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Linear Algebra: Vector space

4 QUANTUM COMPUTING

1.1 Vector Spaces

Let K be a field, which is a set where ordinary addition, substraction, multi-
plication and division are well-defined. The sets R and C are the only fields
which we will be concerned with in this book. A vector space is a set where
the addition of two vectors and a multiplication by an element of K, so-called
a scalar, are defined.

DEFINITION 1.1 A vector space V is a set with the following properties;

(0-1) For any u, v ∈ V , their sum u + v ∈ V .

(0-2) For any u ∈ V and c ∈ K, their scalar multiple cu ∈ V .

(1-1) (u + v) + w = u + (v + w) for any u, v, w ∈ V .

(1-2) u + v = v + u for any u, v ∈ V .

(1-3) There exists an element 0 ∈ V such that u + 0 = u for any u ∈ V . This
element 0 is called the zero-vector.

(1-4) For any element u ∈ V , there exists an element v ∈ V such that u+v = 0.
The vector v is called the inverse of u and denoted by −u.

(2-1) c(x + y) = cx + cy for any c ∈ K, u, v ∈ V .

(2-2) (c + d)u = cu + du for any c, d ∈ K, u ∈ V .

(2-3) (cd)u = c(du) for any c, d ∈ K, u ∈ V .

(2-4) Let 1 be the unit element of K. Then 1u = u for any u ∈ V .

It is assumed that the reader is familiar with the above properties. We will
be concerned mostly with the complex vector space Cn in the following.
There are, however, occasional instances where the real vector space Rn is
considered.

An element of V = Cn will be denoted by |x〉, instead of u, and expressed
as a column of n complex numbers xi (1 ≤ i ≤ n) as

|x〉 =




x1
...

xn



 , xi ∈ C (1.1)

It is often written as a transpose of a row vector, as |x〉 = (x1, x2, . . . , xn)t,
to save space. The integer n ∈ N is called the dimension of the vector space.
In some literature, Cn is denoted by V (n, C). Similary we define the real
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vector space Rn = V (n, R) as the set of column vectors with real entries.
An element |x〉 is also called a ket vector or simply a ket. We will later
introduce another kind of vector called a bra vector, which, combined with
a ket vector, yields the bracket (see Eq. (1.6)). For |x〉, |y〉 ∈ Cn and a ∈ C,
vector addition and scalar multiplication are defined as

|x〉 =





x1

x2
...

xn




, |y〉 =





y1

y2
...

yn




⇒ |x〉+ |y〉 =





x1 + y1

x2 + y2
...

xn + yn




, a|x〉 =





ax1

ax2
...

axn




,

(1.2)

respectively. All the components of the zero-vector |0〉 are zero. The zero-
vector is also written as 0 in a less strict manner. The reader should verify
that these definitions satisfy all the axioms in the definition of a vector space.
Note, in particular, that any linear combination c1|x〉 + c2|y〉 of vectors
|x〉, |y〉 ∈ Cn with c1, c2 ∈ C is also an element of Cn.

1.2 Linear Dependence and Independence of Vectors

Let us consider a set of k vectors {|x1〉, . . . , |xk〉} in V = Cn. This set is said
to be linearly dependent if the equation

k∑

i=1

ci|xi〉 = |0〉 (1.3)

has a solution c1, . . . , ck, at least one of which is non-vanishing. In other
words, vectors {|xi〉} are linearly dependent if one of the vectors is expressed
as a linear combination of the other vectors. This definition implies that any
set containing the zero-vector |0〉 is linearly dependent.

If, in contrast, the trivial solution ci = 0 (1 ≤ i ≤ k) is the only solution of
Eq. (1.3), the set is said to be linearly independent.

EXERCISE 1.1 Find the condition under which two vectors

|v1〉 =




x
y
3



 , |v2〉 =




2

x− y
1



 ∈ R3

are linearly independent.

THEOREM 1.1 If a set of k vectors in Cn is linearly independent, then the
number k satisifies k ≤ n. The set is always linearly dependent if k > n.

Therefore we have:

Dirac notation: ket

Usual notation



Linear (in-)dependence, basis, dimension
Linear combina,on
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Linear independent vectors: a set of vectors is linearly independent iff
their only linear combination resulting in the null vector can be obtained 
with all coefficients equal to 0. Otherwise there are called linearly 
dependent.
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ω ⟺
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Null vector

Basis: a set of linear independent vectors such that any other vector can 
be written as linear combination of those vectors.

Dimension: number of basis vectors (n), always finite for us. Then, V = ℂn



Examples
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The proof is left as an exercise for the readers. Suppose there are n lin-
early independent vectors {|vi〉} in Cn. Then any |x〉 ∈ Cn can be expressed
uniquely as a linear combination of these n vectors;

|x〉 =
n∑

i=1

ci|vi〉, ci ∈ C.

The set of n linearly independent vectors is called a basis of Cn and the
vectors are called basis vectors. The vector space spanned by a basis {|vi〉}
is often denoted as Span({|vi〉}).

EXERCISE 1.2 Show that a set of vectors

|v1〉 =




1
1
1



 , |v2〉 =




1
0
1



 , |v3〉 =




1
−1
−1





is a basis of C3.

1.3 Dual Vector Spaces

A function f : Cn → C (f : |x〉 %→ f(|x〉) ∈ C) satisfing the linearity condition

f(c1|x〉 + c2|y〉) = c1f(|x〉) + c2f(|y〉),

∀|x〉, |y〉 ∈ Cn, ∀c1, c2 ∈ C
(1.4)

is called a linear function. To express f in a component form, let us intro-
duce a row vector 〈α|,

〈α| = (α1, . . . ,αn), αi ∈ C (1.5)

A row vector is called a bra vector or simply a bra in the following. Let us
define the inner product of a bra vector 〈α| and a ket vector |x〉 by

〈α|x〉 =
n∑

i=1

αixi (1.6)

Note that this product is nothing but an ordinary matrix multiplication of a
1× n matrix and an n× 1 matrix.

A bra vector with the above inner product induces a linear function
〈α|(|x〉) = 〈α|x〉. In fact,

〈α|(c1|x〉+ c2|y〉) =
∑

i

αi(c1xi + c2yi) = c1

∑

i

αixi + c2

∑

i

αiyi

= c1〈α|x〉 + c2〈α|y〉.

Geometric representation of vectors and 
basis (V = ℝ2)



Inner product

It is a function
< . | . >:   V × V   →   ℂ

With the following properties:
1.
2.
3. and is null iff
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Linear functionals
It is a function

such that

It naturally defines a vector space !*, called the (algebraic) dual of !.

f : H ! C
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Linear func+onals
Let {êi} with i = 1,…n be a basis of !. Then for any vector x:  

f(x) = f

 
nX

i=1

xiêi

!
=

nX

i=1

xif(êi) =
nX

i=1

xi⇠i
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with ⇠i = f(êi) 2 C
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Therefore f is uniquely idenAfied by the numbers ("1,"2, … "n), which are the 
values of f at the basis vectors. In parAcular let us consider the funcAonals

("1,"2, … "n)

(1,0, … 0)      ↔ ê*
1

(0,1, … 0)      ↔ ê*
2

…

(0,0, … 1)      ↔ ê*
n

By construction: ê*
i (êj) = #ij

It can be shown that {ê *
i}  forms a basis of 

!* called the dual basis



Riesz’s representation theorem  

Every functional on ! can be represented in terms of an inner product

where z depends on f, and is uniquely determined by it. Therefore 

such that

There is a 1-to-1 correspondence between vectors and functionals.

f(x) = hz|xi
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Dirac notation

|zi $ hz|
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ket
the vector

bra
the functional

Given a basis |1>, |2> … |n> in !, we 
will always consider the dual basis of !*, 
which we will denote as <1|, <2| … <n|. 
Then 
<i|j> = "ij. 
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vector space Rn = V (n, R) as the set of column vectors with real entries.
An element |x〉 is also called a ket vector or simply a ket. We will later
introduce another kind of vector called a bra vector, which, combined with
a ket vector, yields the bracket (see Eq. (1.6)). For |x〉, |y〉 ∈ Cn and a ∈ C,
vector addition and scalar multiplication are defined as

|x〉 =





x1

x2
...

xn




, |y〉 =





y1

y2
...

yn




⇒ |x〉+ |y〉 =





x1 + y1

x2 + y2
...

xn + yn




, a|x〉 =





ax1

ax2
...

axn




,

(1.2)

respectively. All the components of the zero-vector |0〉 are zero. The zero-
vector is also written as 0 in a less strict manner. The reader should verify
that these definitions satisfy all the axioms in the definition of a vector space.
Note, in particular, that any linear combination c1|x〉 + c2|y〉 of vectors
|x〉, |y〉 ∈ Cn with c1, c2 ∈ C is also an element of Cn.

1.2 Linear Dependence and Independence of Vectors

Let us consider a set of k vectors {|x1〉, . . . , |xk〉} in V = Cn. This set is said
to be linearly dependent if the equation

k∑

i=1

ci|xi〉 = |0〉 (1.3)

has a solution c1, . . . , ck, at least one of which is non-vanishing. In other
words, vectors {|xi〉} are linearly dependent if one of the vectors is expressed
as a linear combination of the other vectors. This definition implies that any
set containing the zero-vector |0〉 is linearly dependent.

If, in contrast, the trivial solution ci = 0 (1 ≤ i ≤ k) is the only solution of
Eq. (1.3), the set is said to be linearly independent.

EXERCISE 1.1 Find the condition under which two vectors

|v1〉 =




x
y
3



 , |v2〉 =




2

x− y
1



 ∈ R3

are linearly independent.

THEOREM 1.1 If a set of k vectors in Cn is linearly independent, then the
number k satisifies k ≤ n. The set is always linearly dependent if k > n.

Also

Basics of Vectors and Matrices 7

Conversely, any linear function can be expressed as a linear function induced
by a bra vector. The bra vector is explicitly constructed once a dual basis is
introduced as we will see below.

The vector space of linear functions on a vector space V (Cn in the present
case) is called the dual vector space, or simply the dual space, of V
and denoted by V ∗. The symbol ∗ here denotes the dual and should not be
confused with complex conjugation. As mentioned above, we may identify the
set of all bra vectors with

Cn∗ = {〈α| = (α1, . . . ,αn)|αi ∈ C} . (1.7)

The reader is encouranged to verify directly that Cn∗ indeed satisfies the
axioms of a vector space.

An important linear function is a bra vector obtained from a ket vector.
Given a vector |x〉 = (x1, . . . , xn)t ∈ Cn, define a bra vector 〈x| associated to
|x〉 by

|x〉 %→ 〈x| = (x∗
1, . . . , x

∗
n) ∈ Cn∗, (1.8)

Note that each component is complex-conjugated under this correspondence.
When a norm of a vector |x〉 is defined by

‖|x〉‖ =
√
〈x|x〉, (1.9)

it takes a non-negative real value due to this convention. In fact, observe that

√
〈x|x〉 =

[
n∑

i=1

x∗
i xi

]1/2

=

[
n∑

i=1

|xi|2
]1/2

≥ 0.

Given vectors |x〉, |y〉 ∈ Cn, their inner product is given by

〈x|y〉 =
n∑

i=1

x∗
i yi. (1.10)

In the mathematical literature, complex conjugation is taken rather with re-
spect to the yi. In the present book, however, we stick to physicists’ convention
(1.10), which should not be confused with Eq. (1.6).

Note the following sesquilinearity:∗

〈x|c1y1 + c2y2〉 = c1〈x|y1〉+ c2〈x|y2〉 (1.11)
〈c1x1 + c2x2|y〉 = c∗1〈x1|y〉+ c∗2〈x2|y〉, (1.12)

where |c1y1 + c2y2〉 ≡ c1|y1〉+ c2|y2〉.

∗sesqui = 1.5.

so that

This gives a clear mathematical meaning to the Dirac bra-ket notation

hx|(|yi) = hx|yi =
nX

i=1

x⇤
i yi

<latexit sha1_base64="ZMJMqIOP8+5Z1xSK6ohHkoYrFyg="></latexit>

functional Riesz’s
theorem

coefficient #i



Example
8 QUANTUM COMPUTING

EXERCISE 1.3 Let

|x〉 =




1
i

2 + i



 , |y〉 =




2− i

1
2 + i



 .

Find ‖|x〉‖, 〈x|y〉 and 〈y|x〉.

EXERCISE 1.4 Prove that

〈x|y〉 = 〈y|x〉∗. (1.13)

1.4 Basis, Projection Operator and Completeness
Relation

1.4.1 Orthonormal Basis and Completeness Relation

Any set of n linearly independent vectors {|v1〉, . . . , |vn〉} in Cn is called the
basis, and an arbitrary vector |x〉 ∈ Cn is expressed uniquely as a linear com-
bination of these basis vectors as |x〉 =

∑n
i=1 ci|vi〉. The n complex numbers

ci are called the components of |x〉 with respect to the basis {|vi〉}.
A basis {|ei〉} that satisfies

〈ei|ej〉 = δij (1.14)

is called an orthonormal basis. Clearly the choice of {|ei〉} which satisfies
the above condition is far from unique. It turns out that orthonormal bases
are convenient for many purposes.

Let |x〉 =
∑n

i=1 ci|ei〉. The inner product of |x〉 and 〈ej | yields

〈ej |x〉 =
n∑

i=1

ci〈ej |ei〉 =
n∑

i=1

ciδji = cj → cj = 〈ej |x〉.

Substituting this result into the expansion of |x〉, we obtain

|x〉 =
n∑

i=1

〈ei|x〉|ei〉 =
n∑

i=1

|ei〉〈ei|x〉 =

(
n∑

i=1

|ei〉〈ei|
)
|x〉.

Since |x〉 is arbitrary, we finally obtain the completeness relation
n∑

i=1

|ei〉〈ei| = I. (1.15)

The completeness relation is quite useful and will be frequently made use of
in the following.
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EXERCISE 1.6 (1) Use the Gram-Schmidt orthonormalization to find an
orthonormal basis {|ek〉} from a linearly independent set of vectors

|v1〉 = (−1, 2, 2)t, |v2〉 = (2,−1, 2)t, |v3〉 = (3, 0,−3)t.

(2) Let
|u〉 = (1,−2, 7)t =

∑

k

ck|ek〉.

Find the coefficients ck.

EXERCISE 1.7 Let

|v1〉 = (1, i, 1)t, |v2〉 = (3, 1, i)t.

Find an orthonormal basis for a two-dimensional subspace spanned by
{|v1〉, |v2〉}.

1.5 Linear Operators and Matrices

A map A : Cn → Cn is a linear operator if

A(c1|x〉+ c2|y〉) = c1A|x〉+ c2A|y〉 (1.20)

is satified for arbitrary |x〉, |y〉 ∈ Cn and ck ∈ C. Let us choose an arbitrary
orthonormal basis {|ek〉}. It is shown below that A is expressed as an n × n
matrix.

Let |v〉 =
∑n

k=1 vk|ek〉 be an arbitrary vector in Cn. Linearity implies that
A|v〉 =

∑
k vkA|ek〉. Therefore, the action of A on an arbitrary vector is fixed

provided that its action on the basis vectors is given. Since A|ek〉 ∈ Cn, it
can be expanded as

A|ek〉 =
n∑

i=1

|ei〉Aik.

By taking the inner product between 〈ej | and the above equation, we obtain

Ajk = 〈ej |A|ek〉. (1.21)

This is the matrix element of A given an orthonormal basis {|ek〉}.
It is easy then to show that

A =
∑

j,k

Ajk|ej〉〈ek| (1.22)

since by multiplying the completeness relation I =
∑n

i=1 |ei〉〈ei| from the left
and the right on A simultaneously, we obtain

A = IAI =
∑

j,k

|ej〉〈ej |A|ek〉〈ek| =
∑

j,k

Ajk|ej〉〈ek|.
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(2) Let
|u〉 = (1,−2, 7)t =

∑

k

ck|ek〉.

Find the coefficients ck.

EXERCISE 1.7 Let

|v1〉 = (1, i, 1)t, |v2〉 = (3, 1, i)t.

Find an orthonormal basis for a two-dimensional subspace spanned by
{|v1〉, |v2〉}.

1.5 Linear Operators and Matrices

A map A : Cn → Cn is a linear operator if

A(c1|x〉+ c2|y〉) = c1A|x〉+ c2A|y〉 (1.20)

is satified for arbitrary |x〉, |y〉 ∈ Cn and ck ∈ C. Let us choose an arbitrary
orthonormal basis {|ek〉}. It is shown below that A is expressed as an n × n
matrix.

Let |v〉 =
∑n

k=1 vk|ek〉 be an arbitrary vector in Cn. Linearity implies that
A|v〉 =

∑
k vkA|ek〉. Therefore, the action of A on an arbitrary vector is fixed

provided that its action on the basis vectors is given. Since A|ek〉 ∈ Cn, it
can be expanded as

A|ek〉 =
n∑

i=1

|ei〉Aik.

By taking the inner product between 〈ej | and the above equation, we obtain

Ajk = 〈ej |A|ek〉. (1.21)

This is the matrix element of A given an orthonormal basis {|ek〉}.
It is easy then to show that

A =
∑

j,k

Ajk|ej〉〈ek| (1.22)

since by multiplying the completeness relation I =
∑n

i=1 |ei〉〈ei| from the left
and the right on A simultaneously, we obtain

A = IAI =
∑

j,k

|ej〉〈ej |A|ek〉〈ek| =
∑

j,k

Ajk|ej〉〈ek|.
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FIGURE 1.1
A vector |v〉 is projected to the direction defined by a unit vector |ek〉 by the
action of Pk = |ek〉〈ek|. The difference |v〉 − Pk|v〉 is orthogonal to |ek〉.

1.4.2 Projection Operators

The matrix
Pk ≡ |ek〉〈ek| (1.16)

introduced above is called a projection operator in the direction defined
by |ek〉. This projects a vector |v〉 to a vector parallel to |ek〉 in such a way
that |v〉 − Pk|v〉 is orthogonal to |ek〉 (see Fig. 1.1).

The set {Pk = |ek〉〈ek|} satisfies the conditions

(i) P 2
k = Pk, (1.17)

(ii) PkPj = 0 (k %= j), (1.18)

(iii)
∑

k

Pk = I (completeness relation). (1.19)

The conditions (i) and (ii) are obvious from the orthonormality 〈ej |ek〉 = δjk.

EXAMPLE 1.1 Let

|e1〉 =
1√
2

(
1
1

)
, |e2〉 =

1√
2

(
1
−1

)
.

They define an orthonormal basis as is easily verified. Projection operators
are

P1 = |e1〉〈e1| =
1
2

(
1 1
1 1

)
, P2 = |e2〉〈e2| =

1
2

(
1 −1
−1 1

)
.

They satisfy the completeness relation
∑

k

Pk =
(

1 0
0 1

)
= I

and the orthogonality condition

P1P2 =
(

0 0
0 0

)
.

The reader should verify that P 2
k = Pk.
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12 QUANTUM COMPUTING

1.5.1 Hermitian Conjugate, Hermitian and Unitary Matri-
ces

Hermitian matrices play important role in many areas in mathematics and
physics. To define a Hermitian matrix, we need to introduce the Hermitian
conjugate operation, denoted †.†

DEFINITION 1.2 (Hermitian conjugate) Given a linear operator A :
Cn → Cn, its Hermitian conjugate A† is defined by

〈u|A|v〉 ≡ 〈A†u|v〉 = 〈v|A†|u〉∗, (1.23)

where |u〉, |v〉 are arbitrary vectors in Cn.

The above definition shows that 〈ej |A|ek〉 = 〈ek|A†|ej〉∗. Therefore, we find
the relation Ajk = (A†)∗kj , namely

(A†)jk = A∗
kj . (1.24)

In other words, the matrix elements of A† are obtained by the transpose and
the complex conjugation of A.

This definition also applies to a ket vector |x〉. We have

|x〉† = (x∗
1, . . . , x

∗
n) = 〈x|.

Namely, the procedure to produce a bra vector from a ket vector is regarded
as a Hermitian conjugation of the ket vector.

EXERCISE 1.8 Let A and B be n× n matrices and c ∈ C. Show that

(cA)† = c∗A†, (A + B)† = A† + B†, (AB)† = B†A†. (1.25)

DEFINITION 1.3 (Hermitian matrix) A matrix A : Cn → Cn is said to
be a Hermitian matrix if it satisifies A† = A.

Let {|e1〉, . . . , |en〉} be an orthonormal basis in Cn. Suppose a matrix U :
Cn → Cn satisifes U †U = I. By operating U on {|ek〉}, we obtain a vector
|fk〉 = U |ek〉. These vectors are again orthonormal since

〈fj |fk〉 = 〈ej |U †U |ek〉 = 〈ej |ek〉 = δjk. (1.26)

Note that | detU | = 1 since det U †U = detU † detU = | detU |2 = 1.

†Mathematicians tend to use ∗ to denote Hermitian conjugate. We will follow the physicists’
convention here.

Hermitian Conjugate – Hermitian operator
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DEFINITION 1.4 (Unitary matrix) Let U : Cn → Cn be a matrix which
satisfies U † = U−1. Then U is called a unitary matrix. Moreover, if U is
unimodular, namely detU = 1, U is said to be a special unitary matrix.

The set of unitary matrices is a group called the unitary group, while
that of the special unitary matrices is a group called the special unitary
group. They are denoted by U(n) and SU(n), respectively.

Remarks: If a real matrix A : Rn → Rn satisfies At = A−1, A is called an
orthogonal matrix. From det(AAt) = detAdetAt = (det A)2 = det I = 1, we
find that detA = ±1. If A is unimodular, detA = 1, it is called a special
orthogonal matrix. The set of orthogonal (special orthogonal) matrices is
a group called the orthogonal group (special orthogonal group) and
denoted by O(n) (SO(n)).

1.6 Eigenvalue Problems

Suppose we operate a matrix A on a vector |v〉 ∈ Cn, where |v〉 $= |0〉. The
result A|v〉 is not proportional to |v〉 in general. If, however, |v〉 is properly
chosen, we may end up with A|v〉, which is a scalar multiple of |v〉;

A|v〉 = λ|v〉, λ ∈ C. (1.27)

Then λ is called an eigenvalue of A, while |v〉 is called the corresponding
eigenvector. The above equation being a linear equation, the norm of the
eigenvector cannot be fixed. Of course, it is always possible to normalize
|v〉 such that ‖|v〉‖ = 1. We often use the symbol |λ〉 for an eigenvector
corresponding to an eigenvalue λ to save symbols.

Let {|ek〉} be an orthonormal basis in Cn and let 〈ei|A|ej〉 = Aij and
vi = 〈ei|v〉 be the components of A and |v〉 with respect to the basis. Then
the component expression for the above equation is obtained from

A|v〉 =
∑

i,j

|ei〉〈ei|A|ej〉〈ej |v〉 =
∑

i,j

Aijvj |ei〉

as ∑

j

Aijvj = λvi. (1.28)

Let us find the eigenvalue λ next. Note first that the eigenvalue equation is
rewritten as ∑

j

(A− λI)ijvj = 0.
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a group called the orthogonal group (special orthogonal group) and
denoted by O(n) (SO(n)).

1.6 Eigenvalue Problems

Suppose we operate a matrix A on a vector |v〉 ∈ Cn, where |v〉 $= |0〉. The
result A|v〉 is not proportional to |v〉 in general. If, however, |v〉 is properly
chosen, we may end up with A|v〉, which is a scalar multiple of |v〉;

A|v〉 = λ|v〉, λ ∈ C. (1.27)

Then λ is called an eigenvalue of A, while |v〉 is called the corresponding
eigenvector. The above equation being a linear equation, the norm of the
eigenvector cannot be fixed. Of course, it is always possible to normalize
|v〉 such that ‖|v〉‖ = 1. We often use the symbol |λ〉 for an eigenvector
corresponding to an eigenvalue λ to save symbols.

Let {|ek〉} be an orthonormal basis in Cn and let 〈ei|A|ej〉 = Aij and
vi = 〈ei|v〉 be the components of A and |v〉 with respect to the basis. Then
the component expression for the above equation is obtained from

A|v〉 =
∑

i,j

|ei〉〈ei|A|ej〉〈ej |v〉 =
∑

i,j

Aijvj |ei〉

as ∑

j

Aijvj = λvi. (1.28)

Let us find the eigenvalue λ next. Note first that the eigenvalue equation is
rewritten as ∑

j

(A− λI)ijvj = 0.
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This equation in vj has nontrivial solutions if and only if the matrix A − λI
has no inverse, namely

D(λ) ≡ det(A− λI) = 0. (1.29)

If it had the inverse, then |v〉 = (A − λI)−1|0〉 = 0 would be the unique
solution. This equation (1.29) is called the characteristic equation or the
eigen equation of A.

Let A be an n×n matrix. Then the characteristic equation has n solutions,
including the multiplicity, which we write as {λ1,λ2, . . . ,λn}. The function
D(λ) is also written as

D(λ) =
n∏

i=1

(λi − λ)

= (−λ)n +
∑

i

λi(−λ)(n−1) + . . . +
n∏

i=1

λi

= (−λ)n + tr A(−λ)(n−1) + . . . + detA, (1.30)

where use has been made of the facts tr A =
∑

i λi and detA =
∏

i λi.

1.6.1 Eigenvalue Problems of Hermitian and Normal
Matrices

The eigenvalue problems of Hermitian matrices and unitary matrices are par-
ticularly important in practical applications.

THEOREM 1.2 All the eigenvalues of a Hermitian matrix are real num-
bers. Moreover, two eigenvectors corresponding to different eigenvalues are
orthogonal.

Proof. Let A be a Hermitian matrix and let A|λ〉 = λ|λ〉. The Hermitian
conjugate of this equation is 〈λ|A = λ∗〈λ|. From these equations we obtain
〈λ|A|λ〉 = λ〈λ|λ〉 = λ∗〈λ|λ〉, which proves λ = λ∗ since 〈λ|λ〉 &= 0.

Let A|µ〉 = µ|µ〉 (µ &= λ), next. Then 〈µ|A = µ〈µ| since µ ∈ R. From
〈µ|A|λ〉 = λ〈µ|λ〉 and 〈µ|A|λ〉 = µ〈µ|λ〉, we obtain 0 = (λ − µ)〈µ|λ〉. Since
µ &= λ, we must have 〈µ|λ〉 = 0.

Suppose λ is k-fold degenerate. Then there are k independent eigenvectors
corresponding to λ. We may invoke to the Gram-Schmidt orthonormaliza-
tion, for example, to obtain an orthonormal basis in this k-dimensional space.
Accordingly, the set of eigenvectors of a Hermitian matrix is always chosen
to be orthonormal. Therefore, the set of eigenvectors {|λk〉} of a Hermitian
matrix A may be made into a complete set

n∑

k=1

|λk〉〈λk| = I
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where εijk is the totally antisymmetric tensor of rank 3, also known as the
Levi-Civita symbol,

εijk =






1, (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)
−1 (i, j, k) = (2, 1, 3), (1, 3, 2), (3, 2, 1)
0 otherwise.

The commutation relations, together with the anticommutation relations,
yield

σiσj = i
3∑

k=1

εijkσk + δijI . (1.35)

The spin-flip (“ladder”) operators are defined by

σ+ =
1
2
(σx + iσy) =

(
0 1
0 0

)
, σ− =

1
2
(σx − iσy) =

(
0 0
1 0

)
. (1.36)

Verify that σ+| ↑〉 = σ−| ↓〉 = 0, σ+| ↓〉 = | ↑〉, σ−| ↑〉 = | ↓〉. The
projection operators to the eigenspaces of σz with the eigenvalues ±1 are

P+ = | ↑〉〈↑ | = 1
2 (I + σz) =

(
1 0
0 0

)
,

P− = | ↓〉〈↓ | = 1
2 (I − σz) =

(
0 0
0 1

)
.

(1.37)

In fact, it is straightforward to show

P+| ↑〉 = | ↑〉, P+| ↓〉 = 0, P−| ↑〉 = 0, P−| ↓〉 = | ↓〉 .

Finally, we note the following identities:

σ2
± = 0, P 2

± = P±, P+P− = 0. (1.38)

1.8 Spectral Decomposition

Spectral decomposition of a normal matrix is quite a powerful technique in
several applications.

THEOREM 1.4 Let A be a normal matrix with eigenvalues {λi} and eigen-
vectors {|λi〉}, which are assumed to be orthonormal. Then A is decomposed
as

A =
∑

i

λi|λi〉〈λi|,
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which is called the spectral decomposition of A.

Proof. This is a straightforward consequence of the completeness relation

I =
n∑

i=1

|λi〉〈λi|.

If we operate A on the above equation from the left, we obtain

A = AI =
n∑

i=1

A|λi〉〈λi| =
n∑

i=1

λi|λi〉〈λi|,

which proves the theorem.

Let us recall that Pi = |λi〉〈λi| is a projection operator onto the direction of
|λi〉. Then the spectral decomposition claims that the operation of A in the
one-dimensional subspace spanned by |λi〉 is equivalent with a multiplication
by a scalar λi. This observation reveals a neat way to obtain the spectral
decomposition of a normal matrix. Let A be a normal matrix and let {λα} and
{|λα,p〉 (1 ≤ p ≤ gα)} be the sets of eigenvalues and eigenvectors, respectively.
Here we use subscripts α,β, . . . to denote distinct eigenvalues, while gα denotes
the degeneracy of the eigenvalue λα, namely λα has gα linearly independent
eigenvectors, which are indexed by p. Therefore we have

∑

α

1 ≤ n,
∑

α

gα =
∑

i

1 = n.

Now consider the following expression:

Pα =
∏

β !=α(A− λβI)
∏

γ !=α(λα − λγ)
. (1.39)

This is a projection operator onto the gα-dimensional space corresponding to
the eigenvalue λα. In fact, it is straightforward to verify that

Pα|λα,p〉 =
∏

β !=α(λα − λβ)
∏

γ !=α(λα − λγ)
|λα,p〉 = |λα,p〉 (1 ≤ p ≤ gα)

and

Pα|λδ,q〉 =
∏

β !=α(λδ − λβ)
∏

γ !=α(λα − λγ)
|λδ,q〉 = 0 (δ %= α, 1 ≤ q ≤ gδ)

since one of β(%= α) is equal to δ(%= α) in the numerator. Therefore, we
conclude that Pα is a projection operator

Pα =
gα∑

p=1

|λα,p〉〈λα,p| (1.40)
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EXAMPLE 1.4 (1) The eigenvalues and the corresponding eigenvectors of
σx are found in a similar way as the above example as λ1 = 1,λ2 = −1 and

|λ1〉 =
1√
2

(
1
1

)
, |λ2〉 =

1√
2

(
1
−1

)
.

(2) Let us consider the eigenvalue problem of a matrix

A =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 .

Note that this matrix is block diagonal with diagonal blocks I and σx. It
is found from this observation that the eigenvalues are 1, 1, 1 and −1. The
corresponding eigenvectors are obtained by making use of the result of (1) as





1
0
0
0



 ,





0
1
0
0



 ,
1√
2





0
0
1
1



 ,
1√
2





0
0
1
−1



 .

(3) Let us consider the eigenvalue problem of a matrix

B =





0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0



 .

Although this matrix is not block diagonal, change of the order of basis vectors
from |e1〉, |e2〉, |e3〉, |e4〉 to |e3〉, |e2〉, |e1〉, |e4〉 maps the matrix B to A in (2).
Therefore the eivenvalues of B are the same as those of A. (Note that the
characteristic equation is left unchanged under a permutation of basis vectors.)
By putting back the order of the basis vectors, the eigenvectors of A are
mapped to those of B as





0
0
1
0



 ,





0
1
0
0



 ,
1√
2





1
0
0
1



 ,
1√
2





1
0
0
−1



 .

EXERCISE 1.9 Let

A =
1√
2

(
0 1 + i

1− i 0

)
.

Find the eigenvalues and the corresponding normalized eigenvectors. Show
that the eigenvectors are mutually orthogonal and that they satisfy the com-
pleteness relation. Find a unitary matrix which diagonalizes A.
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It has been shown above that eigenvalues of a Hermitian matrix are real.
Note that converse is not true. For example,

A =
(

a b
−b −a

)
a, b ∈ R

has real eigenvalues ±
√

a2 − b2 for |a| ≥ |b|. How about the orthonormality
of the eigenvectors?

A matrix A is normal if it satisfies

AA† = A†A. (1.31)

THEOREM 1.3 Let A be a normal matrix. Then its eigenvectors corre-
sponding to different eigenvalues are orthogonal.

Proof. Let us write the eigenvalue equation as (A−λj)|λj〉 = 0. Then we find,
from the assumed condition [A, A†] = 0, that

〈λj |(A† − λ∗j )(A − λj)|λj〉 = 〈λj |(A− λj)(A† − λ∗j )|λj〉 = 0,

which implies 〈λj |A = λj〈λj |. Then it follows that

〈λk|A|λj〉 = λk〈λk|λj〉 = λj〈λk|λj〉,

which proves that 〈λk|λj〉 = 0 for λj '= λk.

If some of the eigenvalues are degenerate, we may use the Gram-Schmidt
procedure to make the corresponding eigenvectors orthonormal. Therefore it
is always possible to assume the set of eigenvectors of a normal matrix satisfies
the completeness relation.

Important examples of normal matrices are Hermitian matrices, unitary
matrices and skew-Hermitian matrices; see the next exercise.

EXERCISE 1.10 (1) Suppose A is skew-Hermitian, namely A† = −A.
Show that all the eigenvalues are pure imaginary.

(2) Let U be a unitary matrix. Show that all the eigenvalues are unimodular,
namely |λj | = 1.

(3) Let A be a normal matrix. Show that A is Hermitian if and only if all
the eigenvalues of A are real.

EXERCISE 1.11 Let

U =




0 0 i
0 i 0
i 0 0



 .

Find the eigenvalues (without calculation if possible) and the corresponding
eigenvectors.
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where det is the determinant function for matrices; it can be shown that the characteristic
function depends only upon the operator A, and not on the specific matrix representation
used for A. The solutions of the characteristic equation c(λ) = 0 are the eigenvalues
of the operator A. By the fundamental theorem of algebra, every polynomial has at least
one complex root, so every operator A has at least one eigenvalue, and a corresponding
eigenvector. The eigenspace corresponding to an eigenvalue v is the set of vectors which
have eigenvalue v. It is a vector subspace of the vector space on which A acts.
A diagonal representation for an operator A on a vector space V is a representation

A =
∑

i λi|i〉〈i|, where the vectors |i〉 form an orthonormal set of eigenvectors for A,
with corresponding eigenvalues λi. An operator is said to be diagonalizable if it has a
diagonal representation. In the next section we will find a simple set of necessary and
sufficient conditions for an operator on a Hilbert space to be diagonalizable. As an example
of a diagonal representation, note that the Pauli Z matrix may be written

Z =
[

1 0
0 −1

]

= |0〉〈0|− |1〉〈1|, (2.29)

where the matrix representation is with respect to orthonormal vectors |0〉 and |1〉, re-
spectively. Diagonal representations are sometimes also known as orthonormal decom-
positions.
When an eigenspace is more than one dimensional we say that it is degenerate. For

example, the matrix A defined by

A ≡





2 0 0
0 2 0
0 0 0



 (2.30)

has a two-dimensional eigenspace corresponding to the eigenvalue 2. The eigenvectors
(1, 0, 0) and (0, 1, 0) are said to be degenerate because they are linearly independent
eigenvectors of A with the same eigenvalue.

Exercise 2.11: (Eigendecomposition of the Pauli matrices) Find the
eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices
X, Y , and Z.

Exercise 2.12: Prove that the matrix
[

1 0
1 1

]

(2.31)

is not diagonalizable.

2.1.6 Adjoints and Hermitian operators
Suppose A is any linear operator on a Hilbert space, V . It turns out that there exists a
unique linear operator A† on V such that for all vectors |v〉, |w〉 ∈ V ,

(|v〉, A|w〉) = (A†|v〉, |w〉). (2.32)

This linear operator is known as the adjoint or Hermitian conjugate of the operator
A. From the definition it is easy to see that (AB)† = B†A†. By convention, if |v〉 is
a vector, then we define |v〉† ≡ 〈v|. With this definition it is not difficult to see that
(A|v〉)† = 〈v|A†.
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Exercise 2.13: If |w〉 and |v〉 are any two vectors, show that (|w〉〈v|)† = |v〉〈w|.

Exercise 2.14: (Anti-linearity of the adjoint) Show that the adjoint operation is
anti-linear,

(

∑

i

aiAi

)†

=
∑

i

a∗
i A

†
i . (2.33)

Exercise 2.15: Show that (A†)† = A.

In a matrix representation of an operator A, the action of the Hermitian conjugation
operation is to take the matrix of A to the conjugate-transpose matrix, A† ≡ (A∗)T ,
where the ∗ indicates complex conjugation, and T indicates the transpose operation. For
example, we have

[

1 + 3i 2i
1 + i 1− 4i

]†

=
[

1− 3i 1− i
−2i 1 + 4i

]

. (2.34)

An operator A whose adjoint is A is known as a Hermitian or self-adjoint op-
erator. An important class of Hermitian operators is the projectors. Suppose W is a
k-dimensional vector subspace of the d-dimensional vector space V . Using the Gram–
Schmidt procedure it is possible to construct an orthonormal basis |1〉, . . . , |d〉 for V
such that |1〉, . . . , |k〉 is an orthonormal basis for W . By definition,

P ≡
k

∑

i=1

|i〉〈i| (2.35)

is the projector onto the subspaceW . It is easy to check that this definition is independent
of the orthonormal basis |1〉, . . . , |k〉 used forW . From the definition it can be shown that
|v〉〈v| is Hermitian for any vector |v〉, so P is Hermitian, P † = P . We will often refer
to the ‘vector space’ P , as shorthand for the vector space onto which P is a projector.
The orthogonal complement of P is the operator Q ≡ I − P . It is easy to see that Q is
a projector onto the vector space spanned by |k + 1〉, . . . , |d〉, which we also refer to as
the orthogonal complement of P , and may denote by Q.

Exercise 2.16: Show that any projector P satisfies the equation P 2 = P .

An operator A is said to be normal if AA† = A†A. Clearly, an operator which
is Hermitian is also normal. There is a remarkable representation theorem for normal
operators known as the spectral decomposition, which states that an operator is a normal
operator if and only if it is diagonalizable. This result is proved in Box 2.2 on page 72,
which you should read closely.

Exercise 2.17: Show that a normal matrix is Hermitian if and only if it has real
eigenvalues.

A matrix U is said to be unitary if U †U = I. Similarly an operator U is unitary if
U †U = I. It is easily checked that an operator is unitary if and only if each of its matrix
representations is unitary. A unitary operator also satisfies UU † = I, and therefore U is
normal and has a spectral decomposition. Geometrically, unitary operators are important
because they preserve inner products between vectors. To see this, let |v〉 and |w〉 be any
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two vectors. Then the inner product of U |v〉 and U |w〉 is the same as the inner product
of |v〉 and |w〉,

(

U |v〉, U |w〉
)

= 〈v|U †U |w〉 = 〈v|I|w〉 = 〈v|w〉. (2.36)

This result suggests the following elegant outer product representation of any unitary U .
Let |vi〉 be any orthonormal basis set. Define |wi〉 ≡ U |vi〉, so |wi〉 is also an orthonormal
basis set, since unitary operators preserve inner products. Note that U =

∑

i |wi〉〈vi|.
Conversely, if |vi〉 and |wi〉 are any two orthonormal bases, then it is easily checked that
the operator U defined by U ≡

∑

i |wi〉〈vi| is a unitary operator.

Exercise 2.18: Show that all eigenvalues of a unitary matrix have modulus 1, that is,
can be written in the form eiθ for some real θ.

Exercise 2.19: (Pauli matrices: Hermitian and unitary) Show that the Pauli
matrices are Hermitian and unitary.

Exercise 2.20: (Basis changes) Suppose A′ and A′′ are matrix representations of an
operator A on a vector space V with respect to two different orthonormal bases,
|vi〉 and |wi〉. Then the elements of A′ and A′′ are A′

ij = 〈vi|A|vj〉 and
A′′

ij = 〈wi|A|wj〉. Characterize the relationship between A′ and A′′.

A special subclass of Hermitian operators is extremely important. This is the positive
operators. A positive operator A is defined to be an operator such that for any vector |v〉,
(|v〉, A|v〉) is a real, non-negative number. If (|v〉, A|v〉) is strictly greater than zero for
all |v〉 $= 0 then we say that A is positive definite. In Exercise 2.24 on this page you will
show that any positive operator is automatically Hermitian, and therefore by the spectral
decomposition has diagonal representation

∑

i λi|i〉〈i|, with non-negative eigenvalues λi.

Exercise 2.21: Repeat the proof of the spectral decomposition in Box 2.2 for the case
when M is Hermitian, simplifying the proof wherever possible.

Exercise 2.22: Prove that two eigenvectors of a Hermitian operator with different
eigenvalues are necessarily orthogonal.

Exercise 2.23: Show that the eigenvalues of a projector P are all either 0 or 1.

Exercise 2.24: (Hermiticity of positive operators) Show that a positive operator
is necessarily Hermitian. (Hint: Show that an arbitrary operator A can be
written A = B + iC where B and C are Hermitian.)

Exercise 2.25: Show that for any operator A, A†A is positive.

2.1.7 Tensor products
The tensor product is a way of putting vector spaces together to form larger vector spaces.
This construction is crucial to understanding the quantum mechanics of multiparticle
systems. The following discussion is a little abstract, and may be difficult to follow if
you’re not already familiar with the tensor product, so feel free to skip ahead now and
revisit later when you come to the discussion of tensor products in quantum mechanics.
Suppose V and W are vector spaces of dimension m and n respectively. For conve-

nience we also suppose that V and W are Hilbert spaces. Then V ⊗W (read ‘V tensor



Pauli matrices

1

Basics of Vectors and Matrices

The set of natural numbers {1, 2, 3, . . .} is denoted by N. The set of integers
{. . . ,−2,−1, 0, 1, 2, . . .} is denoted by Z. Q denotes the set of rational num-
bers. Finally R and C denote the sets of real numbers and complex numbers,
respectively. Observe that

N ⊂ Z ⊂ Q ⊂ R ⊂ C

The vector spaces encountered in physics are mostly real vector spaces and
complex vector spaces. Classical mechanics and electrodynamics are formu-
lated mainly in real vector spaces while quantum mechanics (and hence this
book) is founded on complex vector spaces. In the rest of this chapter, we
briefly summarize vector spaces and matrices (linear maps), taking applica-
tions to quantum mechanics into account.

The Pauli matrices, also known as the spin matrices, are defined by

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

They are also referred to as σ1,σ2 and σ3, respectively.
The symbol In denotes the unit matrix of order n with ones on the di-

agonal and zeros off the diagonal. The subscript n will be dropped when
the dimension is clear from the context. The arrow → often indicates logical
implication. We use ex and exp(x) interchangeably to denote the exponential
function.

For any two matrices A and B of the same dimension, their commutator,
or commutation relation, is a matrix defined as

[A, B] ≡ AB −BA,

while the anticommutator, or anticommutation relation, is

{A, B} ≡ AB + BA.

The symbol denotes the end of a proof.

3

18 QUANTUM COMPUTING

EXERCISE 1.12 Let H be a Hermitian matrix. Show that

U = (I + iH)(I − iH)−1

is unitary. This transformation is called the Cayley transformation.

1.7 Pauli Matrices

Let us consider spin 1/2 particles, such as an electron or a proton. These parti-
cles have an internal degree of freedom: the spin-up and spin-down states. (To
be more precise, these are expressions that are relevant when the z-component
of an angular momentum Sz is diagonalized. If Sx is diagonalized, for example,
these two quantum states can be either “spin-right” or “spin-left.”) Since the
spin-up and spin-down states are orthogonal, we can take their components
to be

| ↑〉 =
(

1
0

)
, | ↓〉 =

(
0
1

)
. (1.32)

Verify that they are eigenvectors of σz satisfying σz | ↑〉 = | ↑〉 and σz | ↓〉 =
−| ↓〉. In quantum information, we often use the notations |0〉 = | ↑〉 and |1〉 =
| ↓〉. Moreover, the states |0〉 and |1〉 are not necessarily associated with spins.
They may represent any two mutually orthogonal states, such as horizontally
and vertically polarized photons. Thus we are free from any physical system,
even though the terminology of spin algebra may be employed.

For electrons and protons, the spin angular momentum operator is conve-
niently expressed in terms of the Pauli matrices σk as Sk = (!/2)σk. We
often employ natural units in which ! = 1. Note the tracelessness property
tr σk = 0 and the Hermiticity σ†

k = σk.‡ In addition to the Pauli matrices,
we introduce the unit matrix I in the algebra, which amounts to expanding
the Lie algebra su(2) to u(2). The Pauli matrices satisfy the anticommutation
relations

{σi,σj} = σiσj + σjσi = 2δijI. (1.33)

Therefore, the eigenvalues of σk are found to be ±1.
The commutation relations between the Pauli matrices are

[σi,σj ] = σiσj − σjσi = 2i
∑

k

εijkσk, (1.34)

‡Mathematically speaking, these two properties imply that iσk are generators of the su(2)
Lie algebra associated with the Lie group SU(2).
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where εijk is the totally antisymmetric tensor of rank 3, also known as the
Levi-Civita symbol,

εijk =






1, (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)
−1 (i, j, k) = (2, 1, 3), (1, 3, 2), (3, 2, 1)
0 otherwise.

The commutation relations, together with the anticommutation relations,
yield

σiσj = i
3∑

k=1

εijkσk + δijI . (1.35)

The spin-flip (“ladder”) operators are defined by

σ+ =
1
2
(σx + iσy) =

(
0 1
0 0

)
, σ− =

1
2
(σx − iσy) =

(
0 0
1 0

)
. (1.36)

Verify that σ+| ↑〉 = σ−| ↓〉 = 0, σ+| ↓〉 = | ↑〉, σ−| ↑〉 = | ↓〉. The
projection operators to the eigenspaces of σz with the eigenvalues ±1 are

P+ = | ↑〉〈↑ | = 1
2 (I + σz) =

(
1 0
0 0

)
,

P− = | ↓〉〈↓ | = 1
2 (I − σz) =

(
0 0
0 1

)
.

(1.37)

In fact, it is straightforward to show

P+| ↑〉 = | ↑〉, P+| ↓〉 = 0, P−| ↑〉 = 0, P−| ↓〉 = | ↓〉 .

Finally, we note the following identities:

σ2
± = 0, P 2

± = P±, P+P− = 0. (1.38)

1.8 Spectral Decomposition

Spectral decomposition of a normal matrix is quite a powerful technique in
several applications.

THEOREM 1.4 Let A be a normal matrix with eigenvalues {λi} and eigen-
vectors {|λi〉}, which are assumed to be orthonormal. Then A is decomposed
as

A =
∑

i

λi|λi〉〈λi|,
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1.8 Spectral Decomposition

Spectral decomposition of a normal matrix is quite a powerful technique in
several applications.

THEOREM 1.4 Let A be a normal matrix with eigenvalues {λi} and eigen-
vectors {|λi〉}, which are assumed to be orthonormal. Then A is decomposed
as

A =
∑

i

λi|λi〉〈λi|,

Product of Pauli matrices
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often employ natural units in which ! = 1. Note the tracelessness property
tr σk = 0 and the Hermiticity σ†

k = σk.‡ In addition to the Pauli matrices,
we introduce the unit matrix I in the algebra, which amounts to expanding
the Lie algebra su(2) to u(2). The Pauli matrices satisfy the anticommutation
relations

{σi,σj} = σiσj + σjσi = 2δijI. (1.33)

Therefore, the eigenvalues of σk are found to be ±1.
The commutation relations between the Pauli matrices are

[σi,σj ] = σiσj − σjσi = 2i
∑

k

εijkσk, (1.34)

‡Mathematically speaking, these two properties imply that iσk are generators of the su(2)
Lie algebra associated with the Lie group SU(2).
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where εijk is the totally antisymmetric tensor of rank 3, also known as the
Levi-Civita symbol,

εijk =






1, (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)
−1 (i, j, k) = (2, 1, 3), (1, 3, 2), (3, 2, 1)
0 otherwise.

The commutation relations, together with the anticommutation relations,
yield

σiσj = i
3∑

k=1

εijkσk + δijI . (1.35)

The spin-flip (“ladder”) operators are defined by

σ+ =
1
2
(σx + iσy) =

(
0 1
0 0

)
, σ− =

1
2
(σx − iσy) =

(
0 0
1 0

)
. (1.36)

Verify that σ+| ↑〉 = σ−| ↓〉 = 0, σ+| ↓〉 = | ↑〉, σ−| ↑〉 = | ↓〉. The
projection operators to the eigenspaces of σz with the eigenvalues ±1 are

P+ = | ↑〉〈↑ | = 1
2 (I + σz) =

(
1 0
0 0

)
,

P− = | ↓〉〈↓ | = 1
2 (I − σz) =

(
0 0
0 1

)
.

(1.37)

In fact, it is straightforward to show

P+| ↑〉 = | ↑〉, P+| ↓〉 = 0, P−| ↑〉 = 0, P−| ↓〉 = | ↓〉 .

Finally, we note the following identities:

σ2
± = 0, P 2

± = P±, P+P− = 0. (1.38)

1.8 Spectral Decomposition

Spectral decomposition of a normal matrix is quite a powerful technique in
several applications.

THEOREM 1.4 Let A be a normal matrix with eigenvalues {λi} and eigen-
vectors {|λi〉}, which are assumed to be orthonormal. Then A is decomposed
as

A =
∑

i

λi|λi〉〈λi|,
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1.8 Spectral Decomposition

Spectral decomposition of a normal matrix is quite a powerful technique in
several applications.
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Eigenstates of σz
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onto the gα-dimensional subspace correcponding to the eigenvalue λα. It
follows from Eq. (1.40) that rank Pα = gα. Note also that

APα = λαPα. (1.41)

The above method is particularly suitable when the eigenvalues are degener-
ate. It is also useful when eigenvectors are difficult to obtain or unnecessary.

EXAMPLE 1.5 Let us take σy as an example. We found in Example 1.3
that the eigenvalues are λ1 = +1 and λ2 = −1, from which we obtain the
projection operators directly by using Eq. (1.39) as

P1 =
(σy − (−I))
(1− (−1))

=
1
2

(
1 −i
i 1

)
, P2 =

(σy − I)
(−1− 1)

=
1
2

(
1 i
−i 1

)
.

We find the spectral decomposition of σy as

σy =
∑

i

λiPi =
1
2

(
1 −i
i 1

)
+ (−1)

1
2

(
1 i
−i 1

)
.

One of the advantages of the spectral decomposition is that a function of a
matrix is evaluated quite easily. Let us prove the following formula.

PROPOSITION 1.1 Let A be a normal matrix in the above theorem. Then
for an arbitrary n ∈ N, we obtain

An =
∑

α

λn
αPα. (1.42)

If, furthermore, A−1 exists, the above formula may be extended to n ∈ Z by
noting that λ−1

α is an eigenvalue of A−1.

Proof. Let n ∈ N. Then

AnPα = λαAn−1Pα = . . . = λn−1
α APα = λn

αPα,

from which we obtain

An = An
∑

α

Pα =
∑

α

AnPα =
∑

α

λn
αPα.

To prove the second half of the proposition, we only need to show that A−1

has an eigenvalue λ−1
α , provided that A−1 exists (and hence λα #= 0), and the

corresponding projection operator is Pα. We find

|λα,p〉 = A−1A|λα,p〉 = λαA−1|λα,p〉 → A−1|λα,p〉 = λ−1
α |λα,p〉.

Therefore the projection operator corresponding to the eivengalue λ−1
α is Pα.

The case n = 0, I =
∑

α Pα, is nothing but the completeness relation. Now
we have proved that Eq. (1.42) applies to an arbitrary n ∈ Z.
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EXERCISE 1.12 Let H be a Hermitian matrix. Show that

U = (I + iH)(I − iH)−1

is unitary. This transformation is called the Cayley transformation.

1.7 Pauli Matrices

Let us consider spin 1/2 particles, such as an electron or a proton. These parti-
cles have an internal degree of freedom: the spin-up and spin-down states. (To
be more precise, these are expressions that are relevant when the z-component
of an angular momentum Sz is diagonalized. If Sx is diagonalized, for example,
these two quantum states can be either “spin-right” or “spin-left.”) Since the
spin-up and spin-down states are orthogonal, we can take their components
to be

| ↑〉 =
(

1
0

)
, | ↓〉 =

(
0
1

)
. (1.32)

Verify that they are eigenvectors of σz satisfying σz | ↑〉 = | ↑〉 and σz | ↓〉 =
−| ↓〉. In quantum information, we often use the notations |0〉 = | ↑〉 and |1〉 =
| ↓〉. Moreover, the states |0〉 and |1〉 are not necessarily associated with spins.
They may represent any two mutually orthogonal states, such as horizontally
and vertically polarized photons. Thus we are free from any physical system,
even though the terminology of spin algebra may be employed.

For electrons and protons, the spin angular momentum operator is conve-
niently expressed in terms of the Pauli matrices σk as Sk = (!/2)σk. We
often employ natural units in which ! = 1. Note the tracelessness property
tr σk = 0 and the Hermiticity σ†

k = σk.‡ In addition to the Pauli matrices,
we introduce the unit matrix I in the algebra, which amounts to expanding
the Lie algebra su(2) to u(2). The Pauli matrices satisfy the anticommutation
relations

{σi,σj} = σiσj + σjσi = 2δijI. (1.33)

Therefore, the eigenvalues of σk are found to be ±1.
The commutation relations between the Pauli matrices are

[σi,σj ] = σiσj − σjσi = 2i
∑

k

εijkσk, (1.34)

‡Mathematically speaking, these two properties imply that iσk are generators of the su(2)
Lie algebra associated with the Lie group SU(2).
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From the above proposition, we obtain for a normal matrix A and an arbi-
trary analytic function f(x),

f(A) =
∑

α

f(λα)Pα. (1.43)

Even when f(x) does not admit a series expansion, we may still formally
define f(A) by Eq. (1.43). Let f(x) =

√
x and A = σy, for example. Then we

obtain from Example 1.5 that

√
σy = (±1)P1 + (±i)P2.

It is easy to show that the RHS squares to σy. However, there are four possible√
σ depending on the choice of ± for each eigenvalue. Therefore the spectral

decomposition is not unique in this case. Of course this ambiguity originates
in the choice of the branch in the definition of

√
x.

EXAMPLE 1.6 Let us consider σy again. It follows directly from Example
1.5 that

exp(iασy) ≡
∞∑

k=0

(iασy)k

k!
= eiαP1 + e−iαP2 =

(
cosα sinα
− sinα cosα

)
.

EXERCISE 1.13 Suppose a 2 × 2 matrix A has eigenvalues −1, 3 and the
corresponding eigenvectors

|e1〉 =
1√
2

(
−1
i

)
, |e2〉 =

1√
2

(
1
i

)
,

respectively. Find A.

EXERCISE 1.14 Let
A =

(
2 1
1 2

)
.

(1) Find the eigenvalues and the corresponding normalized eigenvectors of A.
(2) Write down the spectral decomposition of A.
(3) Find exp(iαA).

EXERCISE 1.15 Let

A =




5 −2 −4
−2 2 2
−4 2 5



 .

(1) Find the eigenvalues and the corresponding eigenvectors of A.
(2) Find the spectral decomposition of A.
(3) Find the inverse of A by making use of the spectral decomposition.
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Now we prove a formula which will turn out to be very useful in the follow-
ing. This is a generalization of Example 1.6

PROPOSITION 1.2 Let n̂ ∈ R3 be a unit vector and α ∈ R. Then

exp (iαn̂ · σ) = cosαI + i(n̂ · σ) sinα, (1.44)

where σ = (σx,σy,σz).

Proof. Let

A = n · σ =
(

nz nx − iny

nx + iny −nz

)
.

The eigenvalues of A are λ1 = +1 and λ2 = −1. It then follows that

P1 =
(A + I)

2
=

1
2

(
1 + nz nx − iny

nx + iny 1− nz

)
,

P2 =
(A− I)
−2

=
1
2

(
1− nz −nx + iny

−nx − iny 1 + nz

)
,

from which we readily find

eiαA =
eiα

2

(
1 + nz nx − iny

nx + iny 1− nz

)
+

e−iα

2

(
1− nz −nx + iny

−nx − iny 1 + nz

)

= cosαI + i(n · σ) sinα.

EXERCISE 1.16 Let f : C → C be an analytic function. Let n̂ be a real
three-dimensional unit vector and α be a real number. Show that

f(αn̂ · σ) =
f(α) + f(−α)

2
I +

f(α)− f(−α)
2

n̂ · σ. (1.45)

(c.f., Proposition 1.2.)

1.9 Singular Value Decomposition (SVD)

A subject somewhat related to the eigenvalue problem is the singular value
decomposition. In a sense, it is a generalization of the eigenvalue problem to
arbitrary matrices.

THEOREM 1.5 Let A be an m × n matrix with complex entries. Then it
is possible to decompose A as

A = UΣV †, (1.46)



Exercises

Linear algebra 75

Show explicitly that the Hadamard transform on n qubits, H⊗n, may be written
as

H⊗n =
1√
2n

∑

x,y

(−1)x·y|x〉〈y|. (2.55)

Write out an explicit matrix representation for H⊗2.

2.1.8 Operator functions
There are many important functions which can be defined for operators and matri-
ces. Generally speaking, given a function f from the complex numbers to the com-
plex numbers, it is possible to define a corresponding matrix function on normal ma-
trices (or some subclass, such as the Hermitian matrices) by the following construc-
tion. Let A =

∑

a a|a〉〈a| be a spectral decomposition for a normal operator A. Define
f (A) ≡

∑

a f (a)|a〉〈a|. A little thought shows that f (A) is uniquely defined. This pro-
cedure can be used, for example, to define the square root of a positive operator, the
logarithm of a positive-definite operator, or the exponential of a normal operator. As an
example,

exp(θZ) =
[

eθ 0
0 e−θ

]

, (2.56)

since Z has eigenvectors |0〉 and |1〉.

Exercise 2.34: Find the square root and logarithm of the matrix
[

4 3
3 4

]

. (2.57)

Exercise 2.35: (Exponential of the Pauli matrices) Let "v be any real,
three-dimensional unit vector and θ a real number. Prove that

exp(iθ"v · "σ) = cos(θ)I + i sin(θ)"v · "σ, (2.58)

where "v ·"σ ≡
∑3

i=1 viσi. This exercise is generalized in Problem 2.1 on page 117.

Another important matrix function is the trace of a matrix. The trace of A is defined
to be the sum of its diagonal elements,

tr(A) ≡
∑

i

Aii. (2.59)

The trace is easily seen to be cyclic, tr(AB) = tr(BA), and linear, tr(A + B) =
tr(A)+tr(B), tr(zA) = z tr(A), where A and B are arbitrary matrices, and z is a complex
number. Furthermore, from the cyclic property it follows that the trace of a matrix
is invariant under the unitary similarity transformation A → UAU †, as tr(UAU †) =
tr(U †UA) = tr(A). In light of this result, it makes sense to define the trace of an operator
A to be the trace of any matrix representation of A. The invariance of the trace under
unitary similarity transformations ensures that the trace of an operator is well defined.
As an example of the trace, suppose |ψ〉 is a unit vector and A is an arbitrary op-

erator. To evaluate tr(A|ψ〉〈ψ|) use the Gram–Schmidt procedure to extend |ψ〉 to an



Tensor product

26 QUANTUM COMPUTING

The reader should verify that UΣV † really reproduces A.

EXERCISE 1.17 Find the SVD of

A =
(

1 0 i
i 0 1

)
.

1.10 Tensor Product (Kronecker Product)

DEFINITION 1.5 Let A be an m× n matrix and let B be a p× q matrix.
Then

A⊗B =





a11B, a12B, . . . , a1nB
a21B, a22B, . . . , a2nB

. . .
am1B, am2B, . . . , amnB



 (1.47)

is an (mp)× (nq) matrix called the tensor product (Kronecker product)
of A and B.

It should be noted that not all (mp) × (nq) matrices are tensor products
of an m × n matrix and a p × q matrix. In fact, an (mp) × (np) matrix has
mnpq degrees of freedom, while m × n and p × q matrices have mn + pq in
total. Observe that mnpq # mn + pq for large enough m, n, p and q. This
fact is ultimately related to the power of quantum computing compared to its
classical counterpart.

EXAMPLE 1.8

σx ⊗ σz =
(

0 σz

σz 0

)
=





0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0



 .

EXAMPLE 1.9 We can also apply the tensor product to vectors as a special
case. Let

|u〉 =
(

a
b

)
, |v〉 =

(
c
d

)
.

Then we obtain

|u〉 ⊗ |v〉 =
(

a|v〉
b|v〉

)
=





ac
ad
bc
bd



 .

The tensor product |u〉 ⊗ |v〉 is often abbreviated as |u〉|v〉 or |uv〉 when it
does not cause confusion.
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to a convenient matrix representation known as the Kronecker product. Suppose A is
an m by n matrix, and B is a p by q matrix. Then we have the matrix representation:

nq
︷ ︸︸ ︷

A ⊗ B ≡











A11B A12B . . . A1nB
A21B A22B . . . A2nB
...

...
...

...
Am1B Am2B . . . AmnB





























mp . (2.50)

In this representation terms like A11B denote p by q submatrices whose entries are
proportional to B, with overall proportionality constant A11. For example, the tensor
product of the vectors (1, 2) and (2, 3) is the vector

[

1
2

]

⊗
[

2
3

]

=









1× 2
1× 3
2× 2
2× 3









=









2
3
4
6









. (2.51)

The tensor product of the Pauli matrices X and Y is

X ⊗ Y =
[

0 · Y 1 · Y
1 · Y 0 · Y

]

=









0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0









. (2.52)

Finally, we mention the useful notation |ψ〉⊗k, which means |ψ〉 tensored with itself k
times. For example |ψ〉⊗2 = |ψ〉 ⊗ |ψ〉. An analogous notation is also used for operators
on tensor product spaces.

Exercise 2.26: Let |ψ〉 = (|0〉 + |1〉)/
√
2. Write out |ψ〉⊗2 and |ψ〉⊗3 explicitly, both

in terms of tensor products like |0〉|1〉, and using the Kronecker product.

Exercise 2.27: Calculate the matrix representation of the tensor products of the Pauli
operators (a) X and Z; (b) I and X ; (c) X and I. Is the tensor product
commutative?

Exercise 2.28: Show that the transpose, complex conjugation, and adjoint operations
distribute over the tensor product,

(A ⊗ B)∗ = A∗ ⊗ B∗; (A ⊗ B)T = AT ⊗ BT ; (A ⊗ B)† = A† ⊗ B†.(2.53)

Exercise 2.29: Show that the tensor product of two unitary operators is unitary.

Exercise 2.30: Show that the tensor product of two Hermitian operators is Hermitian.

Exercise 2.31: Show that the tensor product of two positive operators is positive.

Exercise 2.32: Show that the tensor product of two projectors is a projector.

Exercise 2.33: The Hadamard operator on one qubit may be written as

H =
1√
2

[

(|0〉 + |1〉)〈0| + (|0〉 − |1〉)〈1|
]

. (2.54)
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EXERCISE 1.18 Let A and B be as above and let C be an n × r matrix
and D be a q × s matrix. Show that

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (1.48)

It similarly holds that

(A1 ⊗B1)(A2 ⊗B2)(A3 ⊗B3) = (A1A2A3)⊗ (B1B2B3),

and its generalizations whenever the dimensions of the matrices match so that
the products make sense.

EXERCISE 1.19 Show that

A⊗ (B + C) = A⊗B + A⊗ C (1.49)
(A⊗B)† = A† ⊗B† (1.50)

(A⊗B)−1 = A−1 ⊗B−1 (1.51)

whenever the matrix operations are well-defined.
Show, from the above observations, that the tensor product of two unitary

matrices is also unitary and that the tensor product of two Hermitian matrices
is also Hermitian.

EXERCISE 1.20 Let A and B be an m × m matrix and a p × p matrix,
respectively. Show that

tr(A⊗B) = (trA)(trB),
det(A⊗B) = (detA)p(det B)m.

EXERCISE 1.21 Let |a〉, |b〉, |c〉, |d〉 ∈ Cn. Show that

(|a〉〈b|)⊗ (|c〉〈d|) = (|a〉 ⊗ |c〉)(〈b|⊗ 〈d|) = |ac〉〈bd|.

THEOREM 1.6 Let A be an m × m matrix and B be a p × p matrix.
Let A have the eigenvalues λ1, . . . ,λm with the corresponding eigenvectors
|u1〉, . . . , |um〉 and let B have the eigenvalues µ1, . . . , µp with the correspond-
ing eigenvectors |v1〉, . . . , |vp〉. Then A ⊗ B has mp eigenvalues {λjµk} with
the corresponding eigenvectors {|ujvk〉}.

Proof. We show that |ujvk〉 is an eigenvector. In fact,

(A⊗B)(|ujvk〉) = (A|uj〉)⊗ (B|vk〉) = (λj |uj〉)⊗ (µk|vk〉)
= λjµk(|ujvk〉) .

Therefore, the eigenvalue is λjµk with the corresponding eigenvector |ujvk〉.
Since there are mp eigenvectors, the vectors |ujvk〉 exhaust all of them.

EXERCISE 1.22 Let A and B be as above. Show that A ⊗ Ip + Im ⊗ B
has the eigenvalues {λj + µk} with the corresponding eigenvectors {|ujvk〉},
where Ip is the p× p unit matrix.
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Quantum Mechanics
1. The state of a physical system is represented by a normalized vector 

|ψ> of a suitable Hilbert space. 
2. Observables (like position, momentum, spin…) are represented by 

suitable Hermitian operators. 
3. The state evolved according to the Schrödinger equation

30 QUANTUM COMPUTING

copies of the state c1|λ1〉+ c2|λ2〉. The probability of collapsing to the
state |λk〉 is given by |ck|2 (k = 1, 2). In this sense, the complex coeffi-
cient ci is called the probability amplitude. It should be noted that a
measurement produces one outcome λi and the probability of obtaining
it is experimentally evaluated only after repeating measurements with
many copies of the same state. These statements are easily generalized
to states in a superposition of more than two states.

A 3 The time dependence of a state is governed by the Schrödinger equa-
tion

i!∂|ψ〉
∂t

= H |ψ〉, (2.1)

where ! is a physical constant known as the Planck constant and H
is a Hermitian operator (matrix) corresponding to the energy of the
system and is called the Hamiltonian.

Several comments are in order.

• In Axiom A 1, the phase of the vector may be chosen arbitrarily; |ψ〉
in fact represents the “ray” {eiα|ψ〉 |α ∈ R}. This is called the ray
representation. In other words, we can totally igonore the phase of a
vector since it has no observable consequence. Note, however, that the
relative phase of two different states is meaningful. Although |〈φ|eiαψ〉|2
is independent of α, |〈φ|ψ1 + eiαψ2〉|2 does depend on α.

• Axiom A 2 may be formulated in a different but equivalent way as
follows. Suppose we would like to measure an observable a. Let
A =

∑
i λi|λi〉〈λi| be the corresponding operator, where A|λi〉 = λi|λi〉.

Then the expectation value 〈A〉 of a after measurements with respect to
many copies of a state |ψ〉 is

〈A〉 = 〈ψ|A|ψ〉. (2.2)

Let us expand |ψ〉 in terms of |λi〉 as |ψ〉 =
∑

i ci|λi〉 to show the equiv-
alence between two formalisms. According to A 2, the probability of
observing λi upon measurement of a is |ci|2, and therefore the expec-
tation value after many measurements is

∑
i λi|ci|2. If, conversely, Eq.

(2.2) is employed, we will obtain the same result since

〈ψ|A|ψ〉 =
∑

i,j

c∗j ci〈λj |A|λi〉 =
∑

i,j

c∗jciλiδij =
∑

i

λi|ci|2.

This measurement is called the projective measurement. Any par-
ticular outcome λi will be found with the probability

|ci|2 = 〈ψ|Pi|ψ〉, (2.3)

It is a linear equation, and implies the superposition principle: the 
linear combination of two possible states is still a possible state of the 
system. 



Quantum Mechanics 
4. In a measurement, the only possible outcomes are the eigenvalues
of the Hermitian operator associated to the observable. The outcomes 
are random and distributed with the Born rule

where |ci> is the eigenstate associated to the eigenvalue ci and |ψ>  is 
the state of the system at the time of the measurement.
5. After the measurement, the state collapses to the eigenstate 
associated to the measured observable (von Neumann collapse) 

| i �! |ani
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|ci|2 = 〈ψ|Pi|ψ〉, (2.3)Framework of Quantum Mechanics 31

where Pi = |λi〉〈λi| is the projection operator, and the state immediately
after the measurement is |λi〉 or equivalently

Pi|ψ〉√
〈ψ|Pi|ψ〉

, (2.4)

where the overall phase has been ignored.

• The Schrödinger equation (2.1) in Axiom A 3 is formally solved to yield

|ψ(t)〉 = e−iHt/!|ψ(0)〉, (2.5)

if the Hamiltonian H is time-independent, while

|ψ(t)〉 = T exp
[
− i

!

∫ t

0
H(t)dt

]
|ψ(0)〉 (2.6)

if H depends on t, where T is the time-ordering operator defined by

T [A(t1)B(t2)] =
{

A(t1)B(t2), t1 > t2
B(t2)A(t1), t2 ≥ t1

,

for a product of two operators. Generalization to products of more
than two operators should be obvious. We write Eqs. (2.5) and (2.6) as
|ψ(t)〉 = U(t)|ψ(0)〉. The operator U(t) : |ψ(0)〉 %→ |ψ(t)〉, which we call
the time-evolution operator, is unitary. Unitarity of U(t) guarantees
that the norm of |ψ(t)〉 is conserved:

〈ψ(0)|U †(t)U(t)|ψ(0)〉 = 〈ψ(0)|ψ(0)〉 = 1.

EXERCISE 2.1 (Uncertainty Principle)
(1) Let A and B be Hermitian operators and |ψ〉 be some quantum state on
which A and B operate. Show that

|〈ψ|[A, B]|ψ〉|2 + |〈ψ|{A, B}|ψ〉|2 = 4|〈ψ|AB|ψ〉|2.

(2) Prove the Cauchy-Schwarz inequality

|〈ψ|AB|ψ〉|2 ≤ 〈ψ|A2|ψ〉〈ψ|B2|ψ〉.

(3) Show that
|〈ψ|[A, B]|ψ〉|2 ≤ 4〈ψ|A2|ψ〉〈ψ|B2|ψ〉.

(4) Show that

∆(A)∆(B) ≥ 1
2
|〈ψ|[A, B]|ψ〉|, (2.7)

where ∆(A) ≡
√
〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2.

(5) Suppose A = Q and B = P ≡ !
i

d

dQ
. Deduce from the above arguments

that
∆(Q)∆(P ) ≥ !

2
.

The uncertaintly principle in terms of standard deviation has been formu-
lated first in [7] and [8].
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|ψ(t)〉 = T exp
[
− i

!

∫ t

0
H(t)dt

]
|ψ(0)〉 (2.6)

if H depends on t, where T is the time-ordering operator defined by

T [A(t1)B(t2)] =
{

A(t1)B(t2), t1 > t2
B(t2)A(t1), t2 ≥ t1

,

for a product of two operators. Generalization to products of more
than two operators should be obvious. We write Eqs. (2.5) and (2.6) as
|ψ(t)〉 = U(t)|ψ(0)〉. The operator U(t) : |ψ(0)〉 %→ |ψ(t)〉, which we call
the time-evolution operator, is unitary. Unitarity of U(t) guarantees
that the norm of |ψ(t)〉 is conserved:

〈ψ(0)|U †(t)U(t)|ψ(0)〉 = 〈ψ(0)|ψ(0)〉 = 1.

EXERCISE 2.1 (Uncertainty Principle)
(1) Let A and B be Hermitian operators and |ψ〉 be some quantum state on
which A and B operate. Show that

|〈ψ|[A, B]|ψ〉|2 + |〈ψ|{A, B}|ψ〉|2 = 4|〈ψ|AB|ψ〉|2.

(2) Prove the Cauchy-Schwarz inequality

|〈ψ|AB|ψ〉|2 ≤ 〈ψ|A2|ψ〉〈ψ|B2|ψ〉.

(3) Show that
|〈ψ|[A, B]|ψ〉|2 ≤ 4〈ψ|A2|ψ〉〈ψ|B2|ψ〉.

(4) Show that

∆(A)∆(B) ≥ 1
2
|〈ψ|[A, B]|ψ〉|, (2.7)

where ∆(A) ≡
√
〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2.

(5) Suppose A = Q and B = P ≡ !
i

d

dQ
. Deduce from the above arguments

that
∆(Q)∆(P ) ≥ !

2
.

The uncertaintly principle in terms of standard deviation has been formu-
lated first in [7] and [8].
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2.2 Some Examples

We now give some examples to clarify the axioms introduced in the previous
section. They turn out to have relevance to certain physical realizations of a
quantum computer.

EXAMPLE 2.1 Let us consider a time-independent Hamiltonian

H = −!
2
ωσx. (2.8)

Suppose the system is in the eigenstate of σz with the eigenvalue +1 at time
t = 0;

|ψ(0)〉 =
(

1
0

)
.

The wave function |ψ(t)〉 (t > 0) is then found from Eq. (2.5) to be

|ψ(t)〉 = exp
(
i
ω

2
σxt
)
|ψ(0)〉. (2.9)

The matrix exponential function in this equation is evaluated with the help
of Eq. (1.44) and we find

|ψ(t)〉 =

(
cosωt/2 i sinωt/2

i sinωt/2 cosωt/2

)(
1
0

)
=

(
cosωt/2

i sinωt/2

)
. (2.10)

Suppose we measure the observable σz . Note that |ψ(t)〉 is expanded in terms
of the eigenvectors of σz as

|ψ(t)〉 = cos
ω

2
t|σz = +1〉+ i sin

ω

2
t|σz = −1〉.

Therefore we find the spin is in the spin-up state with the probability P↑(t) =
cos2(ωt/2) and in the spin-down state with the probability P↓(t) = sin2(ωt/2)
as depicted in Fig. 2.1. Of course, the total probability is independent of time
since cos2(ωt/2) + sin2(ωt/2) = 1. This result is consistent with classical
spin dynamics. The Hamiltonian (2.8) depicts a spin under a magnetic field
along the x-axis. Our initial condition signifies that the spin points the z-
direction at t = 0. Then the spin starts precession around the x-axis, and the
z-component of the spin oscillates sinusoidally as is shown above.

Next let us take the initial state

|ψ(0)〉 =
1√
2

(
1
1

)
,

The state oscillates 
among the two 
eigenstates. Why? 
What should happen 
to not have the 
oscillation? What are 
the probabilities of 
outcomes of 
measurements? 
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FIGURE 2.1
Probability P↑(t) with which a spin is observed in the ↑-state and P↓(t) ob-
served in the ↓-state.

which is an eigenvector of σx (and hence the Hamiltonian) with the eigenvalue
+1. We find |ψ(t)〉 in this case as

|ψ(t)〉 =
(

cosωt/2 i sinωt/2
i sinωt/2 cosωt/2

)
1√
2

(
1
1

)
=

eiωt/2

√
2

(
1
1

)
. (2.11)

Therefore the state remains in its initial state at an arbitrary t > 0. This is an
expected result since the system at t = 0 is an eigenstate of the Hamiltonian.

EXERCISE 2.2 Let us consider a Hamiltonian

H = −!
2
ωσy. (2.12)

Suppose the initial state of the system is

|ψ(0)〉 =
(

0
1

)
. (2.13)

(1) Find the wave function |ψ(t)〉 at later time t > 0.
(2) Find the probability for the system to have the outcome +1 upon mea-
surement of σz at t > 0.
(3) Find the probability for the system to have the outcome +1 upon mea-
surement of σx at t > 0.

Now let us formulate Example 2.1 and Exercise 2.2 in the most general
form. Consider a Hamiltonian

H = −!
2
ωn̂ · σ, (2.14)

where n̂ is a unit vector in R3. The time-evolution operator is readily ob-
tained, by making use of the result of Proposition 1.2, as

U(t) = exp(−iHt/!) = cos
ω

2
t I + i(n̂ · σ) sin

ω

2
t. (2.15)
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H = −!
2
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)
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2
ωn̂ · σ, (2.14)

where n̂ is a unit vector in R3. The time-evolution operator is readily ob-
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Therefore the state remains in its initial state at an arbitrary t > 0. This is an
expected result since the system at t = 0 is an eigenstate of the Hamiltonian.

EXERCISE 2.2 Let us consider a Hamiltonian

H = −!
2
ωσy. (2.12)

Suppose the initial state of the system is

|ψ(0)〉 =
(

0
1

)
. (2.13)

(1) Find the wave function |ψ(t)〉 at later time t > 0.
(2) Find the probability for the system to have the outcome +1 upon mea-
surement of σz at t > 0.
(3) Find the probability for the system to have the outcome +1 upon mea-
surement of σx at t > 0.

Now let us formulate Example 2.1 and Exercise 2.2 in the most general
form. Consider a Hamiltonian

H = −!
2
ωn̂ · σ, (2.14)

where n̂ is a unit vector in R3. The time-evolution operator is readily ob-
tained, by making use of the result of Proposition 1.2, as

U(t) = exp(−iHt/!) = cos
ω

2
t I + i(n̂ · σ) sin

ω

2
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Suppose the initial state is

|ψ(0)〉 =
(

1
0

)
,

for example. Then we find

|ψ(t)〉 = U(t)|ψ(0)〉 =
(

cos(ωt/2) + inz sin(ωt/2)
i(nx + iny) sin(ωt/2)

)
. (2.16)

The reader should verify that |ψ(t)〉 is normalized at any instant of time t > 0.

EXAMPLE 2.2 (Rabi oscillation) This example is often employed for a
quantum gate implementation as will be shown later. We will take the natural
unit ! = 1 to simplify our notation throughout this example. Let us consider
a spin-1/2 particle in a magnetic field along the z-axis, whose Hamiltonian is
given by

H0 = −ω0

2
σz . (2.17)

Suppose the particle is irradiated by an oscillating magnetic field of angular
frequency ω, which introduces transitions between two energy eigenstates of
H0. Then the perturbed Hamiltonian is modelled as

H = −ω0

2
σz +

ω1

2

(
0 eiωt

e−iωt 0

)
=

1
2

(
−ω0 ω1eiωt

ω1e−iωt ω0

)
, (2.18)

where ω1 > 0 is a parameter proportional to the amplitude of the oscillating
field. Let us evaluate the wave function |ψ(t)〉 at time t > 0 assuming that
the system is in the ground state of the unperturbed Hamiltonian

|ψ(0)〉 =
(

1
0

)
(2.19)

at t = 0. Note that we cannot simply exponentiate the Hamiltonian since it
is time-dependent. Surprisingly, however, the following trick makes it time-
independent. Let us consider the following “gauge transformation”:

|φ(t)〉 = e−iωσzt/2|ψ(t)〉. (2.20)

A straightforward calculation shows that |φ(t)〉 satisfies

i
d

dt
|φ(t)〉 = H̃ |φ(t)〉, (2.21)

where

H̃ = e−iωσzt/2Heiωσzt/2 − ie−iωσzt/2 d

dt
eiωσzt/2 =

1
2

(
−ω0 + ω ω1

ω1 ω0 − ω

)

= − δ
2
σz +

ω1

2
σx (2.22)
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2.3 Multipartite System, Tensor Product and Entangled
State

So far, we have assumed implictly that the system is made of a single com-
ponent. Suppose a system is made of two components; one lives in a Hilbert
space H1 and the other in another Hilbert space H2. A system composed of
two separate components is called bipartite. Then the system as a whole
lives in a Hilbert space H = H1 ⊗H2, whose general vector is written as

|ψ〉 =
∑

i,j

cij |e1,i〉 ⊗ |e2,j〉, (2.29)

where {|ea,i〉} (a = 1, 2) is an orthonormal basis in Ha and
∑

i,j |cij |2 = 1.
A state |ψ〉 ∈ H written as a tensor product of two vectors as |ψ〉 =

|ψ1〉 ⊗ |ψ2〉, (|ψa〉 ∈ Ha) is called a separable state or a tensor prod-
uct state. A separable state admits a classical interpretation such as “The
first system is in the state |ψ1〉, while the second system is in |ψ2〉.” It is
clear that the set of separable states has dimension dimH1 + dimH2. Note
however that the total space H has different dimensions since we find, by
counting the number of coefficients in (2.29), that dimH = dimH1dimH2.
This number is considerably larger than the dimension of the sparable states
when dimHa (a = 1, 2) are large. What are the missing states then? Let us
consider a spin state

|ψ〉 = 1√
2

(| ↑〉 ⊗ | ↑〉+ | ↓〉 ⊗ | ↓〉) (2.30)

of two separated electrons. Suppose |ψ〉 may be decomposed as

|ψ〉 = (c1| ↑〉+ c2| ↓〉)⊗ (d1| ↑〉+ d2| ↓〉)
= c1d1| ↑〉 ⊗ | ↑〉+ c1d2| ↑〉 ⊗ | ↓〉+ c2d1| ↓〉 ⊗ | ↑〉+ c2d2| ↓〉 ⊗ | ↓〉.

However this decomposition is not possible since we must have

c1d2 = c2d1 = 0, c1d1 = c2d2 =
1√
2

simultaneously, and it is clear that the above equations have no common
solution. Therefore the state |ψ〉 is not separable.

Such non-separable states are called entangled in quantum theory [9]. The
fact

dimH1dimH2 ' dimH1 + dimH2

tells us that most states in a Hilbert space of a bipartite system are entangled
when the constituent Hilbert spaces are higher dimensional. These entangled
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states refuse classical descriptions. Entanglement will be used extensively as
a powerful computational resource in quantum information processing and
quantum computation.

Suppose a bipartite state (2.29) is given. We are interested in when the
state is separable and when entangled. The criterion is given by the Schmidt
decomposition of |ψ〉.

PROPOSITION 2.1 Let H = H1 ⊗H2 be the Hilbert space of a bipartite
system. Then a vector |ψ〉 ∈ H admits the Schmidt decomposition

|ψ〉 =
r∑

i=1

√
si|f1,i〉 ⊗ |f2,i〉 with

∑

i

si = 1, (2.31)

where si > 0 are called the Schmidt coefficients and {|fa,i〉} is an orthonor-
mal set of Ha. The number r ∈ N is called the Schmidt number of |ψ〉.

Proof. This is a direct consequence of SVD introduced in §1.9. Let |ψ〉 be ex-
panded as in Eq. (2.29). Note that the coefficients cij form a dimH1×dimH2

matrix C. We apply the SVD to obtain C = UΣV †, where U and V are
unitary matrices and Σ is a matrix whose diagonal elements are nonnegative
real numbers while all the off-diagonal elements vanish. Now |ψ〉 of Eq. (2.29)
is put in the form

|ψ〉 =
∑

i,j,k

UikΣklV
∗
jl|e1,i〉 ⊗ |e2,j〉.

Now define |f1,k〉 =
∑

i Uik|e1,i〉 and |f2,k〉 =
∑

j V ∗
jk|e2,j〉. Unitarity of U and

V guarantees that they are orthonormal bases of H1 and H2, respectively. By
noting that Σkl = dkδkl, we obtain

|ψ〉 =
r∑

i=1

di|f1,i〉 ⊗ |f2,i〉,

where r is the number of nonvanishing diagonal elements in Σ. The wave
function (2.31) is obtained by replacing the positive number di by di =

√
si.

Moreover, the normalization condition implies 〈ψ|ψ〉 =
∑

i si = 1.

It follows from the above proposition that a bipartite state |ψ〉 is separable
if and only if its Schmidt number r is 1.

EXAMPLE 2.3 Consider a bipartite state

|ψ〉 = 1
2
(|e1,1〉|e2,1〉+ |e1,1〉|e2,2〉+ i|e1,3〉|e2,1〉+ i|e1,3〉|e2,2〉),

whose coefficients form a matrix

C =
1
2




1 1
0 0
i i



 .

Entanglement is deeply related to quantum nonlocality, the most 
fascina7ng lesson of quantum theory
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is put in the form

|ψ〉 =
∑

i,j,k

UikΣklV
∗
jl|e1,i〉 ⊗ |e2,j〉.

Now define |f1,k〉 =
∑

i Uik|e1,i〉 and |f2,k〉 =
∑

j V ∗
jk|e2,j〉. Unitarity of U and

V guarantees that they are orthonormal bases of H1 and H2, respectively. By
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|ψ〉 =
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di|f1,i〉 ⊗ |f2,i〉,
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√
si.

Moreover, the normalization condition implies 〈ψ|ψ〉 =
∑

i si = 1.

It follows from the above proposition that a bipartite state |ψ〉 is separable
if and only if its Schmidt number r is 1.

EXAMPLE 2.3 Consider a bipartite state

|ψ〉 = 1
2
(|e1,1〉|e2,1〉+ |e1,1〉|e2,2〉+ i|e1,3〉|e2,1〉+ i|e1,3〉|e2,2〉),

whose coefficients form a matrix

C =
1
2




1 1
0 0
i i



 .
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states refuse classical descriptions. Entanglement will be used extensively as
a powerful computational resource in quantum information processing and
quantum computation.

Suppose a bipartite state (2.29) is given. We are interested in when the
state is separable and when entangled. The criterion is given by the Schmidt
decomposition of |ψ〉.

PROPOSITION 2.1 Let H = H1 ⊗H2 be the Hilbert space of a bipartite
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|ψ〉 =
r∑

i=1

√
si|f1,i〉 ⊗ |f2,i〉 with

∑

i

si = 1, (2.31)

where si > 0 are called the Schmidt coefficients and {|fa,i〉} is an orthonor-
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where r is the number of nonvanishing diagonal elements in Σ. The wave
function (2.31) is obtained by replacing the positive number di by di =

√
si.

Moreover, the normalization condition implies 〈ψ|ψ〉 =
∑

i si = 1.

It follows from the above proposition that a bipartite state |ψ〉 is separable
if and only if its Schmidt number r is 1.

EXAMPLE 2.3 Consider a bipartite state

|ψ〉 = 1
2
(|e1,1〉|e2,1〉+ |e1,1〉|e2,2〉+ i|e1,3〉|e2,1〉+ i|e1,3〉|e2,2〉),

whose coefficients form a matrix

C =
1
2




1 1
0 0
i i
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Note that this is essentially the same matrix whose SVD was analyzed in
Example 1.7. By making use of the result obtained there, we find

|ψ〉 = |f1,1〉|f2,1〉,

where

|f1,1〉 =
3∑

i=1

Ui1|e1,i〉 =
1√
2
(|e1,1〉+ i|e1,3〉)

and

|f2,1〉 =
2∑

j=1

V ∗
j1|e2,j〉 =

1√
2
(|e2,1〉+ |e2,2〉).

Therefore the Schmidt number is 1 and the state is separable.

Generalization to a system with more components, i.e., a multipartite
system, should be obvious. A system composed of N components has a
Hilbert space

H = H1 ⊗H2 ⊗ . . .⊗HN , (2.32)

where Ha is the Hilbert space to which the ath component belongs. Classifi-
cation of entanglement in a multipartite system is far from obvious, and an
analogue of the Schmidt decompostion is not known to date for N ≥ 3.∗

2.4 Mixed States and Density Matrices

It might happen in some cases that a quantum system under considertation is
in the state |ψi〉 with a probability pi. In other words, we cannot say definitely
which state the system is in. Therefore some random nature comes into the
description of the system. This random nature should not be confused with a
probabilistic behavior of a quantum system. Such a system is said to be in a
mixed state, while a system whose vector is uniquely specified is in a pure
state. A pure state is a special case of a mixed state in which pi = 1 for some
i and pj = 0 (j %= i).

Mixed states may happen in the following cases, for example.

• Suppose we observe a beam of totally unpolarized light and measure
whether photons are polarized vertically or horizontally. The measure-
ment outcome of a particular photon is either horizontal or vertical.
Therefore when the beam passes through a linear polarizer, the inten-
sity is halved. The beam is a mixture of horizontally polarized photons
and vertically polarized photons.

∗See, however, [10, 11].


