressing human wild-type alpha-synuclein in a rodent
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oligodendroglial cell line, GC4.69 The expression of alpha-synuclein

was shown to impair oligodendrocyte progenitor cells (OPCs) matu-

ration, as human alpha-synuclein-expressing oligodendrocytes

demonstrated abnormal branching, a lower number of MBP positive

cells and a reduced intracellular MBP content at the final stages of

differentiation compared to controls. These results suggest that

accumulation of alpha-synuclein in OPCs may result in downregula-

tion of myelin-associated genes.

The group also found out that OPC content is increased in the

striatum of MSA-P patients and that mice overexpressing human

wild-type alpha-synuclein also display an increased number of striatal

OPCs. Thus, they hypothesized that alpha-synuclein may impair adult

oligodendrogenesis, preventing OPCs from remyelination and con-

tributing to MSA pathogenesis. Furthermore, the group found that

BDNF mRNA is significantly reduced in the striatum of MBP trans-

genic mice, and that the supplementation of BDNF in vitro to trans-

fected oligodendroglial cells partially rescues early OPCs’ maturation,

but lacks the potential to induce myelination.

Recently, Valera and colleagues generated a rodent oligoden-

droglial cell line, CG4, co-infected with Lentivirus expressing human

alpha-synuclein or control and microRNA-101 (miR-101a-3p) or con-

trol vector.61 The aim of the study was to investigate the potential

pathogenic role of microRNA-101 dysregulation in in vivo and

in vitro models of MSA. Dysregulation of autophagy appears to be

implicated in the pathogenesis and pathology of synucle-

inopathies,60,62 and alterations in microRNA-101 have been strongly

associated with autophagy impairments in human cancer mod-

els.109,110 They found that the coinfection of cells with alpha-synu-

clein and miR-101 led to autophagy inhibition (measured as a

decrease in autophagy proteins Beclin 1 and LC3 levels and an

increase in p62 protein levels) in CG4 cells compared to controls. To

confirm these results, CG4 were then infected with a lentiviral con-

struct expressing an antisense sequence against miR-101, which

resulted in a decrease in miR-101. Co-infection with alpha-synuclein

and antimiR-101 induced an increase in the LC3 signal, and a signifi-

cant decrease in the intracellular accumulation of alpha-synuclein,

suggesting that the repression of miR-101 may effectively promote

synuclein clearance in cellular models. The group also observed an

increase in miR-101 levels and a decrease in autophagy-associated

proteins in the striatum of MBP-alpha-synuclein transgenic mice.

Interestingly, autophagy-associated proteins co-localized with alpha-

synuclein and the oligodendroglial marker Olig2. Stereotaxic injection

of Lentivirus expressing anti-miR-101 resulted in an increase in the

aforementioned autophagic proteins levels.

4.2 | Achievements and limitations of primary cell
models

These studies played a fundamental role in defining some key events

in MSA pathogenesis. An important result that was observed is that

overexpression of a-synuclein in a human and rat primary mixed glial

culture is sufficient to produce widespread fibrillar a-synuclein

aggregates and to trigger cellular stress and degeneration.106 In addi-

tion to that, it was demonstrated that the accumulation of alpha-

synuclein in OPCs may downregulate myelin-associated genes and

impair adult oligodendrogenesis.69 Moreover, it was noted that the

co-expression of alpha-synuclein and p25alpha in OLN-93 cells gen-

erated a successful model of MSA-like degeneration, with alpha-

TABLE 1 In vitro models of multiple system atrophy

Authors Starting cells Main findings Reference

Stefanova et al (2005) U373 astrocytoma cell line and primary mixed rat

glial culture overexpressing human WT a-syn(1-

140) or C- terminally truncated a-syn (1-111)

under the CMV promotor.

Presence of widespread fibrillar a-syn aggregates, more

numerous in cells expressing the C-terminally truncated

form; increased cell death rates; increased susceptibility

to treatment with TNFa.

106

Kragh et al (2009) Oligodendroglial cell line (OLN-93) derived from

primary Wistar rat brain glial cultures expressing

human WT a-syn or S129A or S129D mutant a-

syn with human WT p25a.

Coexpression of a-syn and p25a causes microtubule

relocalization to the perinuclear region; p25a-mediated

microtubule retraction requires low levels of a-syn; a-

syn-dependent microtubule retraction induces apoptotic

markers with activation of caspase-3 and nuclear

chromatin condensation.

105

May et al (2014) Primary rodent oligodendroglial cell line (CG4)

expressing human WT a-syn under the CMV

promoter.

Intracellular a-syn impairs OPC maturation in vitro; BDNF

partially rescues OPC maturation.

69

Valera et al (2017) Primary rodent oligodendroglial cell line (CG4) co-

infected with Lentivirus expressing human a-syn

or LV control and microRNA-101 (miR-101a-3p)

or control vector.

Autophagy inhibition in CG4 cells compared to controls;

Lentiviral delivery of an antimiR-101 construct reduces

a-syn-induced autophagy deficits.

61

Djelloul et al (2015) iPSCs obtained from donors’ skin fibroblasts,

differentiated into oligodendrocytes.

O4+, OLIG2+, PDGFRA+ oligodendrocyte progenitors

express Snca and a-syn; their expression decreases in

MBP+, CNPASE+ premyelinating oligodendrocytes,

without significant differences among control and

patient lines.

43

Abbreviations: a-syn, alpha-synuclein; BDNF, brain-derived neurotrophic factor; OPC, oligodendrocyte progenitor cell; WT, wild type.
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synuclein aggregation and microtubule retraction in association with

activation of the apoptotic protein caspase 3.105 It was also demon-

strated that microRNA-101 overexpression induces autophagy

impairment in alpha-synuclein expressing cells and that its antago-

nization promotes synuclein clearance, thus paving the way for pos-

sible future therapeutic actions.61

However, studies based on primary cell cultures bear some limi-

tations. Despite these models were able to replicate some pathologi-

cal features of the disease, there is no evidence that alpha-synuclein

in MSA derives from endogenous overexpression in oligodendro-

cytes, and post-mortem analyses of MSA patients’ white matter by

in situ hybridization and qPCR failed to retrieve a significant differ-

ence in the presence of SNCA mRNA compared to healthy con-

trols.40-42 Moreover, while point mutations, duplications and

triplications of SNCA locus are associated with both sporadic and

familial variants of PD,111-113 no association was found between

these mutations and MSA. GWASs pointed out a possible correlation

between SNCA polymorphisms and MSA but subsequent studies

yielded contrasting results.23-25 Thus, the validity of oligodendrocytic

alpha-synuclein upregulation as a model for the disease pathogenesis

is limited.

In addition to that, common permanent oligodendrocyte cell lines

have undergone various genetic modifications to drive immortal cell

growth. For this reason, it may be difficult to determine whether

results observed in tissue culture are artefacts or disease-specific

alterations.

5 | MODELLING MULTIPLE SYSTEM
ATROPHY IN VITRO BASED ON IPSC

Recently, iPSC obtained from patients have elicited new hopes in

this field. Neurons and oligodendrocytes derived from MSA patients’

iPSCs could yield new insights into the pathogenic process.

5.1 | Differentiating iPSCs into oligodendrocytes

In this regard, one of the main challenges is represented by the nature

of the cells targeted by MSA. In fact, oligodendrocytes’ maturation

in vitro is longer and more complex than neuronal one.114,115 This is

because neural stem cells (NSCs), in the absence of exogenous mor-

phogens, commit to a dorsal telencephalic fate, more specifically to

glutamatergic lineage.116 NSCs can switch to oligodendroglial progeni-

tors by co-expressing Olig2 with Nkx2.2 and Sox10. Thus, in most

protocols, pluripotent stem cells are treated with SHH for the first 10

to 12 days in order to induce expression of Olig2. SHH can be

replaced with purmorphamine114 or SAG.115 Dual inhibition of SMAD

signalling with the combined use of the molecules SB431542 and

LDN193189 has been shown to accelerate the production of Pax6+

NSCs and to upregulate Olig2, thereby generating the highest yield of

Olig2+ progenitors.115,117 This first part of differentiation, which

includes the induction of neuroepithelium and then of Olig2-expres-

sing progenitors, generally takes place in adherent cultures.

Subsequently, continuous stimulation of SHH pathway is neces-

sary to induce the formation of Olig2+, Nkx2.2+ pre-OPCs. In con-

trast to the previous stage, transition from neuroepithelium to pre-

OPCs is best carried out as floating aggregates.115

Differentiation to Sox10+, PDGFR+ OPCs is a long process that

may take up to 10 weeks. In order to boost the transition, most pro-

tocols introduce between the third and the fifth week a cocktail of

factors known to drive oligodendrocyte differentiation or to promote

oligodendrocyte survival, namely platelet-derived growth factor

(PDGF), neurotrophin 3 (NT3), triiodo-L-thyronine (T3), insulin-like

growth factor 1 (IGF-1) and hepatocyte growth factor (HGF).114,115,117

Last steps of differentiation require the withdrawal of mitogenic

factors and result in the production of O4+ immature oligodendro-

cyte and finally in the appearance of MBP+ ramified, mature oligo-

dendrocytes.115

5.2 | Generation of an iPSC-based MSA model

MSA oligodendrocytes have been successfully generated by Djelloul

and colleagues (Table 1).43 In their work, they generated iPSCs from

skin fibroblasts of one MSA-C patient, one MSA-P patient, one

familial PD patient and one healthy control, performing karyotype

analysis in order to rule out possible chromosomal abnormalities.

Subsequently, they differentiated them into functional oligodendro-

cytes using dual inhibition of SMAD signalling by small molecules

LDN and SB and PDGF-AA/IGF1/NT3/T3/HGF-mediated terminal

differentiation. Finally, they evaluated alpha-synuclein expression by

immunocytochemistry (ICC) and measured SNCA gene transcripts by

real-time PCR in the diverse lines at different stages of maturation.

By day 60 in vitro, O4+, OLIG2+, PDGFRA+ oligodendrocyte pro-

genitors showed the presence of SNCA transcripts and the expres-

sion of alpha-synuclein, that was present also in neurons, while it

was absent in astrocytes. Notably, the presence of alpha-synuclein in

oligodendrocytes decreased during maturation in all cell lines, includ-

ing the diseased ones. Furthermore, they observed the relocation of

alpha-synuclein during oligodendrocyte differentiation from the pro-

cesses to the perinuclear space. Interestingly, disease lines gave rise

to an accelerated high yield of O4+ progenitors by day 70 in vitro.

To confirm these results, postnatal mouse forebrain primary cul-

tures and mESC-derived oligodendrocytic cultures were analysed for

the presence of alpha-synuclein and SNCA gene transcripts. Interest-

ingly, in mouse brain primary cultures, alpha-synuclein showed speci-

fic localization in B-III-Tubulin+ neurons and in O4+

oligodendrocytes. Analysis by real-time PCR in both lines demon-

strated the presence of SNCA transcripts in O4+ oligodendrocytes.

A strong reduction in the expression of alpha-synuclein was then

observed in mature CNPASE- and MBP-expressing oligodendrocytes,

both in forebrain and in mESC-derived cultures.

5.3 | Relevance of the first iPSC-based MSA model

This study suggests that oligodendrocytes might be able to produce

alpha-synuclein in vivo, at least during the first stages of maturation.
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However, the implications of these findings have not been com-

pletely understood yet. No significant differences in the expression

of alpha-synuclein were observed between healthy and diseased cell

lines. This result might support the hypothesis that alpha-synuclein

found in MSA inclusions does not originate from oligodendrocytes,

but on the contrary it is produced in neurons and subsequently

taken up by oligodendrocytes. However, further research is needed

to confirm this finding in a greater number of MSA-derived iPSC

lines. Neuronal-oligodendroglial co-cultures might be used to investi-

gate possible mechanisms of synuclein uptake. Whether the acceler-

ated production of immature oligodendrocytes in diseased cell could

be ascribed to a greater oligodendrogenesis, probably triggered by

cell injury, remains to be determined.

5.4 | Promises and limitations of iPSC-based
models in MSA studies

Since their discovery, iPSCs have raised many hopes for the devel-

opment of disease-specific models that could replicate pathogenic

events in vitro. Although in its infancy, MSA-specific iPSC technol-

ogy could be the key to solving some of the enigmas surrounding

this disease. The advantages of this technique are that it is patient

derived, and it allows to study neural and oligodendroglial matura-

tion from their first stages. Therefore, it could be useful for elucidat-

ing mechanisms prior to alpha-synuclein misfolding and

accumulation, such as the origin of alpha-synuclein in GCIs and the

role of transcriptional upregulation of SNCA. Impairment of oligo-

dendroglial precursors’ maturation and myelination was shown to be

involved in MSA pathogenesis.33,44,69 Thus, studying the various

steps of oligodendrocytes generation and maturation through iPSC

technology might help clarifying early events in MSA pathogenesis.

Moreover, myelin lipids (sphingomyelin, sulfatide, and galactosylce-

ramide) were found to be decreased in the affected white matter of

MSA patients.118 These findings suggest that targeting lipid synthesis

pathway at different steps of maturation might reproduce some of

the neuropathologic features of MSA and possibly explain the extent

of the contribution of myelin proteins dysregulation in disease

pathogenesis.118 Another unresolved issue in MSA pathogenesis is

whether neurodegeneration is a primary event or a consequence of

oligodendroglial disfunction. Unravelling the pathways that lead to

cell death is essential to find potential therapeutic targets. For exam-

ple, recent in vitro studies highlighted the role of autophagy and

defective intracellular clearance in alpha-synuclein toxicity.59,61,62

Valera and colleagues targeted a specific regulator of autophagy,

microRNA-101, in order to create a model of MSA and to identify

potential therapeutic agents.61 iPSCs can be differentiated into many

cell types and thus it could be possible to study degenerative path-

ways both in affected neurons and in oligodendrocytes. Moreover,

patient-derived iPSCs could generate not only simple oligoden-

droglial or neuronal cultures, but also mixed oligodendroglial-neuro-

nal cultures, which could then be searched for differential expression

of alpha-synuclein, apoptotic markers and other relevant proteins.

Mixed oligodendroglial and neuronal cultures could also represent a

useful tool to study trophic interaction between neurons and oligo-

dendrocytes. A reduction in GDNF was observed in transgenic

mouse models of MSA, and it is believed to play a role in neurode-

generation.56 Co-cultures could expand our knowledge about the

role of GDNF and other trophic factors in the neuropathological

alterations found in MSA. Furthermore, both direct intercellular

transmission mechanisms47-49 and exosomes73-75 were shown to be

involved in alpha-synuclein propagation. These interactions could be

better analysed in co-cultures. Another exciting possibility is the cre-

ation of organoids, iPSC-based tridimensional cellular cultures, which

reproduce human brain tissues with their different cell types and

complex cellular interactions.119 Although these techniques have not

been used for studying MSA so far, significant advancements have

been made in other fields.

On the other hand, studying a disease such MSA with iPSCs

poses many challenges. The absence of a “smoking gun” gene defect

means it is extremely difficult to model MSA with stem cells. Like-

wise, the lack of a precise knowledge about the role of environmen-

tal influences in the pathogenesis challenges the validity of in vitro

results. Hence, many different diseased cell lines and controls would

be necessary to state that a finding is not an artefact, making

research of this kind long and expensive.

Having made these points, iPSCs still remain the best technique

to study MSA at a preclinical level so far. Both animal models and

primary cultures require some kind of manipulation to overexpress

alpha-synuclein, despite it is not known whether such a mechanism

is responsible or not for MSA pathogenesis. As genetic research

about MSA is making important progresses, it is possible that in a

near future we will be able to identify mutations or polymorphisms

associated with the disease.

6 | CONCLUSIONS AND FUTURE
PERSPECTIVES

Despite the many studies that have been conducted, MSA pathogen-

esis remains elusive. Surely, the paucity of reliable disease models

represents a significant obstacle for researchers. Different groups

attempted to reproduce the features of the disease by genetically

reprogramming primary glial lines.61,69,105,106 These models were

useful to investigate the effects of the overexpression of alpha-synu-

clein and p25alpha on oligodendrocytes’ maturation and survival. It

was observed that the excessive production of alpha-synuclein at an

oligodendroglial level causes the formation of fibrillary alpha-synu-

clein aggregates and favours cell death.106 In another study, the con-

comitant expression of p25alpha was shown to induce alpha-

synuclein aggregation and the subsequent activation of the apoptotic

cascade.105 Furthermore, it was seen that overexpression of alpha-

synuclein in OPCs impaired their normal maturation and myelination,

possibly through a downregulation of myelin-associated genes.69 In

addition to that, the presence of a dysregulation of autophagic path-

ways and its contribution to the intracellular deposition of alpha-

synuclein was analysed.61 However, these models have several flaws,
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as they are not based on patient-derived cultures and thus they do

not share the same genetic background as patients. Moreover, it is

not known whether alpha-synuclein is primarily overexpressed in

oligodendrocytes or if MSA neuropathological features originate

from the interaction between neurons and oligodendrocytes. There-

fore, models based on primary cell cultures are of limited use in drug

testing.

Conversely, the advent of iPSC technology opens up thrilling

possibilities for the study of neurodegenerative diseases such as

MSA. iPSC-based models are human relevant, and they retain the

same genetic inheritance as the patient. Thus, they raise hopes on

the possibility of testing drugs in a safe and reliable manner, and

developing treatments based on autologous stem cell transplanta-

tion. Furthermore, the use of stem cells allows researchers to

observe neurons and glial cells during their differentiation and matu-

ration, making it possible to identify early events that could trigger

late neurodegeneration. Djelloul and colleagues were the first to

generate oligodendrocytes from iPSCs of patients with MSA. Their

work shows that alpha-synuclein is produced in oligodendrocytes

progenitors and registers a significant decrease during maturation,

but no differences were observed between healthy and MSA cell

lines.43 However, it was noted that disease lines generated a higher

yield of O4+ progenitors at an accelerated rate. Although these

results suggest the hypothesis that GCIs’ alpha-synuclein might not

originate from oligodendrocytes, further models are needed to con-

firm these findings.

iPSC technology also poses a variety of challenges. The absence

of known genetic or environmental culprits makes it difficult to

determine whether MSA is one disease or many. As a consequence,

the validity and significance of in vitro results obtained from

patients’ iPSCs needs to be confirmed with a great number of obser-

vations.

In conclusion, although we are far from the understanding of dis-

ease mechanisms, future research may take advantage from the

uncountable opportunities offered by IPSCs. For example, co-cul-

tures of neurons and oligodendrocytes may shed light on the cellular

origin of alpha-synuclein. Furthermore, iPSC-based tridimensional

cellular cultures, or organoids, may provide an excellent insight into

MSA pathogenesis, as they reproduce complex cellular interaction in

a near-physiological environment.119 In addition to that, MSA-

derived iPSC cultures may allow scientists to focus on molecular

changes that occur in patients prior to neurodegeneration or symp-

toms onset. The identification of markers of subclinical disease may

be the first step towards early diagnosis and effective pharmacologi-

cal interventions.
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