
CELL MECHANICS

LECTURE 3 2. Physical principles 

2.1.  Forces at molecular and cell level 

• Physical forces and their magnitudes at the single-molecule level

• Modeling complex mechanical devices as protein machines by using three elements:   

Spring, Dashpot, Mass; example: Mass, Stiffness and Damping of Proteins

2.2.  Thermal forces, diffusion, and chemical forces

• Boltzmann Distribution Law and the  Principle of Equipartition of Energy

• Diffusion equation - Einstein relation – Stokes law

• Autocorrelation function and Power Spectrum

• The effect of force on the equilibria and rate of chemical reactions

• Example of single molecule force spectroscopy experiments – unbinding, unfolding

Reference: Book_Howard_Ch_4



22.2. Thermal forces, diffusion, and chemical forces

In addition to mechanical forces, proteins and cells are subject to thermal forces, arising from collisions with water 

and other molecules in the surrounding fluid

Thermal forces → thermal energy → thermal / Brownian motion

The magnitude of thermal energy is in the range of the energies of chemical reactions driving biological processes, 

which are just a little bit higher than thermal energy  → thermal fluctuations are necessary for proteins to reach their 

transition states

Molecular machines operate in diffusive environment, differently from macroscopic machines of our everyday world

Boltzmann Distribution Law

describes how the probability of a molecule having a certain energy depends on the surrounding temperature

Principle of Equipartition of Energy 

states how much thermal energy a molecule has at a certain temperature  
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Boltzmann distribution Law:

if a particle (or a group of particles) is in thermal equilibrium, the probability pi of finding the particle in 

the state i , characterized by energy Ui is:

where: 

is the partition function  to guarantee that ∑pi = 1.

K    is the Boltzmann constant, K = 1.381 x 10 -23 [J K-1]   

T is the absolute temperature.

Boltzmann’s Law  <= > Boltzmann’s distribution, equation or formula

𝑝𝑖 =
1

𝑍
𝑒𝑥𝑝 −

𝑈𝑖
𝑘𝑇

𝑍 = 𝑐𝑡 =

𝑖

𝑒𝑥𝑝 −
𝑈𝑖
𝑘𝑇



Boltzmann’s Law 4

Planck constant h= 6.6 x 10-34 [J s]

values

≈ 100 KT

≈  25  KT

= 1     KT

For T= 298.15 K  (Tc= 25 C) the energy KT =  4.116  x  10-21 [J ]  → 1 KT  ≈  4.1  [pN nm]

Thermal energy KT is a convenient energy unit for processes at molecular and cellular level 

Comparison with other biologically relevant energies:



Boltzmann’s Law 5

Boltzmann’s law is very general 

The energy could correspond to the particle’s potential energy (gravitational, elastic, or electrical) its kinetic 

energy,  or energy associated with its phase, or electronic or chemical state.

The state of a particle (or group of particles ) is specified by the position and velocity of the constituent atoms as well 
their electronic states.

Boltzmann’s law is fundamental: we can use it to define equilibrium and temperature:

A system is at equilibrium if Boltzmann’s law holds. 

The temperature is defined as the corresponding constant in the exponent of the Boltzmann’s law formula.

Boltzmann’s law is a very important physical law in biology and chemistry. 



Boltzmann’s Law 6

Considering the Boltzmann’s equation, the probability of finding 

a molecule in state 2 relative to state 1 is: 

𝑝2

𝑝1
=𝑒𝑥𝑝 −

Δ𝑈

𝑘𝑇

Molecules in a two-state energy landscape: 

Boltzmann distribution allows to calculate the probability of observing 

a system at finite temperature in any particular microstate. 

The probability only depends on the energy (free energy) of the state.

Energy landscape
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A two-dimensional free energy diagram allowing for multiple 
unfolding pathways. 

x1 and x2 represent generalized unfolding reaction coordinates.

Protein unfolding – free energy landscape

Transition path

A one-dimensional free energy diagram allowing for single unfolding 
pathway – transition path. 

The extension x represents the unfolding reaction coordinates



8Boltzmann’s Law – application examples

1. Earth’s athmosphere

Knowing that the density of molecules in a gravitational field falls exponentially with the height, 

estimate the Earth’s atmosphere scale height, SH.

SH : the height for which the density falls by 1/e (= 37%)

Consider the gravitational potential energy: U = mgh, of a particle of mass m, at a height h above the Earth’s surface. 

Molecular mass for an oxygen molecule MM=32 g/mol.

A: SH ~ 8 km

2. Settling of beads
Same problem, considering glass microspheres of diameter d= 200 nm, (mass density of glass: 2 g/cm3)

A: SH ~ 100 µm 

3. Analytic centrifugation
Measuring the mass m of a protein with the analytic centrifuge.

U= (m-mw)ach - potential energy;

m-mw – additional mass over that of the displaced solvent (water);           

h – height above the bottom of the centrifuge tube; ac – centrifuge acceleration. 

One measures the height SH10 for which the density of protein falls by 1/e10 (exp term vanishes) 

→ U0 ≈ 10 kT → m = mw + 10 kT/(ac SH)

Exp values: ac ~ 103 g ; SH10 ~ 10 mm →m= ?

H
o
m

e
w

o
rk



9Boltzmann’s Law – application examples

4. Nernst equation

Considering a set of molecules with charge q that are free to equilibrate between two compartments at electrical potential 0 and V volts, 

Find the ratio of the concentration of molecules in the two compartments.

A:

𝐶𝑉
𝐶0

=
𝑝𝑉
𝑝0

= 𝑒𝑥𝑝 −
𝑈

𝑘𝑇
= 𝑒𝑥𝑝 −

𝑞𝑉

𝑘𝑇

q= 1.6 x 10-19 C 

At room temperature K= 300 K, kT/q = 25.6 mV 

- -> for each 25.6 mV increase in voltage, the concentration of monovalent cations decreases e-fold.
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Boltzmann’s law allows to calculate the average thermal energy of a molecule (or system of molecules).

Example

Suppose a molecule is at equilibrium in an energy landscape U(x), that 

varies with position x, but not with time; e.g. the molecule could be 

connected to a spring with potential energy:

U(x)= ½ k x2

Due to thermal agitation, the molecule is constantly changing position.  

Aim:

Calculate the statistical properties of the molecule’s position: 

mean, mean squared, variance

Equipartition of Energy



11Equipartition of Energy

The statistical properties of the molecule’s position, such as its mean or its variance can be calculated in two ways:

1. Follow the molecule over a long period of time T, and measure its time-averaged mean position or mean-squared position :

mean mean-squared
𝜎𝑥
2 = 𝑥 − 𝑥 2 =
= 𝑥2 − 𝑥 2

variance

2. Use the Boltzmann’s law to calculate the probability p(x) of finding the molecule at position x and then calculate the expected

values E(x) of the position or position squared according to:

If we measure for a long enough time, then the estimates of the average position should agree:

In this way we can relate measurements (time averages) to the expectations, based on Boltzmann’s law.

The Equation above is the link between experiments and theory!

It holds generally for any function of x : E[f(x)]=<f(x)>. In particular it holds for the variance of x, 𝜎𝑥
2.



12Equipartition of Energy

This approach can be used to calculate the average energy of a molecule. 

For instance, for the molecule attached to a spring, the average energy is:

using Boltzmann’s law for p(x):

𝑝(𝑥) =
1

𝑍
𝑒𝑥𝑝 −

𝑈(𝑥)

𝑘𝑇

The result above is remarkable because the average energy <U> does not depend on the stiffness of the spring !

It only depends on the temperature T ! 

This is a special case of a general theorem known as the Principle of Equipartition of Energy which states that 

if the energy of a molecule depends on the square of a parameter such as position or speed, 

then the mean energy associated with the degree of fredom measured by the parameter is: 

𝑼 =
𝟏

𝟐
𝑲𝑻

(appendix 4.1. Book Howard)



13Equipartition of Energy

Another example of the principle is that the average kinetic energy of a 

molecule (in one direction) with mass m is:

Examples of vrms at 25 C , for:

• Water molecule, vrms= 640 m/s

• Protein, 100 kDa, vrms= 8.6 m/s

• Bacterium of volume 1 μm3= 3.5 mm/s

𝑲.𝑬.=
𝟏

𝟐
𝒎 𝒗𝟐 =

𝟏

𝟐
𝑲𝑻

If there are more degrees of freedom, that are independent, then each degree of freedom contains ½ KT of energy.

E.g. : the velocities of a molecule in x, y, z directions are independent for 3 degrees of freedom. 

Thus, the total kinetic energy is: 3/2 kT. 

The root mean-square speed, vrms, of a molecule in three dimensions is therefore:

𝒗𝒓𝒎𝒔 = 𝒗𝟐 =
𝟑𝑲𝑻

𝒎



14Equipartition of Energy

The Principle of Equipartition of Energy is generally true only if the energy dependence is quadratric.

If, for instance, U(x) ~ x   → <U> = KT (and not 1/2 KT)

It breaks down also if KT is small compared to energy levels between different quantum states.

For proteins at room temperature thermal energy is large compared to the vibrational energy levels 

because proteins are relatively soft materials 

(appendix 4.1 for details)

Thermal energy KT ~ 4 x 10-21 J  while vibrational energy hfrequency h ν ~ 6.6 x 10-22 J (ν ~1012 Hz , h ~ 6.6 10-34 m2kg/s)  

→ hν << KT

→ the principle of equipartition of energy applies to elastic deformation of proteins



15Diffusion equation and Einstein relation

Molecular collisions cause Brownian motion and diffusion. 

These are forms of random motion that are characterized by frequent, abrupt changes in direction.  

• Einstein – Nobel prize award for ‘elucidating the molecular mechanism of Brownian motion’.

• Perin and Svedberg – Nobel prize – measurements of the diffusion of micron-sized particles, confirmed Einstein’s theory 

and allowed the measurement of Boltzmann’s constant K and the determination of the Avogadro number NA.

• Brownian motion confirmed the atomic theory of gases and liquids and bridged the gap between visible objects and 

invisible molecules.

In Brownian motion, a particle does not have a specific direction to travel. Therefore, it will 

move in all directions. 

In diffusion the particles will travel from a high concentration to a low concentration. 

Therefore, they have a direction. 

However, the particle movement is random in both scenarios.

Diffusion plays a crucial role in many physical and chemical processes at microscopic scales.



16Diffusion equation and Einstein relation

In the presence of a concentration gradient, the molecules moving in random directions tend to move, in average, 

from areas of high concentration to areas of low concentration. 

𝑱 𝒙 = − 𝑫
𝒅𝒄(𝒙)

𝒅𝒙

Fick’s law

D – diffusion coefficient

The prediction, confirmed experimentally, is that the concentration flux J(x), which is the rate of movement of 

molecules per unit area, is proportional to the concentration gradient dc/dx:



17Diffusion equation and Einstein relation

To derive the diffusion equation we need to relate the flux back to the concentration. 

The change in concentration over time at any point equals the negative of the flux gradient at that point: 

If the system is in steady – state (dc/dt=0), then the concentration flux is the same everywhere in the solution (dJ/dx=0). 

Conversely, if the flux does not change from one position to another, then the concentration does not change with time. 

Substituting equation above into Fick’s law one gets:
𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
Diffusion equation

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= −

𝜕𝐽(𝑥, 𝑡)

𝜕𝑡

𝐽 𝑥 = − 𝐷
𝑑𝑐(𝑥)

𝑑𝑥



18Diffusion equation and Einstein relation

Usually, we are thinking about single molecules and we want to know the probability p(x,t) of finding a molecule at position x at time t,

rather than the concentration c(x,t) of a large number of molecules.

Because the probability is proportional to the concentration (it is the concentration divided by the total number of molecules) and 

because differentiation is a linear operator, it follows that also the probability p (x,t) satisfies the diffusion equation.

Boltzmann’s law allows to derive an expression that relates the diffusion coefficient to the drag coefficient

(Einstein relation)  

Suppose that an external force, F(x), acts on a diffusing molecule. The force will cause the molecule to move with a 

velocity v(x)= F(x) / ɣ .This ‘drift’ velocity is an average speed superimposed on the diffusive motion.  The external force 

increases the flux by v(x) c (x,t) or by v(x) p(x,t), if we are thinking of the probability flux, j(x):

𝑗 𝑥 = −𝐷
𝑑𝑝 𝑥

𝑑𝑥
+
𝐹 𝑥

𝛾
𝑝(𝑥)

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑝(𝑥, 𝑡)

𝜕𝑥2

𝐽 𝑥 = − 𝐷
𝑑𝑐(𝑥)

𝑑𝑥



19Diffusion equation and Einstein relation

This equation is known as the forward diffusion equation or the Fokker-Planck equation and describes diffusion with drift.

Thus, in the presence of a force, the probability satisfies

the equation (derived from diffusion equation):

If the system is in equilibrium, the probability does not change with time and the F-P equation can be resolved in p(x).

(See Appendix 4.2) 

Comparing the solution to the Boltzmann’s law, it is found that the flux must be equal to zero everywhere, and that the 

diffusion coefficient is related to the drag coefficient by:

𝐷 =
𝐾𝑇

𝛾
Einstein relation

Einstein relation relates the diffusion coefficient of a molecule to its drag coefficient



20Diffusion equation and Einstein relation

𝐷 =
𝐾𝑇

6𝜋𝜂𝑟

Einstein relation allows to estimate the diffusion coefficient from the size of the particle 

and the viscosity of the solution. 

Conversely, knowledge of the viscosity and the diffusion coefficient permits an estimate of 

the size of the particle.

Example: Diffusion of ions. Consider sodium ion Na+ in water.

The diffusion coefficient for an ion at room temperature (25 C) is D= 1.33 x 10-9 m2/s.  

From the Einstein relation it results an apparent radius r= 1.8 Å , which is about two times the ionic radius of 0.95 Å 

measured in crystals.

A useful rule of thumb is that a diffusion coefficient D= 10-9 m2/s corresponds to 1µm2/ms,

so a small ion diffuses about 1 µm in 1 ms.



21Diffusion equation and Einstein relation

Note: 

We considered that there is no chance of the molecule being destroyed. If polymerization of cytoskeletal 

filaments and movement of motor proteins are considered, this condition is relaxed, allowing chemical 

reactions to convert one type of molecule into another, or to destroy or create molecules. 

When these reactions also depend on position, the motion becomes very rich and is described by the 

reaction-diffusion equation:

where pi, pj, are the probabilities of the molecule being in various chemical states, kij is the rate constant for 

the transitions between the i and j states.



22Diffusion vs Osmosis

Diffusion is the movement of particles from an area of higher concentration to lower concentration. The overall effect is 
to equalize concentration throughout the medium.

Osmosis is the movement of solvent particles across a semipermeable membrane from a dilute solution into a 
concentrated solution. The solvent moves to dilute the concentrated solution and equalize the concentration on both 
sides of the membrane.



23Solutions to the diffusion equation

The utility of the diffusion equation is that it allows one to calculate how quickly, on average, it takes for a molecule 

to diffuse through a certain distance. 

This information can be used to evaluate the efficiency of diffusion as a transport process within cells. 

Furthermore, with the aid of the Fokker-Planck equation, we can calculate the time that it takes for a molecule to 

diffuse against an applied force. One can then gain insight into how forces affect chemical rates. 

Solutions of the diffusion equation for some particular cases that are relevant to cellular and molecular mechanics.
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The diffusion from a point source

If a molecule is released at the origin and allowed to diffuse in one

dimension, then the probability of finding it at position x at time t is:

Q: how far, on average, does a molecule diffuse in a given time ? 

root-mean-square displacement:      𝒙𝒓𝒎𝒔 = 𝟐𝑫𝒕
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Another, relevant, question is:  how long on average, does it take a molecule to diffuse through a given distance ? 

first-passage time:      𝒕 =
𝒙𝟎
𝟐

𝟐𝑫

First passage time is relevant because it allows to calculate the rate of a process that is limited by diffusion. 

The diffusion-limited rate, kdl is the reciprocal of the first-passage time, t:   kdl = 1/t.

In the absence of an external force, the first-passage time for one-dimensional diffusion through a distance x0 is: 

The diffusion from a point source

𝒙𝒓𝒎𝒔 = 𝟐𝑫𝒕𝒕 =
𝒙𝟎
𝟐

𝟐𝑫

The first-passage time can be calculated by solving the diffusion equation for the particular geometry of the problem. 



26

Case study: Evaluate if diffusion might be a feasible mechanism to transport molecules and organelles in the cell.

Let us consider a globular protein, a potassium ion K+ , and an organelle (mitochondrion).                                   

How long it takes for these three particles to propagate different distances in the cell ? Size of cell: max 100  µm. 

Distance diffused

Object (particle) 1 µm 100 µm 10 mm 1 m

Protein                   (r = 3nm, D ~  100 µm2/s ) 5 ms ~  1 min 6 days 150 years

K+                         (r ~ 0.1 nm, D ~  2000 µm2/s ) 0.25 ms 2.5 ms 7 hrs 8 years

Organelle              (r ~ 500 nm, D ~  0.5 µm2/s ) 1 s 3 hrs 3 years 30 millenia

Diffusion as a cellular transport mechanism

Protein and ion diffusion are efficient, the organelle diffusion is very slow.

Actually, the organelle diffusion is even slower, because the cytoplasm is like a gel with mesh size of about 50 nm.  

Organelles larger than 50 nm are almost immobile. 

Motor proteins are required to move organelles from one place to another. 

On the other side, the low mobility of the organelles is benefic: large organelles stay where they are, and the internal 

structure of the cell will be reasonable stable. 

Size of a cell: 100  µm 

𝒕 =
𝒙𝟎
𝟐

𝟐𝑫
𝐷 =

𝐾𝑇

6𝜋𝜂𝑟
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More interesting from a biological point of view is when diffusion is considered in the presence of an external force. e.g. how long 

does it take for a molecule to diffuse over an energy barrier at x= x0?  

When the force is constant, the potential energy is U(x)=- Fx,  and the first-passage time: 

Diffusion in presence of an external force

Uphill: against an opposing force the first-passage time t is long 

(and the corresponding diffusion-limited rate is small)

Downhill: in direction of the force, t is short.

Time for a 100 kDa protein to diffuse 8 nm in 

presence of a constant force.
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Diffusion of a molecule out of a hemiparabolic

energy well

tK – Kramers time – basis of the Kramers rate theory, postulating 

that the rate of reactions is limited by diffusion over a high –

energy transition rate.

τ= ɣ/k - time constant. 

Assumption: The energy barrier is high: U0 =U(x0)=1/2 kx0
2 >> KT.

Equation derived in Appendix 4.2.

The external force : F= -k x . 

How long does it take for a molecule to diffuse over an energy barrier at x= x0?  

When the force opposes the motion: F= -k x , the potential energy is U(x)=- k x2,  and the first-passage time: 

Diffusion in presence of an external force



29Correlation Times and Fourier Analysis

So far, we have not needed details on the thermal forces that drive Brownian motion and diffusion. 

We just needed to assume that the thermal forces were randomly directed to derive the diffusion equation: 

and relate the diffusion coefficient to the drag coefficient:

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2

𝐷 =
𝐾𝑇

𝛾
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However, there are several “microscopic” details of diffusive motion that are important to answer questions as:

1. How long, on average, will a free molecule keep moving in one direction before thermal forces randomize its direction 

of motion ?  i.e. which is the persistence length (or correlation time) of the velocity ?

2. How long, on average, will it take for a molecule in a potential to explore the different energy levels ? 

In particular, how long will the molecule spend at each energy level ? i.e. what is the persistence time of the position ?

3. What are the amplitudes and statistical properties of the thermal forces ? 

Correlation Times and Fourier Analysis
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The root-mean-square velocity: 𝑣𝑟𝑚𝑠 =
3𝐾𝑇

𝑚
≈ 8.6

𝑚

𝑠
; 

The time constant 𝜏𝑖 =
𝑚

𝛾
≈ 3 𝑝𝑠 (with 𝛾 ≅ 60 𝑝𝑁 ∙ 𝑠/𝑚)

is the correlation time of the velocity. 

The corresponding persistence length: 𝑙 = 𝑣 ∙ 𝜏 = 0.24 𝐴 !

Even if the speed of molecule is large, the high damping it 

experiences in water opposes to inertia and after just a 

fraction of an Anstrom it changes direction. 

Diffusion of a free protein vs diffusion of a tethered protein

Protein attached to a spring of stiffness k= 1pN/nm

The root-mean-square displacement (using Th Equipartition  Energy)

𝑥𝑟𝑚𝑠 = 𝑥2 =
𝐾𝑇

𝑘
≈ 2 𝑛𝑚 ; 

The time constant 𝜏𝑝 =
𝛾

𝑘
≈ 60 𝑛𝑠 = 𝜏𝑖 ∙ 2 ∙ 10

4

This is the correlation time of the protein’s position,                               

i.e.  the time it takes to the protein to relax to a new position.

For times t< τ, the protein is quite near the same position; when t>>τ,  

the protein’s position is uncorrelated and the probability of finding the 

protein in a certain position depends only on its potential energy and 

not on time.

m= 166 x 10-24 kg

Free Protein Tethered protein



RECONSIDERING the Motion of Combinations of Mechanical Elements in presence of thermal forces

A) DASHPOT and MASS. Model for the movement of a protein through a liquid 

𝑣 𝑡 =
𝐹

𝛾
1 − exp −

𝑡

𝜏
𝑚
𝑑𝑣

𝑑𝑡
+ 𝛾𝑣 = 𝐹

J. Howard – Book, Ch. 2
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Time constant

𝜏 =
𝑚

𝛾

𝜏 = 𝑚/𝛾

Eq of motion Solution (velocity)

vs = 𝐹/𝛾

10-12 s range

We considered F= ct > 0

We did not consider the thermal forces 
due to collisions of protein with water 
molecules.

What if F= 0 ?
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0

10 -12 s 

range

! ! !



34

correlation time is infinitely short

2
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https://web.stanford.edu/~peastman/statmech/friction.html

http://physics.gu.se/~frtbm/joomla/media/mydocs/LennartSjogren/kap6.pdf

2



MASS and SPRING with DAMPING

Mechanical model of a protein undegoing a large scale conformational change that is damped by the surrounding fluid, 

and possibly by internal viscosity. 

Elastic solid in liquid

Overdamped: 𝛾2

4𝑚𝑘
> 1

36RECONSIDERING the Motion of Combinations of Mechanical Elements in presence of thermal forces
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Autocorrelation function, WHY ?

variance
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Autocorrelation function, WHY ?



39Fourier transform and power spectrum
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Schematic of a microbead in an optical trap

k – stiffness of the optical trap

See the lesson on Optical Tweezers for a more detailed discussion

MASS and SPRING with DAMPING

Mechanical model  also for a protein undegoing a large scale 

conformational change that is damped by the surrounding 

fluid, and possibly by internal viscosity. 

k1

k3 = k2 > k1

γ3 < γ2 = k1


