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Program
1 – New Frontiers = Intro QM and QC (6 CFU)
• Brief review of QM and its working rules.

• QC: The qubit and quantum gates

• QC: Some relevant quantum circuits

• Seminars by IBM

• Open quantum systems and decoherence

2 – Quantum Mechanics and Relativity (3 CFU)
• Review of special relativity with some exercises

• Quantum nonlocality, teleportation, no cloning, cryptography…



Textbook for the first part
Quantum Computation and Quantum 
Information, by Michael Nielsen and 
Isaac Chuang.

Quantum Computing – From Linear 
algebra to Physical Realization, by Mikio 

Nakahara and Tetsuo Ohimi

Decoherence: And the Quantum-To-
Classical Transition, by Maximilian A. 
Schlosshauer



Snapshot of modern classical computers

1936: “On computable 
numbers, with an 
application to the 
Entscheidungsproblem”, 
Alan Turing

1947: First transistor (Bell Labs)

1975: Altair 
8800, one of 
the first micro 
computers

1958: First 
integrated
circuit

1981: Osborne 1, first 
true mobile computer 1989: first Macintosh
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Richard Feynman 
On quantum physics and computer simulation

. . . there is plenty of room to make [computers] smaller. . . . nothing that I can see in
the physical laws . . . says the computer elements cannot be made enormously smaller
than they are now. In fact, there may be certain advantages. 
—1959 

Might I say immediately . . . we always have had a great deal of difficulty in under-
standing the world view that quantum mechanics represents. . . . I cannot define the
real problem, therefore I suspect there’s not a real problem, but I’m not sure there’s no
real problem. 

I mentioned . . . the possibility . . . of things being affected not just
by the past, but also by the future, and therefore that our probabili-
ties are in some sense “illusory.” We only have the information
from the past and we try to predict the next step, but in reality it 
depends upon the near future . . .I’m trying to get . . . you people
who think about computer-simulation possibilities to . . . digest . . .
the real answers of quantum mechanics and see if you can’t invent 
a different point of view than the physicists . . . 
. . . the discovery of computers and the thinking about computers
has turned out to be extremely useful in many branches of human
reasoning. For instance, we never really understood how lousy our
understanding of languages was, the theory of grammar and all that
stuff, until we tried to make a computer which would be able to 
understand language . . . I . . . was hoping that the computer-type

thinking would give us some new ideas . . . 
. . . trying to find a computer simulation of physics seems to me to be an 

excellent program to follow out. . . . the real use of it would be with quantum 
mechanics. . . . Nature isn’t classical . . . and if you want to make a simulation of 
Nature, you’d better make it quantum mechanical, and by golly it’s a wonderful 
problem, because it doesn’t look so easy. 
—1981

Feynman, R. 1959. There’s Plenty of Room at the Bottom. Talk given at the annual meeting of the American
Physical Society at Caltech. (Excerpt reprinted with permission from Caltech’s Engineering and Science.)

———. 1981. Simulating Physics with Computers. Keynote address delivered at the MIT Physics of 
Computation Conference. Published in Int. J. Theor. Phys. 21 (6/7), 1982. (Excerpts reprinted with 
permission from the International Journal of Theoretical Physics.)

Brief history of quantum 
computing
1980s: Richard Feynman
• Classical computers are very 

inefficient in simulating 
quantum systems (eN)
• Computers are physical objects
• Why not creating computers 

following quantum laws?
• They will efficiently simulate at 

least themselves, maybe more, 
thus will be faster than any 
classical computer 



Brief history of quantum computing

1980: Paul Benioff describes the first QM model of computation
1985: David Deutsch describes first universal QC
1992: Deutsch-Jozsa algorithm
1993: Simon’s algorithm
1994: Shor’s algorithm
1995: Monroe & Wineland realize the first quantum gate (CNOT)
1996: Grover’s algorithm
1998: First realization of a quantum algorithm (Deutsch-Jozsa)Ó



Brief history of quantum computing

1999: Nakamura and Tsai demonstrate superconducting qubits
2001: Shor’s algorithm implemented to factorize 15
After this, it is a sequence of experimental successes…
2019: Quantum supremacy by Google (?)

(from “Timeline of Quantum Computing”, 
Wikipedia)

506 | Nature | Vol 574 | 24 OCTOBER 2019

Article
developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.

Sycamore chip used by Google



Moore’s law

The number 
of transistors  
doubles every 
two years

There is a 
physical limit 
to this 
scaling…  
then 
quantum?



Scaling of qubits



Scaling of qubits

IBM, 15th September 2020https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/



Snapshot of quantum computers

Rigetti

Google Sycamore 
processor

IBM Q



Classical computation

Several models studied for the theory of classical computation 
• Turing machines
• High-level programmable languages
• Boolean circuits

So far, the Boolean circuit model is by far the easiest model to 
generalize to quantum computation, being the closest to physical 
implementation. We will review it very briefly.



Boolean circuit model
Proposition: Any Boolean function f: {0,1}n → {0,1}m is computable by a 
Boolean circuit C using just AND, OR and NOT gates (in other words, 
AND, OR, NOT are universal for classical computation)

INPUT OUTPUT

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

AND gate
The AND gate is a basic digital logic gate that implements logical conjunction -
it behaves according to the truth table to the right. A HIGH output (1) results
only if all the inputs to the AND gate are HIGH (1). If none or not all inputs to
the AND gate are HIGH, a LOW output results. The function can be extended to
any number of inputs.

Symbols
Implementations

Analytical representation
Alternatives

IC package
See also
References

There are three symbols for AND gates: the American (ANSI or 'military') symbol and the IEC
('European' or 'rectangular') symbol, as well as the deprecated DIN symbol. Additional inputs can
be added as needed. For more information see Logic Gate Symbols. It can also be denoted as
symbol "^" or "&".

MIL/ANSI Symbol IEC Symbol DIN Symbol

The AND gate with inputs A and B and output C implements the logical expression .
This expression also may be denoted as C=A^B or C=A&B.

Contents

Symbols

Implementations

INPUT
A   B

OUTPUT
A + B

0 0 0

0 1 1

1 0 1

1 1 1

Porta OR
Da Wikipedia, l'enciclopedia libera.

La porta OR (dalla congiunzione inglese or, "o") è una porta logica digitale che
implementa la disgiunzione logica: essa si comporta come la tabella di verità a
destra. Quando entrambe le sue entrate (input) sono su 0 (zero) o su BASSA, la
sua uscita (output) è su 0 o su BASSA, mentre quando una sola delle sue entrate
è su 1 (uno) o su ALTA, la sua uscita sarà su 1 o su ALTA. In altre parole, la
funzione OR trova effettivamente il massimo tra due cifre binarie, proprio come
la funzione complementare AND (equivalente alla congiunzione "e") trova il
minimo.[1]

Simboli
Descrizione hardware e disposizione dei contatti
Linguaggio di descrizione dell'hardware
Implementazioni

Alternative

OR cablato
Note
Voci correlate
Altri progetti

Si usano tre simboli per le porte OR: il simbolo statunitense (ANSI o "militare") e il simbolo IEC
("europeo" o "rettangolare"), oltre al simbolo deprecato DIN.[2][3] Per una panoramica generale sui
simboli delle porte logiche vedi la voce Porta logica.

Simbolo MIL/ANSI Simbolo IEC simbolo DIN

Indice

Simboli

Descrizione hardware e disposizione dei contatti

INPUT OUTPUT

A NOT A

0 1

1 0

Traditional NOT Gate
(Inverter) symbol

International
Electrotechnical
Commission NOT
Gate (Inverter)
symbol

Inverter (logic gate)
In digital logic, an inverter or NOT gate is a logic gate which implements
logical negation. The truth table is shown on the right.

Electronic implementation
Digital building block

Analytical representation
Alternatives
Performance measurement

See also
References
External links

An inverter circuit outputs a voltage representing the opposite logic-level to
its input. Its main function is to invert the input signal applied. If the
applied input is low then the output becomes high and vice versa. Inverters
can be constructed using a single NMOS transistor or a single PMOS
transistor coupled with a resistor. Since this 'resistive-drain' approach uses
only a single type of transistor, it can be fabricated at a low cost. However, because current flows
through the resistor in one of the two states, the resistive-drain configuration is disadvantaged for
power consumption and processing speed. Alternatively, inverters can be constructed using two
complementary transistors in a CMOS configuration. This configuration greatly reduces power
consumption since one of the transistors is always off in both logic states.[1] Processing speed can
also be improved due to the relatively low resistance compared to the NMOS-only or PMOS-only
type devices. Inverters can also be constructed with bipolar junction transistors (BJT) in either a
resistor–transistor logic (RTL) or a transistor–transistor logic (TTL) configuration.

Digital electronics circuits operate at fixed voltage levels corresponding to a logical 0 or 1 (see
binary). An inverter circuit serves as the basic logic gate to swap between those two voltage levels.
Implementation determines the actual voltage, but common levels include (0, +5V) for TTL
circuits.

Contents

Electronic implementation

AND  A∧B OR  A∨B NOT  ¬A



Example 1: NAND, NOR, XOR

INPUT OUTPUT

A B A NAND B

0 0 1

0 1 1

1 0 1

1 1 0

The TTL 7400 chip, containing four
NANDs. The two additional pins
supply power (+5 V) and connect the
ground

NAND gate
In digital electronics, a NAND gate (NOT-AND) is a logic gate which produces an output which is false only if
all its inputs are true; thus its output is complement to that of an AND gate. A LOW (0) output results only if all
the inputs to the gate are HIGH (1); if any input is LOW (0), a HIGH (1) output results. A NAND gate is made
using transistors and junction diodes. By De Morgan's theorem, a two-input NAND gate's logic may be
expressed as AB=A+B, making a NAND gate equivalent to inverters followed by an OR gate.

The NAND gate is significant because any boolean function can be implemented by using a combination of
NAND gates. This property is called functional completeness. It shares this property with the NOR gate. Digital
systems employing certain logic circuits take advantage of NAND's functional completeness.

The function NAND(a1, a2, ..., an) is logically equivalent to NOT(a1 AND a2 AND ... AND an).

One way of expressing A NAND B is , where the symbol  signifies AND and the bar
signifies the negation of the expression under it: in essence, simply .

NAND gates with two or more inputs are available as integrated circuits in transistor-transistor
logic, CMOS, and other logic families.

Symbols
Hardware description and pinout

CMOS version
Availability

Implementations
Functional completeness
See also
References
External links

There are three symbols for NAND gates: the MIL/ANSI symbol, the IEC symbol and the deprecated DIN symbol sometimes found
on old schematics. For more information see logic gate symbols. The ANSI symbol for the NAND gate is a standard AND gate with
an inversion bubble connected.

MIL/ANSI Symbol IEC Symbol DIN Symbol

NAND gates are basic logic gates, and as such they are recognised in TTL and CMOS ICs.

The standard, 4000 series, CMOS IC is the 4011, which includes four independent, two-input, NAND gates.

These devices are available from most semiconductor manufacturers such as Fairchild Semiconductor, Philips or Texas
Instruments. These are usually available in both through-hole DIL and SOIC format. Datasheets are readily available in most
datasheet databases.

Contents

Symbols

Hardware description and pinout

CMOS version

Availability

INPUT OUTPUT

A B A NOR B

0 0 1

0 1 0

1 0 0

1 1 0

NOR gate
The NOR gate is a digital logic gate that implements logical NOR - it behaves
according to the truth table to the right. A HIGH output (1) results if both the
inputs to the gate are LOW (0); if one or both input is HIGH (1), a LOW output
(0) results. NOR is the result of the negation of the OR operator. It can also in
some senses be seen as the inverse of an AND gate. NOR is a functionally
complete operation—NOR gates can be combined to generate any other logical
function. It shares this property with the NAND gate. By contrast, the OR
operator is monotonic as it can only change LOW to HIGH but not vice versa.

In most, but not all, circuit implementations, the negation comes for free—
including CMOS and TTL. In such logic families, OR is the more complicated operation; it may use
a NOR followed by a NOT. A significant exception is some forms of the domino logic family.

The original Apollo Guidance Computer used 4,100 integrated circuits (IC), each one containing
only two 3-input NOR gates.[1]

Symbols
Hardware description and pinout

Availability
Implementations
Functional completeness
See also
References

There are three symbols for NOR gates: the American (ANSI or 'military') symbol and the IEC
('European' or 'rectangular') symbol, as well as the deprecated DIN symbol. For more information
see Logic Gate Symbols. The ANSI symbol for the NOR gate is a standard OR gate with an
inversion bubble connected.

MIL/ANSI Symbol IEC Symbol DIN Symbol

Contents

Symbols

Hardware description and pinout

= INPUT OUTPUT

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

CMOS XOR gate

XOR gate
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate
that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate
implements an exclusive or; that is, a true output results if one, and only one, of the inputs to the
gate is true. If both inputs are false (0/LOW) or both are true, a false output results. XOR
represents the inequality function, i.e., the output is true if the inputs are not alike otherwise the
output is false. A way to remember XOR is "must have one or the other but not both".

XOR can also be viewed as addition modulo 2. As a result, XOR gates are used to implement
binary addition in computers. A half adder consists of an XOR gate and an AND gate. Other uses
include subtractors, comparators, and controlled inverters.[1]

The algebraic expressions  and  both
represent the XOR gate with inputs A and B. The behavior of XOR is
summarized in the truth table shown on the right.

Symbols
Pass-gate-logic wiring

Analytical representation
Alternatives
More than two inputs
Applications

Uses in addition
Pseudo-random number generator
Correlation and sequence detection

See also
References

There are three schematic symbols for XOR gates: the traditional ANSI and DIN symbols and the IEC symbol. In
some cases, the DIN symbol is used with ⊕ instead of ≢. For more information see Logic Gate Symbols.

ANSI XOR Schematic Symbol DIN XOR Schematic Symbol IEC XOR Schematic Symbol

The logic symbols ⊕, Jpq, and ⊻ can be used to denote an XOR operation in algebraic expressions.

C-like languages use the caret symbol ^ to denote bitwise XOR. (Note that the caret does not denote logical
conjunction (AND) in these languages, despite the similarity of symbol.)

Contents

Symbols

Pass-gate-logic wiring

XOR  A⊕B



Example 2: Half adder
Note the elements of a circuit:
• Wires
• Gates
• Input on the left 
• Output on the right

Size of a circuit = number of gates 

DUPE gate: duplicates bits

= sum

= carry



NAND is universal

The number of fundamental gates can be reduced
Proposition: The NAND and DUPE gates are universal for computation

Truth Table

Input A Input B Output Q

0 0 1

0 1 1

1 0 1

1 1 0

A NAND gate is a universal gate, meaning that any other gate can be represented as a combination
of NAND gates.

A NOT gate is made by joining the inputs of a NAND gate together. Since a NAND gate is
equivalent to an AND gate followed by a NOT gate, joining the inputs of a NAND gate leaves only
the NOT gate.

Desired NOT Gate NAND
Construction

Q = NOT( A ) = A NAND A
Truth Table

Input A Output Q

0 1

1 0

An AND gate is made by inverting the output of a NAND gate as shown below.

Desired AND Gate NAND Construction

Q = A AND B = ( A NAND B ) NAND ( A NAND
B )

Making other gates by using NAND gates

NOT

AND

Truth Table

Input A Input B Output Q

0 0 1

0 1 1

1 0 1

1 1 0

A NAND gate is a universal gate, meaning that any other gate can be represented as a combination
of NAND gates.

A NOT gate is made by joining the inputs of a NAND gate together. Since a NAND gate is
equivalent to an AND gate followed by a NOT gate, joining the inputs of a NAND gate leaves only
the NOT gate.

Desired NOT Gate NAND
Construction

Q = NOT( A ) = A NAND A
Truth Table

Input A Output Q

0 1

1 0

An AND gate is made by inverting the output of a NAND gate as shown below.

Desired AND Gate NAND Construction

Q = A AND B = ( A NAND B ) NAND ( A NAND
B )

Making other gates by using NAND gates

NOT

AND

Truth Table

Input A Input B Output Q

0 0 0

0 1 0

1 0 0

1 1 1

If the truth table for a NAND gate is examined or by applying De Morgan's Laws, it can be seen
that if any of the inputs are 0, then the output will be 1. To be an OR gate, however, the output
must be 1 if any input is 1. Therefore, if the inputs are inverted, any high input will trigger a high
output.

Desired OR Gate NAND Construction

Q = A OR B = ( A NAND A ) NAND ( B NAND
B )

Truth Table

Input A Input B Output Q

0 0 0

0 1 1

1 0 1

1 1 1

A NOR gate is an OR gate with an inverted output. Output is high when neither input A nor input B
is high.

Desired NOR Gate NAND Construction

Q = A NOR B
= [ ( A NAND A ) NAND ( B NAND B ) ]

NAND 

OR

NOR



Reversible Computation

Logical gates are not always reversible:
• NOT is reversible
• AND is irreversible

The laws of Physics are reversible, therefore is computation is 
implemented physically, it should be written in terms of reversible 
gates ➜ Universal reversible computation should be possible, there 
should exists a universal set of reversible gates.

INPUT OUTPUT

A NOT A

0 1

1 0

Traditional NOT Gate
(Inverter) symbol

International
Electrotechnical
Commission NOT
Gate (Inverter)
symbol

Inverter (logic gate)
In digital logic, an inverter or NOT gate is a logic gate which implements
logical negation. The truth table is shown on the right.

Electronic implementation
Digital building block

Analytical representation
Alternatives
Performance measurement

See also
References
External links

An inverter circuit outputs a voltage representing the opposite logic-level to
its input. Its main function is to invert the input signal applied. If the
applied input is low then the output becomes high and vice versa. Inverters
can be constructed using a single NMOS transistor or a single PMOS
transistor coupled with a resistor. Since this 'resistive-drain' approach uses
only a single type of transistor, it can be fabricated at a low cost. However, because current flows
through the resistor in one of the two states, the resistive-drain configuration is disadvantaged for
power consumption and processing speed. Alternatively, inverters can be constructed using two
complementary transistors in a CMOS configuration. This configuration greatly reduces power
consumption since one of the transistors is always off in both logic states.[1] Processing speed can
also be improved due to the relatively low resistance compared to the NMOS-only or PMOS-only
type devices. Inverters can also be constructed with bipolar junction transistors (BJT) in either a
resistor–transistor logic (RTL) or a transistor–transistor logic (TTL) configuration.

Digital electronics circuits operate at fixed voltage levels corresponding to a logical 0 or 1 (see
binary). An inverter circuit serves as the basic logic gate to swap between those two voltage levels.
Implementation determines the actual voltage, but common levels include (0, +5V) for TTL
circuits.

Contents

Electronic implementation

INPUT OUTPUT

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

AND gate
The AND gate is a basic digital logic gate that implements logical conjunction -
it behaves according to the truth table to the right. A HIGH output (1) results
only if all the inputs to the AND gate are HIGH (1). If none or not all inputs to
the AND gate are HIGH, a LOW output results. The function can be extended to
any number of inputs.

Symbols
Implementations

Analytical representation
Alternatives

IC package
See also
References

There are three symbols for AND gates: the American (ANSI or 'military') symbol and the IEC
('European' or 'rectangular') symbol, as well as the deprecated DIN symbol. Additional inputs can
be added as needed. For more information see Logic Gate Symbols. It can also be denoted as
symbol "^" or "&".

MIL/ANSI Symbol IEC Symbol DIN Symbol

The AND gate with inputs A and B and output C implements the logical expression .
This expression also may be denoted as C=A^B or C=A&B.

Contents

Symbols

Implementations



Reversible Computation

This problem was studied in the ‘60s and ‘70s by Landauer e Bennett in 
connection with thermodynamics. 

They were considering whether it is possible to have circuits made only 
of reversible gates, thus dissipating no energy. This was thought to be 
an important issue at that time. In fact now supercomputers needs 
heavy cooling systems. Yet it is not the most pressing one. 

Reversible computation is important in the context of quantum 
computation, because – as we will see – quantum circuits need to be 
reversible in order to work properly. 



Reversible gates - CNOT gate

Definition: A Boolean gate G is said to be reversible if it has the same 
number of inputs and outputs, and its mapping is bijective. 

Some important new reversible gates 

CNOT =
x1

x2

x1

x1 ⊕ x2

x1 x2 x1 x1 ⊕ x2
input output

Control bit

Target bit

If the control bit is 0, the target bit is left unchanged, otherwise it is flipped

More recent motivation comes from quantum computing. Quantum mechanics requires the
transformations to be reversible and allows more general states of the computation than classical
computers (superpositions).

Any reversible gate that consumes its inputs and allows all input computations must have no more
input bits than output bits, by the pigeonhole principle. For one input bit, there are two possible
reversible gates. One of them is NOT. The other is the identity gate, which maps its input to the
output unchanged. For two input bits, the only non-trivial gate is the controlled NOT gate, which
XORs the first bit to the second bit and leaves the first bit unchanged.

Truth table Permutation matrix form

INPUT OUTPUT

 0  0  0  0 

0 1 0 1

1 0 1 1

1 1 1 0

Unfortunately, there are reversible functions that cannot be computed using just those gates. In
other words, the set consisting of NOT and XOR gates is not universal. If we want to compute an
arbitrary function using reversible gates, we need another gate. One possibility is the Toffoli gate,
proposed in 1980 by Toffoli.[2]

This gate has 3-bit inputs and outputs. If the first two bits are set, it flips the third bit. The
following is a table of the input and output bits:

Truth table Permutation matrix form

INPUT OUTPUT

 0  0  0  0  0  0 

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

It can be also described as mapping bits {a, b, c} to {a, b, c XOR (a AND b)}.

Universality and Toffoli gate



CCNOT gate

x1

x2

x1

(x1 ∧ x2)⊕ x3

Control bit

Target bit

A NOT gate is applied to the target bit only if both 
control bits are 1, otherwise it is left unchanged. This 
is also called Toffoli gate. 

CCNOT =

Control bit

x3

x2

More recent motivation comes from quantum computing. Quantum mechanics requires the
transformations to be reversible and allows more general states of the computation than classical
computers (superpositions).

Any reversible gate that consumes its inputs and allows all input computations must have no more
input bits than output bits, by the pigeonhole principle. For one input bit, there are two possible
reversible gates. One of them is NOT. The other is the identity gate, which maps its input to the
output unchanged. For two input bits, the only non-trivial gate is the controlled NOT gate, which
XORs the first bit to the second bit and leaves the first bit unchanged.

Truth table Permutation matrix form

INPUT OUTPUT

 0  0  0  0 

0 1 0 1

1 0 1 1

1 1 1 0

Unfortunately, there are reversible functions that cannot be computed using just those gates. In
other words, the set consisting of NOT and XOR gates is not universal. If we want to compute an
arbitrary function using reversible gates, we need another gate. One possibility is the Toffoli gate,
proposed in 1980 by Toffoli.[2]

This gate has 3-bit inputs and outputs. If the first two bits are set, it flips the third bit. The
following is a table of the input and output bits:

Truth table Permutation matrix form

INPUT OUTPUT

 0  0  0  0  0  0 

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

It can be also described as mapping bits {a, b, c} to {a, b, c XOR (a AND b)}.

Universality and Toffoli gate



CnNOT gate

Comments:

• With the same logic, one can build the CCCNOT = C3NOT gate and in 
general the CnNOT gate.

• The CNOT and CCNOT are their own inverse. If applied twice, they 
give the identity. This is not always the case. 



Universal reversible gates

CCNOT can be used to simulate NAND and DUPE

x1

x2

x1

NAND(x1,x2)1

x2

1
x2

1

0

x2

x2

Garbage
GarbageAncilla

Ancilla Ancilla

Theorem: The CCNOT gate is universal, assuming that ancilla inputs 
and garbage outputs are allowed. Any standard Boolen circuit can be 
efficiently transformed into a reversible circuit.



Universal reversible gates
So far ancillas were sometimes 0 sometimes 1. They can be initialized 
to the same value, let’s say 1, by means of a NOT gate. A reversible 
circuit computing f: {0,1}n → {0,1}m will then look as follows 

x1
x2

xn

…

1
1
1

f(x)1
f(x)2

f(x)m

…
Input

Ancillas

Output

Garbage

Reversible circuit
computing f



Universal reversible gates

The number of inputs and outputs is the same; the number of wires 
never changes. In fact, we can stop thinking about wires and think about 
each bit being carried in its own register, keeping its identity throughout 
the computation.

x1
x2

xn

…

1
1
1

f(x)1
f(x)2

f(x)m

…Input

Ancillas

Output

Garbage

Reversible circuit
computing f



Probabilistic (randomized) computation

We can open to the possibility that the value of a bit is not known with 
certainty 

0 or 1 0  with probability p1
1  with probability p2

deterministic bit random bit

Note: the physics has not changed, we simply do not know the value of 
the bit. 



Probabilistic (randomized) computation
The mathematical model changes, though. There are some 
computational tasks which we know how to provably solve efficiently 
using randomized computation (like generating prime numbers) but 
which we do not know how to provably solve efficiently using 
deterministic computation. 

However there should be any fundamental difference between the two 
models of computation, since they are based on the same physics.  



New notation
We will introduce a new notation to deal with probabilistic 
computation, which will bring us a bit closer to quantum computation.

1
0

0
1
p1
p2

|0>

|1>

p1|0> + p2|1>

0

1

0  with probability p1
1  with probability p2

Standard notation Vector notation Abstract (Dirac) notation



Gates in the new notation: the NOT gate
In the new notation, gates are represented by matrices

NOT = 0   1
1   0

1
0

1
0

0
1

0   1
1   00 = = 1=

0
1

0
1

1
0

0   1
1   01 = = 0=

For all other gates, we need to understand how to represent two and more bits. 

0   1
1   0 =

p1
p2

p1
p2

p2
p1



Two (and more) random bits
With two bits, we have four possible states

1
0
0
0

= 1
0

1
0⊗00

0
1
0
0

= 1
0

0
1⊗01

0
0
1
0

= 0
1

1
0⊗10

0
0
0
1

= 0
1

0
1⊗11

Tensor product (we’ll come back on this soon)



Two-bit gates: the AND gate

AND = 1  1  1  0
0  0  0  1

1
0 = 0

Note: it is not a square matrix, because the 
gate is not reversible

1
0
0
0

=00 = 1  1  1  0
0  0  0  1

1
0
0
0

1
0 = 0

0
1
0
0

=01 = 1  1  1  0
0  0  0  1

1
0
0
0

1
0 = 0

1
0
0
0

=10 = 1  1  1  0
0  0  0  1

0
0
1
0

0
1 = 1

0
0
0
1

=11 = 1  1  1  0
0  0  0  1

0
0
0
1



Two-bit gates: the CNOT gate

CNOT =

= 00

Note: it is a square matrix, because the gate is 
reversible

1
0
0
0

=00 =

1
0
0
0

= 01

0
1
0
0

=01 =

1
0
0
0

= 11

1
0
0
0

=10 =

0
0
1
0

= 10

0
0
0
1

=11 =

0
0
0
1

1  0  0  0
0  1  0  0 
0  0  0  1
0  0  1  0

1  0  0  0
0  1  0  0 
0  0  0  1
0  0  1  0

1  0  0  0
0  1  0  0 
0  0  0  1
0  0  1  0

1  0  0  0
0  1  0  0 
0  0  0  1
0  0  1  0
1  0  0  0
0  1  0  0 
0  0  0  1
0  0  1  0

1
0
0
0

0
1
0
0

0
0
0
1

0
0
1
0



A truly probabilistic gate
We introduce two new gates

COIN =

1  ½  
0  ½

It has no input and a single bit output. It generates randomly either a 0 or a 
1, with probability ½ each. It is like fair coin tossing.

$ ½
½

1COIN = 1$ =

If the input bit is 0, it is left unchanged. If it is 1, it is replaced by a COIN. 



Example 1

$ With probability ½ the input bit 00 and with 
probability ½ it is 10. In the first case the CNOT 
will leave in unchanged, in the second case it 
will changed into 11.

|0>

In mathematical terms

½
½

1
0⊗ =

½
0
½
0

1  0  0  0
0  1  0  0 
0  0  0  1
0  0  1  0

½
0
½
0

½
0
0 
½

= =  ½

1 
0
0 
0

+  ½

0 
0
0 
1

00 11



Example 2

$

|0>

½
½

1
0⊗ =

½
0
½
0

1  0  0  0
0  1  0  0 
0  0  0  1
0  0  1  0

½
0
½
0

1$

½
0
0 
½

=

1 ½  0  0
0 ½  0  0 
0  0  1 ½
0  0  0 ½

½
0
0 
½

½
0
¼
¼

=

1  0  
0  1

1  ½  
0  ½⊗



Example 2

$

|0> 1$

Using the Dirac notation (|0> ⊗ |0> = |00>, and same for others)

½ |00> + ½ |10>  ➜ ½ |00> + ½ |11>  ➜ ½ |00> + ½ ( ½ |10> + ½ |11>)

=  ½ |00> + ¼ |10> + ¼ |11> = ½
0
¼
¼



Example 3

$

|0> 1$

|0>

1$



Example 3

$

|0> 1$

½ |000> + ½ |100>  ➜ ½ |000> + ½ |110>  
➜ ½ |000> + ½ ( ½ |100> + ½ |110>) = ½ |000> + ¼ |100> + ¼ |110>
➜ ½ |000> + ¼ |100> + ¼ |111>
➜ ½ |000> + ¼ ( ½ |000> + ½ |100>) + ¼ ( ½ |011> + ½ |111>)
=   ⁄" # |000> + ⁄$ # |100> + ⁄$ # |011> + ⁄$ # |111>

|0>

1$



Comment 1
We used the formalism of linear algebra for probabilistic computation 
because “ignorance propagates linearly”. 

If a physical system is either in state x with probability p or in state y 
with probability q, and x evolves into X and y into Y, then at the end the 
system will be in state X with probability p or in state Y with probability 
q. In Dirac notation:

p|x> + q|y>  ➜ p|X> + q|Y>  = p T[|x>] + q T[|y>] = T[p|x> + q|y>]

The evolution operator T is linear, and can be represented by a matrix.



Comment 2
Measurements simply reveal the true state of the system, which was 
unknown to us before the measurement. After the measurement, the 
information about the state of the system changes, and with it the 
probability distribution. With reference to the previous example

1. We measure the three bits and find 000:

⁄" # |000> + ⁄$ # |100> + ⁄$ # |011> + ⁄$ # |111>  ➜ |000>  

This happens with probability  ⁄" #



Comment 2
2. We measure the first bit and find 0; this happened with probability 
⁄" # + ⁄$ # = ⁄% &

⁄" # |000> + ⁄$ # |100> + ⁄$ # |011> + ⁄$ # |111>  ➜ ⁄' (|000>) ⁄* ( |011>
⁄+ ,

=   ⁄" - |000> + ⁄$ - |011> 

We can call it “collapse” of the probability. It is not a real physical 
phenomenon. It is Bayes rule: P(A|B) = P(B|A) P(A) / P(B). In our case:
P(|000>|“0”) = P(“0”||000>) P(|000>) / P(”0”) = 1 × ⁄" # ÷ ⁄% & = ⁄" -



Rules of probabilistic classical computation
1. The state of a single probabilistic bit is given by a vector in R2, or in 
Dirac notation:

|x> = p|0> + q|1>,      with p,q ∈ ℝ, and p+q=1. 

The coefficients give the probabilities for the bit to have that value.

States for multiple bits are constructed via tensor product of R2

Two bits: |xy> = |x> ⊗|y>
Three bits: |xyz> =  |x> ⊗|y> ⊗|z>, and so on



Rules of probabilistic classical computation
Why tensor products, and not – for example – Cartesian product?

Take for example three bits. There are 8 possible configurations: 000, 
001, 010, 011, 100, 101, 110, 111. The register can be in any of these 8 
states, and the information propagates linearly (without interference 
among the states), therefore they behave like linearly independent 
states. 

This means that one needs 8 basis states in the vector space, which is 
what is provided by the tensor product, not by the Cartesian product. 



Rules of probabilistic classical computation
2. Gates are implemented by linear operators, i.e. matrices.

Gates can be either reversible (square invertible matrices) or 
irreversible (for example rectangular matrices). 

As we saw that computation can always be made reversible, without 
loss of generality we can say that gates are implemented by linear 
invertible operators (NxN invertible stochastic matrices). 

Of course, they have to preserve probabilities.



Rules of probabilistic classical computation
3. Measurements are updates of information. The states changes 
according to Bayes rule (“collapse” of the state)

As we will see, the rules of quantum computation are almost similar, 
but with fundamental differences. 



Preview of Quantum Computation 
Beam splitters (BS) are optical devices, which split the path of a photon in 
two: once a photon has entered, there is ½ probability that it goes one 
way, and ½ probability that it goes the other way. It is a probabilistic gate.

|0>

|0>

|1>

|1>

If we associate the value of the bit 
to the path of the photon (instead 
of the voltage as in standard 
computers), then we have

|0>  ➜ ½ |0> + ½ |1>
|1>  ➜ ½ |0> + ½ |1>



Preview of Quantum Computation 

Whatever the input state, it generates an equal weighted distributions 
of 0 and 1. The matrix representation is:

½ ½  
½ ½

BS

p
q

$= |x>  ➜ ½ |0> + ½ |1>

In fact: ½ ½  
½ ½ = ½

½ since p+q=1 



This is equivalent to the following 
circuit

Since

Preview of Quantum Computation 
But now we can do the following optical construction:

BS =

½ ½  
½ ½

|0>

|1>

|1>

|0>

mirror

mirror

BS BS

½ ½  
½ ½

½ ½  
½ ½=

In a classical picture (coin tossing), this makes perfectly sense



|0>  ➜ |0>
|1>  ➜ |1>

How is this possible? The answer is 
that photons are quantum: they 
cannot be thought as particles which 
follow one path or the other. They 
are more like waves, which split in 
two, interfere and then recombine

Preview of Quantum Computation 
But this is not what happens. What happens it:

|0>

|1>

|1>

|0>

mirror

mirror



Preview of Quantum Computation 
We will see how this is described by quantum mechanics, but the 
essence is the following: how can we destroy probabilities? 

We have to justify

|0>  ➜ ½ |0> + ½ |1> ➜ |0>

Instead of

|0>  ➜ ½ |0> + ½ |1> ➜ ½ |0> + ½ |1>

first BS

first BS

second BS

second BS



Preview of Quantum Computation 
We destroy probabilities with negative (in general, complex) numbers. 
But what does it mean to have negative probabilities? The solution of 
QM is: 

Bit  ➜ p|0> + q|1>    with  p,q ∈ ℝ+ and p+q=1

changed into

Qubit  ➜ a|0> + b|1>   with a,b ∈ ℂ and |a|2 + |b|2 = 1

probabilities

Probabilities 
(they remain always positive)

amplitudes



Preview of Quantum Computation 
The BS is mathematically described by

BS = H Hadamard gate     H =
1  1  
1 -1

!
"

Then

H
|0>  ➜ #! " |0> + #! " |1>

|1>  ➜ #! " |0> - #! " |1>

In both cases, 
probabilities are 50% of 
getting the value 0 or 1 

!!!



Preview of Quantum Computation 
But now

1  1  
1 -1

!
"

What happens physically is that the photon behaves like a wave. There 
can be constructive interference, which mathematically is expressed by 
amplitudes adding, and destructive interference, which mathematically 
is expressed by amplitudes subtracting. This is the role of negative 
numbers. 

This behaviour can be modelled by classical waves

BS =BS 1  1  
1 -1

!
"

= 1  0  
0  1

After the second 
BS, the bit takes 
the initial value 



Preview of Quantum Computation 
The surprising thing is that if we measure the photon right after the 
first BS and before it enters the second one, we will not find it half here 
and half there, as it would happen with classical waves. It will always be 
either here or there, and the wave behaviour is destroyed. 

Understanding what this means brings into the foundations of 
quantum mechanics, which is beyond the scope of the present course.



Quantum Algorithms

|0>

|0>

mirror

mirror

Initialize the state
Create the superposition of all states
Like parallel processing Compute the function

Let the state interfere so 
that the correct answer 
has higher probability

Read the output


