


CHAPTER

Mechanical Forces

ular machines are able to move and do work because they generate force,

for it is force that drives change and motion. But what is force? Where
does it come from? And what effect does it have on proteins and cells? These
questions will be answered in the following five chapters that constitute Part I
of this text.

This chapter is an introduction to Newtonian mechanics. It begins with the
definition of force and the calculation of the magnitudes of the various forces
that act on molecules. The three fundamental mechanical elements are then intro-
duced. These elements—the spring, the dashpot, and the mass—are the build-
ing blocks of complex mechanical devices such as protein machines. I describe
how these elements move individually in response to forces, and how different
combinations of elements respond to forces in different ways, some combina-
tions moving monotonically, and other combinations undergoing oscillatory
motion. The chapter ends with the definitions of work and energy.

Although much of this material is contained in standard undergraduate
physics textbooks such as Resnick et al. (1992) and Feynman et al. (1963), we will
discover that most of the mechanics in the textbooks is irrelevant to molecular
and cellular biology. The reason is that proteins and other biomolecules are so
small that the inertial forces are comparatively small and can usually be ignored,
whereas the viscous forces from the surrounding fluid are usually large and dom-
inate the mechanical responses. Consequently, gravity is negligible, and the oscil-
latory motions characteristic of inertial systems such as planets and pendulums,
systems that occupy so much of the mechanics textbooks, simply do not occur
at the single-molecule level.

l. l he central concept of this book is force. Motor proteins and other molec-
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CHAPTER 2

Figure 2.1 Deformation of an )
elastic object :
Aforce, F, is applied at one end while
the other end is held fixed.

i

Force
—

Force

A force is an influence—a push or a pull in everyday experience—that causes
a free particle to accelerate or that causes a constrained object, such as that
shown in Figure 2.1, to become deformed. Forces arise from many different
physical processes. Several of these are summarized in Table 2.1, together with
their approximate magnitudes. Force is often confused with work, which is the
product of the force with the distance over which the force acts. If there is no
motion, then there is no work, even though a force has been exerted. This is
where the confusion arises: Try to tell a weightlifter who has just tried and
failed to liff the heaviest weight that no work has been done!

An object can be subject to several forces simultaneously. The net force is
the sum of all the individual forces. This seems obvious. However, such a reck-
oning of forces relies on an important concept, namely that the effect of a force
is independent of its physical origin. For example, an elastic force can be exactly
counteracted by a viscous force. As we will see, the elastic and viscous forces
discussed in this chapter can, in turn, be counteracted by the thermal and chem-
ical forces described in Chapters 4 and 5. . '

The SI unit of force is the newton. (Other SI units can be found in the table
on the rear endpapers of this book.) One newton, written 1 N, corresponds
approximately to a weight of 100 grams, or about 4 ounces. Although 1 N isa
modest force in our everyday experience, it is billions of times larger than the
forces that operate at the molecular level. For single molecules, forces are more

appropriately measured in piconewtons, where 1 pN equals 1072 N (see the
table on the back endpapers for other SI prefixes). How small is a piconewton?
It is equal to the weight of one red blood cell. Tt is also equal to the optical pres-
sure exerted by a laser pointer on a screen. And it is approximately equal to
the maximum force generated by a muscle divided by the number of myosin
molecules acting in parallel in the muscle. T g
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Table 2.1 Examples of forces acting on molecules
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Approximate
Type of force Diagram magnitude
Elastic O_/m 1-100 pN
Covalent 10,000 pN
—_—
Viscous =0 — 1-1000 pN
Collisional — 102 t010°pN |
for 1 collision/s
A\
Thermal 100-1000 pN
Gravity O— C 10°pN '
Centrifugal <10 pN
+| — -
Electrostatic and — |- 1-1000 pN
van der Waals i @’_“ -
+|— -
Magnetic << 106 pN

Newton’s first law of motion states that if an object has no net force acting
on it, then it will remain at rest or, if it is moving, it will continue to move at
constant velocity. Newton’s second law states that if an object is subject to a
net force, F, then it will accelerate according to the equation

F=ma

2.1)

where m is the mass. This equation says that the larger the mass, m, the slower
its acceleration, a (if the force is constant). Many of the parameters used in this
book are listed in the Table of Parameters on the endpapers. The unit of mass
is the kilogram, kg, and the unit of acceleration is m /s Thus 1 N = 1 kg-m/s%

An important consequence of Newton’s second law is that if an object is sta-
honary or moving at constant velocity, then there is no net force acting on it
(the forces are all balanced), '

Several examples of mechanical forces on molecules follow. Forces can be
transferred to proteins either by direct contact with the atoms of other mole-

cules, or by the interaction of the protein with a field, such’ asa gravﬂattonal
field or an electric or magnetic field.
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| Example 2.1 Physical forces and their magnitudes at the

single-molecule level

| ELASTIC FORCES. If an object is connected to a spring of stiffness k thatis
. Shretahed a distance x beyond its resting length, then the object will expe-

tence a force of F = xx. For a motor protein, the stiffness might be about

| 1 mN/m = 1 pN/nm. If the spring is strained through a distance of 1 nm =
102 m, a distance appropriate to the size of proteins, then the force
 exerted on the object is 1 pN.

VISCOUS FORCES, If an object is held fixed in a moving liquid or is mov-

| ing through a stationary fluid, then it will experience a viscous, or drag,
force from the liquid. The force is proportional to the relative velocity, v,

" between the object and the fluid according to F =yu The constant of pro-

| portionality, v, is called the drag coefficient. The drag coefficient is related

| to the size and the shape of the object as well as the viscosity. For exam-

 ple, for a sphere of radius r moving through a liquid of viscosity 1, the

| drag coefficient is 6m? (Stokes’ law, Chapter 3). The viscous forces on

proteins are large. For a globular protein of diameter 6 nm, corresponding

' to a molecular mass of ~100 kDa (see Table 2.2), the drag coefficient meas-
| ured by centrifugation studies at 20°C is ~ 60 pN:s/m. (Creighton, 1993),

' in good agreement with Stokes’ law. The average instantaneous thermal
 speed of such a protein in solution at standard temperatures is ~8 m/s
 (this is a consequence of thermally driven collisions from the surrounding
 solvent molecules, Chapter 4). The corresp onding viscous force is there-

| fore ~480 pN.

COLLISIONAL AND THERMAL FORCES. Tf an object is struck by another, it

experiences a force equal fo the rate of change in momentum (mv) of the

| striking particle, F = d(mv)/dt. For example, the mass of a water molecule |

is ~30 x 10 kg, the average speed associated with its kinetic energy is

| ~600 m/s (Chapter 4), and therefore its momentum is ~18 x 10 kg-m/s.

' If a protein were struck head-on every second by a water molecule that
| bounced straight back, then the average force would be equal 0 36 x

| 102 pN (twice the momentum for an elastic collision). This is a very

. small force. However, in solution a huge number of collisions take place

| per second. The collisions come from all directions, and the resulting ran-
' domly directed force, called the thermal force, drives diffusion. The aver-
| age instantaneous thermal force acting on a 100 kDa protein is on the
- order of the viscous force, or ~500 pN (Chapter 4).

. OPTICAL FORCES. Another example of a collisional force is optical pres-
~ sure. Because photons have momentum, they exert a force when they are

diffracted by an object. The momentum of a photon is hv/c = h/nk, where

|}, is Planck’s constant, v is the frequency of the light, ¢ is the speed of light,
' is the refractive index, and A is the wavelength (in a vacaum), If an




MECHANICAL FORCES

object in water (n = 1.33) absorbs one green photon (A = 500 nm) per sec-

| ond, the corresponding optical force on it is 1.0 x 107® pN (the values for

| the physical constants can be found in the table on the endpapers). This is

a very small force. Even if a molecule adsorbs 10 photons per second,
which would require very bright laser illumination, the optical force
| would still be only 105 pN:.

- GRAVITY. An object of mass m experiences a gravitational force of mag-
nitude mg, where g is the acceleration due to gravity, equal to ~9.8 m /s?
at the Earth’s surface. With a mass of only 166 x 107 kg, a 100 kDa pro-
| tein experiences a gravitational force of only 1.6 x 10~ pN. At the single-
- molecule level, gravitational forces are very small and can be ignored.

| CENTRIFUGAL FORCES. An object spinning in a centrifuge experiences
 a centrifugal force equal to ma,. Ultracentrifuges are capable of generat-

| ing centrifugal accelerations, 4, in excess of 100,000 times that of gravity.
| The associated centrifugal forces on molecules are still quite modest,

| ~160x 107 N = ~160x 10® pN for our 100 kDa protein, but this is large
 enough to cause the protein to drift at an average speed of ~3 um/s
(using the drag coefficient from Table 2.2). The slow drift is superim-
posed on the rapid, randomly directed thermal motion. At this speed the
| protein will sediment through a distance of 100 mm, a typical length of a
centrifuge tube, in about 10 hours.

ELECTROSTATIC FORCES. A particle with charge g, in an electric field of
strength E, will experience a force F = gE. An ion such as sodium experi-
ences an electrostatic force when it moves through an jon channel in the
plasma membrane. The charge on the jon is 160 x 1072 coulombs (see the
 table of physical constants on the rear endpapers), and the electric field
across a typical plasma membrane is 15 X 10° V/m (60 mV potential across
the 4-nm-thick membrane). The corresponding force is 2.4 pN. A similar-
sized force exists between two monovalent ions in water that are sepa-

| rated by 1 nm (Problem 2.7): The force will be smaller in a salt solution

| due to charge screening, but will be larger in the interior of proteins
where the dielectric constant is low.

. Van der Waals forces are also electrostatic: They arise from the charge

- separation induced by nearby atoms. Van der Waals forces can be as high
- a5 100 pN per nm? of protein—protein interface (Appendix 3.1).

| MAGNETIC FORCES. Magnetic forces are very small at the molecular level
| because molecules inferact only very weakly with magnetic fields. For
example, the maximum force on a proton, the nucleus with the largest
magnetic moment, in the strongest nuclear magnetic resonance (NMR)
machines is only on the order of 10-*2 pN. Thus even for a huge protein
with 3000 amino acids and 60,000 atoms, subject to a very strong mag-
netic field, the magnetic force is less than 10 pN.

13
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Table 2.2 Physical properties of a globular protein of molecular mass 100 kDa

Property Value Comment

Mass 166 x 10 kg Mass of 1 mole/Avogadro constant

Density 138x10°kg/m® 138 times the density of water

Volume 120 nm? Mass /density

Radius 3nm Assuming it is spherical

Drag coefficient” 60 pN-s/m From Stokes’ law (Chapter 3)

Diffusion coefficient® 67 pm?/s From the Einstein relation (Chapter 4)

Average speed” 8.6m/s From the Equipartition principle
(Chapter 4)

Note: 1 nm = 16 m, but 1 nm® = (1 nm)® = 10% m®.
TIn water at 20°C
PRoot-mean-square (the square root of the average value of the square of the velocity)

Motion of Springs, Dashpots, and Masses
Induced by Applied Forces

All mechanical devices can be built with three fundamental mechanical ele-
ments—the spring, the dashpot, and the mass. A protein or other molecule can
be thought of as a mechanical device composed of atoms that have mass, con-
nected by bonds that have elasticity, like springs. A wind-up toy can be thought
of as a mechanical device composed of a spring, some bars and levers that have
mass, and some hinges that contribute a little friction and damping. In this sec-
tion we consider how individual mechanical elements move under the influ-
ence of an applied force. In the next section we will consider combinations of
elements. The individual motions are summarized in Figure 2.2 and can be

described as follows:

MAss. According to Newton's second law, a force causes a mass to undergo a
constant acceleration equal to F/m (Equation 2.1). The greater the mass—that
is, the greater the inertia—the smaller the acceleration. Because acceleration
is the rate of change of velocity (2 = dv/dt), a constant acceleration means that
the velocity increases linearly with time. Tf the initial velocity is zero, then the
speed at time ¢ will be given by v(t) = at. Because the velocity is the rate of
change in displacement, a linearly increasing velocity means that the position
will increase parabolically with time. If the initial displacement is zero, then
the displacement at time f will be given by x(t) = /2 at?. This equation describes
the motion of a free-falling ball.

DASHPOT. A dashpotis an iggaﬁzedmechanicg_e;lgm@m_thaﬂs_ﬁiegﬂgne
nd and responds to a force applied at the other end by elongating at a con-
stant velocity. The velocity of elongation of a dashpot is equal to F/7, where Y

PR
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Figure 2.2 Motion of a mass, a dashpot, and a spring under the influence
of a constant external force

is the drag coefficient (Equation 2.2). Because the velocity is constant, the length
of a dashpot increases linearly with time as shown in Figure 2.2. A dashpot is
analogous to a spoon in a jar of honey. When the jar is held fixed in one hand,
it is easy to pull the spoon out slowly, but to pull it out quickly requires a large
force. Indeed, if one pulls fast enough it is even possible to pick up the jar.
The higher the viscosity of the honey, the higher the drag coefficient, and the
greater the force needed to attain a certain speed. The dashpot is used as a
model to describe how an object moves in a fluid. We can think of a submerged
object as being connected to an (imaginary) dashpot whose drag coefficient is
proportional to the viscosity according to Stokes” law (Chapter 3).

In Figure 2.2, the right-hand end of the dashpot moves at constant speed.
This is a reflection of the fact that there is no net force acting at this point: The
external force F is exactly balanced by the internal drag force, ;. In other words,
F + F; = 0, in accordance with Newton's second law (if the net force were not
zero, then there would be acceleration). This means that the drag force is

Fy=-yv (2.2)
where the minus sign represents the fact that the drag force opposes the move-
ment. The drag coefficient, v, has units N-s/m.

st
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* Example2.2 Theforce generated by the bacterial motor Consider a 2-ym-
 long bacterium such as E. coli, pictured below, swimming through water

| ataspeed of 25 pm/s. According to Stokes’ law (Equation 3.6), the drag
coefficient is ~20 nN-s/m. Therefore, the motors must be able to generate a

| force of at least 0.5 pN.

_~ Outer membrane
«\\_—Inner membrane

— Chromosome (DNA)
Ribosome

SPRING. A spring is a mechanical element whose length increases in response
to an applied force. Like the dashpot, one end of the spring is held fixed while
the force is applied to the other end. The increase in length of the spring above
its resting length equals F/%, where ¥ is the spring constant. The greater the
spring constant—that is, the stiffer or less compliant the spring—the smaller
the extension for a given force.

After the onset of the force, the right-hand end of the spring is stationary.
There is no acceleration because there is no net force acting on this point. The
external force F is exactly balanced by the internal, elastic force F,. In other
words, F + F, = 0, again in accordance with Newton's second law. This means
that the force exerted by the spring is

F,=-%x 2.3)
where the minus sign represents the fact that the elastic force is a restoring one
that opposes the movement.

If a spring has constant stiffness, meaning that the stiffness is independent of
the force or extension, then we say that it obeys Hooke’s law. As we will see in
the next chaptet, Hooke’s law is a good approximation for the stretching of many
materials, provided that the forces and resulting extensions are not too large.

Motion of Combinations of Mechanical Elements

When different mechanical elements are put together, their response to applied
forces becomes more complex and interesting. In this section we consider how
pairs of mechanical elements move. There are two qualitatively different behav-
jors: monotonic “creeping” motion and oscillatory “ringing” motion.

MASS AND DASHPOT. Consider a w@mes as
shown in Figure 2.3A (left panel). Tw@iﬁaﬂhmﬂ@@.@eﬂ

or a protein through a liquid (m@&,.middk_). The mass experiences an

e A s A Avaa faves
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Figure 2.3 Motion of pairs of mechanical elements

(A) The mass and dashpot model represents an object that is damped by a viscous fluid. (B)
A spring and dashpot model represents a low-mass object (like a protein) that is deformed
in a viscous fluid. (C) The mass and spring model represents an undamped system,

F;, whose value is —yv. The net force on the mass is therefore F + Fy=F-vo.
The net force acting on the mass causes it to accelerate according to ma = F —
Yv. Because acceleration is the rate of change of velocity, @ = dv/dt, we can
rewrite this equation as
dv
m pr +yv=F (2.4)
Now suppose that initially the mass is stationary and that at time zero a con-
stant force F is applied. At first, when the speed is low, the drag force is small,
and the mass will undergo a constant acceleration (a = F/m), leading to a lin-
ear increase in velocity. However, as the velocity increases, the drag force
becomes significant, causing a decrease in the net force acting on the mass and
therefore a decrease in the acceleration, As a result, the velocity begins to level
off. Finally, the drag force approaches the applied force, the acceleration drops
to zero, and the velocity approaches the terminal velocity equal to F/y. This
motion is described by the equation

o-fral ]

m
v (2.5)




18

CHAPTER 2

which is plotted in Figure 2.3A (right). That this equation is a solution to the
previous equation can be verified by differentiating Equation 2.5 and substi-
tuting the derivative into Equation 2.4. The time constant T at which the veloc-
ity approaches the terminal velocity ' depénds on the mass and damping. The

higher the mass, the slower the acceleration and the longer the time before
the drag force becomes significant. Conversely, the higher the drag coefficient,
the greater the drag force for a given speed, and so the shorter the time before
the drag force becomes limiting. Smaller objects have smaller time constants:
The mass is proportional to (length)®, whereas the damping coefficient is pro-
portional to (length)Y; therefore the time constant scales with (length)?, becom-
ing very small as the dimension gets smaller. This relationship is illustrated
in the next two examples.

\ Example 2.3 Theinertia of a bacterium Consider a bacterium swimming
through water at 25 pm/s. How long will the bacterium continue to coast
after its motors have stopped? We model the bacterium as a mass and

| dashpot. The corresponding equation of motion is m—g? +yv=0. After
' the motors stop-and the flagella cease beating, the speed will decrease
. exponentially according to v(f) = v(0) exp(-—i/ 1), with a time constant, 7,
equal to m/y. The mass is approximately equal to % 7r°p, where r is the
' radius (~1 pm) and p is the density (~ 1000 kg/m®), or ~4 x 107 kg. From
| Example 2.2, the drag coefficient is 20 nN's/m. The time constant is there-
~ fore 0.2 us.
. The total distance that the bacterium coasts is

x= [o(t)-dt = [ v(0)exp—(¢/7)-dt =2(0) T

0 0

| For an initial speed, v(0) = 25 jim /s, this distance is only ~5 pm = 0.05 A,
 less than the diameter of a water molecule! Thus a bacterium has very lit-
 tle inertia to keep it moving forward (Berg, 1993).

Example 2.4 The persistence of protein movements The time constant,

- m/y, of a globular, 100 kDa protein is ~2.8 ps, using the mass and drag

 coefficients from Table 2.2. In other words, after the protein gains speed

due to molecular collisions with solvent molecules, the velocity persists

- for only a very short time as other collisions rapidly randomize the pro-

| tein’s direction of travel. Given that the average instantaneous speed of

~ such a protein is 8.6 m/s (see Table 2.2), the average distance that the pro-
tein moves before its speed is randomized by molecular collisions is only
24 pm, or 0.24 A.
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SPRING AND DASHPOT. A spring in parallel with a dashpot (see Figure 2.3B,
left panel) is a model for a compliant object that is deformed in a liquid, such
as a protein that undergoes a global (i.e., large-scale) conformational change.
It can also be used to model a viscoelastic material, such as skin, that takes a
finite time to adopt a new shape (see Figure 2.3B, middle). In this case, the
applied force is opposed by the sum of the viscous and elastic forces: F = yv +
xx. Because the velocity is the derivative of displacement, this equation
becomes i
v = +xx=F (2.6)
If the spring is unstrained at time zero, then an applied force will initially
only be opposed by the dashpot (since the elastic force is initially zero). Thus
the spring and dashpot together begin to move at a constant speed equal to
E/y. However, as the spring becomes more elongated, the elastic force increases,
the speed begins to decrease, and the displacement begins to level off. Finally,
the elastic force approaches the applied force, the velocity drops to zero, and
the spring approaches its final extension equal to F/x. This motion is described
by the equation

x(t) = %[1 - exp(— %)] T= % (2.7)

which is plotted in Figure 2.3B (right). This equation is analogous to that describ-
ing a mass and dashpot. However, in this case the time constant depends on
the damping and stiffness: The higher the damping, the smaller the velocity
and the longer the time before the elastic force becomes significant. Conversely,
the higher the spring constant, the greater the elastic force for a given elonga-
tion, and so the shorter the time before the elastic force becomes limiting.

Example 2.5 The timescale of protein conformational changes Consider a

protein that is initially held in a strained conformation, perhaps due to

an internal strut (Figure A on page 18, left panel). A mechanical model

. for this arrangement is a spring in parallel with a dashpot and a latch

 (Bigure B, left panel). Now suppose that the constraint is suddenly

 relieved (Figure A, middle panel), This is equivalent to releasing the latch

(Figure B, middle panel). We expect that the protein will change shape

and relax into its unstrained conformation (Figures A and B, right panel)

| with a time constant on the order of ¥/x, the drag coefficient divided by

| the spring constant. Figure C shows an energy diagram in which the
stiff-latched state moves into the relaxed conformation of the more com-

- pliant unlatched state. For a roughly globular protein with a molecular

| mass of ~100 kDa, the drag coefficient is ~60 pN-s/m (see Table 2.2 and

| Appendix 3.3). If the elastic element has a stiffness of ~4 pN/nm, compa-
rable to that of the myosin crossbridge (Chapter 16), then the relaxation
time constant will be 15 ns. This model provides a general picture for the

_ timescale of protein conformational changes: Local chemical changes,

a9
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Strained Strained Relaxed
latched unlatched
Energy (L)

Position or strain (x)

 such as the breaking of the bonds between two proteins, occur very rap-
 idly, on the timescale of ~1 ps, whereas the global conformational

- changes of the whole protein occur much more slowly, on the ns—or

| even jis—timescale. We will return to the kinetics of protein conforma-

~ tional changes in Chapter 5.

MASS AND SPRING. The mass on a spring (see Figure 2.3C, left panel) is a famil-
jar mechanical system found in physics and chemistry textbooks, where it is
used to describe the vibrations of tuning forks and atomic bonds. The net force
acting on the mass is the applied force minus the elastic force, and therefore
ma = F + F, = F - xx. Because the acceleration is the second derivative of the
displacement, we can rearrange this equation to obtain
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d’x

Wiy = E (2.8)
Suppose that the mass is initially stationary and that at time zero a constant
force is applied. At first, when the displacement is small and the elastic force
is also small, the particle undergoes constant acceleration and the displacement
increases parabolically. As the displacement increases, the elastic force increases,
and, when the displacement reaches F/x, the net force acting on the particle is
zero. At this point the acceleration is also zero. However, at this time the par-
ticle has reached its maximum velocity and its inertia keeps it moving. As it
overshoots what will be the new average displacement of F/x, the restoring
force in the spring increases and the particle gradually slows down and finally
stops when the displacement reaches 2F/«. Now the elastic restoring force
causes the particle to accelerate back to its initial position. It overshoots the
average displacement as it returns to the initial position, whereupon it begins
another cycle of oscillation. The resulting sinusoidal oscillation, called har-

monic motion, is described by the equation

F K
x(t) = B [1 cos(a)t)] o= - (2.9)

This equation is plotted in Figure 2.3C. a is the frequency of the oscillations
expressed in units of radians per second. However, it is more familiar to express
frequency in terms of cycles per second, or hertz (Hz); the relationship between
the two frequencies is f = @w/2m. If the mass is increased, the acceleration will
decrease, and the longer the time until the elastic force becomes significant. A
higher mass is therefore associated with a low frequency of oscillation. Con-
versely, when the stiffness is increased, the elastic force rises more quickly, and
frequency of oscillation increases.

~ be thought of as having stiffness. The manifestation of this stiffness is that

 they vibrate with a frequency given by Equation 2.9, The vibration can be

 detected spectroscopically when the molecule absorbs light of the same
frequency as the molecular vibration. For example, the fundamental

| vibration frequency of the H-Cl bond in HCl is v = 89.6 x 102 Hz (2990

| cm™), corresponding to a wavelength of ¢/89.6 x 1012 = 3,53 um (in the
infrared) (Atkins, 1986). The appropriate mass is ~1,63 X 10/ kg (approx-

| imately the mass of the hydrogen nucleus), and so the stiffness is m? =

| 4n*vim =517 N/m.

21
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 Example 2.7 Protein vibrations Consider the motor protein myosin

| again. The motor domain has a mass of ~160 x 10 kg and the stiffness is

| 4 pN/nm (4 mN/m). The vibration frequency is calculated to be ~10° Hz.

 This corresponds to a period of oscillation of 1 ns. By contrast, the relax-

| ation time calculated in Example 2.5is 15 ns, Does the protein oscillate

| when it detaches from the actin filament, or does it creep exponentially

into its relaxed state? The answer requires solution of the full model, with

| mass, spring, and dashpot. The solution, provided in the next section,
shows that the protein creeps rather than rings.

Motion of a Mass and Spring with Damping

In this section, we consider how a system comprising all three elements—
the mass on a spring subject to damping (Figure 2.4A)—moves in response to
an applied force. This is a simple mechanical model for a protein undergo-
ing a large-scale conformational change that is damped by the surrounding
fluid, and possibly by internal viscosity (Figure 2.4B). This three-element
model captures the main qualitative features of more complex models in that
it can display oscillatory or monotonic motions depending on the strength
of the damping,.
The equation of motion is 2
d x+yﬂ+xx=1~" (2.10)

The solution depends on whether the damping is small or large (Appendix
2.1). When the damping is small, y? < 4mx, the motion is oscillatory, like that
of a mass on a spring except that the amplitude of the oscillation gradually
decreases as the vibration dies out. This is shown in Figure 2.4C. We say that
the motion is underdamped. As the damping decreases, the oscillation dies
out more slowly and the motion more closely approximates harmonic motion.
On the other hand, when the damping is large, Y > 4mx, the motion is mono-
tonic, like that of a damped spring, as shown in Figure 2.4D. In this case, we
say that the motion is overdamped. The overdamped motion is actually asso-
ciated with two time constants, though only one time constant is apparent in
Figure 2.4B. The fast time constant corresponds to the time that it takes for
the mass to accelerate to a velocity of ~F/y, whereas the slow time constant
corresponds to the relaxation of the spring and dashpot. The reason why the
fast component is not seen in the figure is that its amplitude is much smaller
than that of the slow component: Even when the motion is moderately over-
damped (y%4mx = 3), the amplitude of the fast component is only ~10% that
of the slow component. When the system is even more strongly damped, the
fast component can be ignored altogether; under these conditions, we can
ignore the mass and just consider the spring and dashpot. In the highly over-
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Figure 2.4 Motion of a mass and spring with damping

The mechanical model (A) is used to describe the motion of an elastic solid in a fluid (B).

(C) Underdamped motion. In this example, Y%/4mx = 0.007,and the motion corresponds to
that of a hypothetical globular protein that is both very large (16 MDa) and very rigid (stiff-
ness 30 N/m) and experiences unrealistically little damping from the fiuid (y = 150 pN-s/m).
(D) Overdamped motion. In this example, y>/4mx = 1400, and the motion corresponds to
that of a more realistic protein of molecular mass 100 kDa and stiffness 4 pN/nm.

damped case, the inertial term can be dropped, and we can describe the motion
without invoking Newton's second law!

The condition for overdamping is that y2 > 4mx. This makes intuitive sense
because the system should become more damped as the drag coefficient
increases: When the relaxation time-constant of the spring (y/x) becomes
greater than that of the mass (/4), the kinetic energy of the mass is unable to
sustain the oscillation. There is another way of thinking about the motion. If
the system is overdamped, then the inertial force (ma) is always smaller than
the viscous force (yv) (Appendix 2.1). Conversely, if the inertial force is always
smaller than the viscous force, then the motion is overdamped (Appendix 2.1).
This is an important observation: The quality of the motion—whether it is
oscillatory or monotonic—depends on the relative contribution of the inertial
forces (that tend to produce oscillations) and the viscous forces (that tend to
damp the oscillations out). It turns out that inertial forces are usually very
small at the microscopic and molecular levels, so that the overdamped case
usually applies,
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| Example 2.8 Motor proteins are overdamped Consider the motor protein
myosin again. The motor domain has a mass of ~160 x 10 kg, the drag
coefficient is ~60 pN-s/m, and the stiffness is ~4 pN/nm. In this case
y2/4mx is equal to 1400. Because this is much greater than 1, it follows that
the motion is highly overdamped. Thus, when the force exerted by a
motor protein abruptly changes—for example, if it enters a new chemical
state as described in Example 2.5—then the protein will relax monotoni-

 cally into its new equilibrium conformation withont undergoing oscilla-

 tions, as shown in Figure 24D, The time constant of the relaxation will be

- given by the damped spring, namely ~15 ns. :

Work, Energy, and Heat

It is important not to confuse force with work or energy. If a force, F, is applied
to a mechanical system and the system moves through a distance x;, then work
has been done on it. The work, w, equals the force times the distance. If the
force is a constant (independent of position), then the work done is Fx,. More
generally, if the force depends on the position—that is, F(x)—then each incre-
mental change in position, dx, results in an incremental amount of work dw =
F(x)-dx; the total work is the sum of all the increments of work done as the sys-
tem moves. In other words, the total work is equal to the integral

w= [ F(x)-dx (2.11)

o

The SI unit of work is the joule (J); because work is force times distance, it fol-
lows that 1] = 1 N-m. If the force produces no movement, then the work is zero.

Energy is closely related to work and has the same units. A spring is a
mechanical element that can store energy—the work done on it is converted
into potential energy, denoted by U. Potential energy can also be stored in
gravitational and electric fields. Another way of thinking about force is that it
is the tendency for a system to move from high potential energy to low poten-
tial energy. In mathematical words, force is the negative of the gradient of the
potential energy: U
E = — (2.12)
The steeper the gradient, the greater the force; there is a minus sign because
the force is in the direction corresponding to a decrease in the potential energy
(Figure 2.5). Now, as we saw before, the force exerted by a spring, F, is —kx.
Substituting this into Equation 2.12 and multiplying by dx gives dU = —Fdx
= ——kx-dx = kx-dx. Upon integrating we obtain

xp
U= | xx-dx=xx) (2.13)
0
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(&) Energy (L)) (B) Energy (L)

Force
P a—

Position (x) Position (x)

Figure 2.5 The force is the negative of the gradient of potential energy
{A) Constant force. (B) Force that depends on displacement.

When a constant force is applied to the mechanical system shown in Figure
2.4, the total work done on it is Fxy= mcoz, where we have used the fact that the
final displacement, x,, is equal to F/x. However, the potential energy gained
by the spring, 7 xx? is only half this amount. Where did the missing energy
go? While the mass is actually moving, some of this energy is stored as kinetic

energy, _ 2
K.E.—%mv (2.14)

But when the mass reaches its new steady-state position, the mean speed is
zero and so the kinetic energy is also zero. The answer is that part of the work
went to heating the dashpot. If we wish our system to remain at the same tem-
perature, then this heat, denoted by Q, must be transferred to the surround-
ings, and we say that the heat has been dissipated. The rate at which the heat
is dissipated is 40

dt

and it can be shown that the total heat dissipated is % x,2 (Appendix 2.2).
Thus we have

= —Firag¥ = ~(—'yv)v =yo? (2.15)

w=U+Q (2.16)

| Example 2.9 Energy of chemical bonds We can think of the energy of a
chemical bond, the dissociation energy, as being %Pproxima-tely equal to

 the potential energy in the bond. This energy is ~ /2 k72 where r is the ex-

tension required to break the bond, ~0.05 nm. For HCI, considered in

| Example 2.6, where the stiffness is ~517 N/m, the corresponding energy

15 ~650 1021, in fairly good agreement with the bond energy of ~720 x

- 1021 ] (Moore, 1972). For a more accurate treatment, the non-Hookean

| stiffness of bonds must be taken into account.
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This is a statement of the Law of Conservation of Energy, also known as the
First Law of Thermodynamics.

| myosin molecule, the stiffness is thought to be about 4 pN/nm. For a con-
formational change of 5 nm, the total energy is 50 pN-nm = 50 x 10! J. :
This is approximately half the chemical energy derived from hydrolysis of
the gamma phosphate bond of ATP (Chapter 14). We can generalize this
argument to global conformational changes of other protein machines. ;
The energies are on the order of 10 to 100 x 102 J, and the conformational
changes are on the order of 1 to 10 nm. The corresponding stiffnesses are

- therefore on the order of 0.2 to 200 mN/m.

Summary: Generalizations
to More Complex Mechanical Systems

By considering three mechanical elements—a mass, a spring, and a dashpot—
we have introduced many of the mechanical concepts required to understand
how forces influence proteins and cells. The mass and spring with damping
illustrate that systems can respond to mechanical forces in two ways: They can
oscillate or they can move monotonically.

The mechanical models considered in this chapter can be generalized in two
ways. The first way is to increase the number of mechanical elements to include
several masses, springs, dashpots, and even other elements such as latches and
stops; the equations of motion are solved by balancing the forces across each
element (Jaeger and Starfield, 1974). Molecular dynamics (McCammon and
Harvey, 1987) is an example of such a generalization: Each atom in a protein
and the surrounding fluid is represented by a point mass, each bond is repre-
sented by a spring (which need not have constant stiffness), and the damping
is dropped from the equations (it is an “emergent” property of the system).
The ensuing motion is complex and best solved numerically by computer.

The second way to generalize the model is to consider the mechanical behav-
ior of “continuum” solids that have material properties such as elasticity, den-
sity, and viscosity. This “coarse” approach is taken in the next chapter.

Problems

2.1 Suppose that a force of 1 pN is applied to a globular 100 kDa protein. In
the absence of damping, how fast will the protein be moving after 1 ns?
During this time, how far will the protein have moved? Given the damp-
ing coefficient quoted in Table 2.2, what is the actual terminal velocity of
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2.2 The motor protein kinesin can generate a force of 6 pN. Given that the vis-
cosity of cytoplasm is ~1000 times that of water (for large objects like
organelles), how fast could a single kinesin molecule move a bacterium
through a cell (see Example 2.2)?
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2.3 During mitosis, the chromosomes move several micrometers over the
course of about 30 minutes. Calculate the average speed. If the viscosity
of the cytoplasm is 1000 times that of water, what force is required (assum-
ing a chromosome has the same drag coefficient as a bacterium)?

2.4 The probes used in atomic force microscopes (AFMs) typically have stiff-
nesses of ~1 N/m. Given that the mass is ~100 ng, what is the resonance
frequency in vacuum (without damping)? The damping coefficient of a
probe in water is ~1 pN-s/m. Is the motion in water overdamped or under-
damped?

2.5 The chemical energy available from the hydrolysis of ATP is ~100 x
102! . How far can a motor protein exert a force of 6 pN before 100 X
10721 J of work is done?

2.6 In Example 2.2, it was stated that the bacterial motors must generate a
force of 0.5 pN in order to propel the bacterium at a speed of 25 pm/s.
What is the power output of the bacterium? How many equivalent ATPs
must be hydrolyzed per second in order to power this movement?

2.7 Coulomb’s law states that the force between two charges g, and g, sepa-

rated by a distance 7 is
1 0%

dneye P

where g, is the electric constant, also called the permattivity constant, equal
to 8.854 x 10712 C2/N-m? and ¢ is the dielectric constant (equal to 1 for a
vacuum, ~3 for oils, and 80 for water). Calculate the force between two
electronic charges separated by 1 nm in pure water. [Answer: 2.9 pN.]
Note that the force would be smaller in a salt solution due to screening of
the charge by the salt ions, but it will be larger in the interior of proteins
where the dielectric constant is similar to that of oil.

2.8 If two springs are placed in parallel, show that their stiffnesses add. If they
are placed in series, show that their compliances add (the compliance is
the reciprocal of the stiffness). If two dashpots are placed in parallel, show
that the total drag coefficient is the sum of the individual coefficients. If
the dashpots are placed in series, show that reciprocals of the drag coef-
ficients add.
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2.9 A Voigt element consists of a spring and a dashpot in series. When one
end is held fixed and a constant force is abruptly applied to the other at
time zero, how does the system move?

2.10 Show that the motion of the Maxwell element (Figure A, below), in
response to a force F, is

t F F 1 1
x(t) =2 = (%o “yO)e"P[—EJ %o Tk Yo= Ky +K, - Y[K—1+g]

as plotted in Figure B.

A 7 —é—fb qu P ® /

—5F



CHAPTER

Mass, Stiffness,
and Damping of Proteins

mechanical devices. How rigid are they? How quickly do they move and

change shape? And what is the quality of their motion: When a protein
is struck by a force, does it ring like a tuning fork (underdamped motion), or
does it creep monotonically into a new shape (overdamped motion)? To answer
these questions, I begin this chapter with a discussion of the material proper-
ties of proteins—their density, their elasticity, and the frictional forces that damp
their motion. Proteins have similar densities and rigidities to hard plastics and
Plexiglas. However, owing to their small size, the viscous forces from the sur-
rounding fluid are large compared to the inertial forces. Consequently, the global
motions of proteins are overdamped, meaning that proteins relax monotonically
into new conformations, Thus a protein, as a mechanical device, is like a little
plastic toy. But if we were to scale it up by a factor of 107 so that a 5-nm-diam-
eter protein becomes a 50-mm-diameter device that would fit into the palm of
one’s hand, then we would have to increase the viscosity by the same amount
(ie., bathe it in treacle) in order to damp out any tendency for oscillation.

" ! The purpose of this chapter is to get a feeling for what proteins are like as

Mass

Mass equals density, p, times volume, V:
m=pV (3.1)

The densities of various amino acids, proteins, organelles, and cells are given
in Table 3.1. Proteins are composed of relatively light elements—carbon, oxy-
gen, nitrogen, and hydrogen—and are about 40% denser than water, with dif-
ferent proteins having slightly different densities. We take the average density
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