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2.9 A Voigt element consists of a spring and a dashpot in series. When one
end is held fixed and a constant force is abruptly applied to the other at
time zero, how does the system move?

2.10 Show that the motion of the Maxwell element (Figure A, below), in
response to a force F, is

x(f)=x0—(x0—yﬂ)exp[—£] xo:i Yo= : =y A1
T K, LY + LY] K, K;
as plotted in Figure B.
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CHAPTER

Mass, Stiffness,
and Damping of Proteins

mechanical devices, How rigid are they? How quickly do they move and

change shape? And what is the quality of their motion: When a protein
is struck by a force, does it ring like a tuning fork (underdamped motion), or
does it creep monotonically into a new shape (overdamped motion)? To answer
these questions, I begin this chapter with a discussion of the material proper-
ties of proteins—their density, their elasticity, and the frictional forces that damp
their motion. Proteins have similar densities and rigidities to hard plastics and
Plexiglas. However, owing to their small size, the viscous forces from the sur-
rounding fluid are large compared to the inertial forces. Consequently, the global
motions of proteins are overdamped, meaning that proteins relax monotonically
into new conformations. Thus a protein, as a mechanical device, is like a little
Plastic toy. But if we were to scale it up by a factor of 107 so that a 5-nm-diam-
eter protein becomes a 50-mm-diameter device that would fit into the palm of
one’s hand, then we would have to increase the viscosity by the same amount
(ie., bathe it in treacle) in order to damp out any tendency for oscillation.

f ! The purpose of this chapter is to get a feeling for what proteins are like as

Mass

Mass equals density, p, times volume, V:
m=pV (3.1)

The densities of various amino acids, proteins, organelles, and cells are given
in Table 3.1. Proteins are composed of relatively light elements—carbon, OXy-
gen, nitrogen, and hydrogen—and are about 40% denser than water, with dif-
ferent proteins having slightly different densities, We take the average density
of proteins to be 1.38 x 10° kg /m?.

&»
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Table 3.1 Densities of molecules, proteins, organelles, and cells

relative to water
Substance Density (relative to water”)
Water 1.00
Glycerol 1.26
Glycine 1.16 (solid)
Alanine 1.40 (solid)
Glutamic acid 1.46 (solid)
Hemoglobin 1.33 (in solution)
Trypsin 1.38 (in solution)
Lysosyme 1.42 (in solution)
Chromosome 1.36
Virus 1.15
Mitochondrion 1.18
Synaptic vesicle 1.05
Erythrocyte 1.10
Fibroblast 1.05

Source: Rickwood, 1984; Kaye and Laby, 1986; Creighton, 1993.
“The density of water at 20°C is 998 kg/m®.

The SI unit of mass is the kilogram (kg). However, in biochemistry the mass
of proteins and other biomolecules is usually expressed as molecular mass,
defined as the mass in grams of a mole of the molecules. The unit is the dalton
(Da). According to this definition, a hydrogen atom has a molecular mass of 1
Da, corresponding to an actual mass of 1.66 x 102 g (1 g + N, where N is the
Avogadro constant given in the table on the endpapers) or 1.66 X 10% kg. A
protein of molecular mass 100,000 Da, or 100 kDa, has a mass of 166 x 10 kg.

The density of proteins is such that each kDa of protein occupies a volume
of about 1.2 nm?. A 100 kDa protein therefore has a volume of 120 nm?; if it
were spherical its diameter would be 6 nm. Because the average molecular
mass of an amino acid is 119.4 Da (weighted according to amino acid frequency

in globular proteins; Creighton, 1993), there are ~7 amino acids per nm’.

Elasticity

A solid is homogenous if its mechanical properties are identical throughout,
and it is isotropic if these properties do not depend on direction. If a small ten-
sile force F is applied to a homogenous, isotropic solid of uniform cross-sec-
tional area A (Figure 3.1), it is found experimentally that the strain, the rela-
tive length change AL/L, is proportional to the pressure, the force per unit area:

F_pAL 3.2
E (3.2)

——_
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Figure 3.1 Asolid strained by a

A tensile force

| L+AL

Because the extension (AL) is proportional to the force, this is an example of
Hooke's law. The constant of proportionality in Equation 3.2, E, is known as
the Young’s modulus, or the elastic modulus. Because strain is the ratio of
lengths and is therefore dimensionless, the Young’s modulus has the same units
as pressure, namely newtons per square meter (N/. m?) or pascals (Pa). The

Young'’s moduli of various materials and proteins are given in Table 3.2. Note

Table 3.2 Young's moduli and tensile strength of materials |

Young's modulus, E Tensile strength
Material (GPa) (GPa)* |
Carbon nanotube 1300 14 |
Diamond 1200 — |
Steel (stainless) 21 1.1 (wire)
Glass (quartz) 73 1 (fiber)
Wood (fir, along grain) 16 0.06
Plexiglas 3 0.05
Plastic (polypropylene) 24 0.035
Teflon (PTFE) 0.34 0.022
Rubber (polyisoprene) 0.02 0.017
Silk (Bombyx mori) 5-10 0.3-0.6
Keratin (hair) 24 0.2
Actin 23 0.03
Collagen 2 0.1
Tubulin 19 o
Elastin 0.002 0.002

Source: Data for nonproteins from Tennent, 1971; Kaye and Laby, 1986; Wong et al., 1997. Data on
proteins from Table 8.5 (from Wainwright et al., 1976; Kaye and Laby, 1986) and from Fraser and
Macrae, 1980; Tsuda et al., 1996.

“Note that drawing a material out into a wire or fiber increases its tensile strength (Gordon, 1984).

S ———



32 CHAPTER 3

that the most rigid proteins have similar Young’s moduli to Plexiglas (Perspex)
and hard plastics!

For many materials—for example, metals, plastics, and structural proteins—
Hooke's law applies only for forces that cause strains up to 0.1 to 1 percent. At
higher forces the material yields; the yield pressure is called the tensile
strength. By contrast, some resilient materials such as rubber and proteins like
elastin and titin can be strained up to 100% or more.

The Young’s modulus is a material property, meaning that it does not depend
on the object’s size or shape. On the other hand, the stiffness of an object does
depend on its size and shape (as well as its Young’s modulus). This is illustrated
in the following examples.

Example 3,1 Stiffness of arod under tension  The longitudinal spring con-
| stant of the rod shown in the figure is:

K=——=

E_EA
AT
Area (A4)

T -2

| Example 3.2 The cantilever spring A rod subject to a bending force (as
shown in the figure below) has a stiffness (see Equation 6.5 and Figure 6.2)
4m Ert
K= ——
3RS

2r <

N e— =

In general, proteins are neither homogenous nor isotropic due to their com-
plex atomic structures. For this reason, care must be taken when considering
their mechanical properties. For a nonhomogenous, nonisotropic solid, there
are as many as 21 elastic parameters for every point in the material (Kittel, 1996):
An exact description of the elasticity of a material could therefore be as com-
plex as the full atomic description! By contrast, a homogenous and isotropic
material has just two elastic parameters, the Young’s modulus and Poisson’s
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Example 3.3 The coiled spring The coil in the figure has a stifness

ratio, the latter being a measure of how much the cross-sectional area changes
as the material is stretched (Problem 3.6). Thus the description of the elastic
properties of a material is greatly simplified if the material is homogenous and
isotropic.

Is it valid to think of proteins as having material properties, or must we
always think in terms of their atomic structures? This question is related to the
domain concept of structural biology (Creighton, 1993) in which proteins are
thought of as comprising fairly rigid domains joined by more flimsy connect-
ing regions (Yguerabide et al., 1970; Mendelson et al,, 1973; Gerstein et al., 1994).
In this picture the hinging or twisting of domains is attributed to the less sub-
stantial thickness of the connections, in the same way that a rubber dumbbell
bends about its linking rod not because the rod is composed of a weaker mate-
rial, but because it has a reduced cross-section. Thus the domain concept
encompasses the idea that proteins have material properties.

Are there experiments to support the notion that proteins can be thought of
as mechanically isotropic, at least to a first approximation? In the case of the
globular proteins actin and tubulin, which polymerize to form cytoskeletal fil-
aments, the Young's moduli are found to be approximately independent of the
direction of the applied force, indicating that there is no drastic departure from
isotropy (Chapter 8). In addition, the Young’s moduli of several filamentous
proteins are similar, despite their quite different atomic structures (see Tables
3.2 and 8.5); this suggests the existence of a material property that is inde-
pendent of the atomic details. On the other hand, wet hair has significant
mechanical anisotropy: The Young’s modulus measured using longitudinal
forces is an order of magnitude greater than that measured using transverse
forces, due to the orientation of the constituent coiled coils. Nevertheless, even
in this case, the anisotropy may be described quite simply.

In summary, the concept that proteins have material properties derives sup-
port from both structural and mechanical studies. The simplicity of the mate-
rial description over the atomic one makes it a useful conceptual tool for under-
standing protein mechanics. Furthermore, the material description can be
readily tested and refined by mechanical experiments on proteins; by contrast,
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the tools necessary for relating mechanical measurements to atomic descrip-
tions of proteins via molecular d
oped (Krammer et al., 1999; Marszalek et al., 1999).

ies simulations are only now being devel-

The Molecular Basis of Elasticity

The rigidity of most materials arises from the stiffness of the bonds that hold
the constituent atoms together. In the case of proteins, there are strong, cova-
lent chemical bonds, and weaker, noncovalent physical bonds that include elec-
trostatic bonds (ion pairs and hydrogen bonds) and van der Waals bonds.
The energy of a bond holding together two atoms depends on the separa-
tion, 7. At equilibrium, when there is no net force acting on the atom, the energy
is a minimum. The separation for which the energy is a minimum is the bond
length, 7. The energy profile, U(r), forms a well as shown in Figure 3.2, and
at the bottom of the well the profile is approximately parabolic: Ui =U, +
Yx(r - 1,)?, where U is the bond energy and K is the stiffness of the bond. To

Figure 3.2 Energy and force of a van der
Waals bond between two atoms

(A) The bond energy (U) plotted against the cen-
ter-to-center spacing (r). (B) The force (F =dU/dr)
required to stretch the bond.The energy func-
tion used is the Lennard-Jones potential,

—

The first term on the right-hand side corre-
sponds to the attractive component, which falls
off with the sixth power of the distance accord-
ing to the van der Waals interaction.The second
term is repulsive and corresponds to a“steric”
force (Israelachvili, 1991). The potential is a mini-
mum when the force is equal to zero, and this
occurs when r = r,, The force is a maximum
when r= 1.11r; when stretched beyond this dis-
tance, the bond breaks. The asymmetry of the
energy profile means that the stiffness is nota
constant, though for small strains (<1 %) the stiff-
ness changes by less than 10%.The asymmetry
also means that the bond expands when
heated, because, as the temperature increases,
the bond vibrates more, and the atoms spend
less time at the bottom of the well (at separa-
tion rp), and more time at higher energy levels
that are associated with a larger average bond
length due to the asymmetry.
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stretch the bond a small distance (r — 7,) requires an applied force F(r) = dU/dr =
k(r — 7). In other words, for small forces, the extension of the bond, 7 — 7, is
proportional to the force: Hooke’s law holds. For larger tensile forces, Hooke's
law breaks down and the bond becomes softer. Eventually a maximum force
is reached; beyond this force the bond breaks (see Figure 3.2), and the material
ields.
5 If we knew the spring constant of every bond in a material, then we could
calculate its Young’s modulus (and other elastic parameters). This approach is
taken in molecular dynamics, in which the stiffness and length of each cova-

- Example 3.4 The Young's modulus of a covalent solid  The stiffness of the

' C-C single bond is ~550 N/m and the bond length is 0.14 nm (Tung et al.,

- 1984). If carbon formed a cubic lattice, its Young's modulus would be ~4 x

" 102 Pa, or 4000 GPa, along the [100] axis. This overestimates the Young's

" modulus of diamond by a factor of three (see Table 3.2). The overestima-
tion occurs because carbon is tetravalent rather than hexavalent, and the
tetrahedral coordination of each atom with its nearest neighbors (Moore,

| 1972) means that bond bending contributes additional compliance,

lent, ionic, and van der Waals bond is specified, as well as the bending and tor-
sional stiffnesses of the covalent bonds (Levitt, 1974; Tung et al., 1984; McCam-
mon and Harvey, 1987). To illustrate how the stiffness of the constituent bonds
determines the rigidity of a material, consider a hypothetical material com-
posed of a cubic lattice of identical atoms, shown in Figure 3.3, connected by
bonds of stiffness k and length 7,,. Suppose that a force is applied perpendicu-
larly to one face of the lattice such that each bond experiences a tensile force F.
Each bond will be stretched a distance Ar according to Hooke's law: F = xAr.
Dividing through by r3, we have F/13 = (/7,)(Ar/7,). Now F/r} is the force

le——rp——l Figure 3.3 A cubic

Ul Y fgfb _k  lattice of springs
R
T TG
S 3 3
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per unit area and Ar/r, is the strain in each bond (and thus the strain in the
whole material). Comparing this with the definition of Young’s modulus (Equa-
tion 3.2), we see that for this hypothetical material, E = x/7,. Note that x/r,
has the same units as Young’s modulus.

Table 3.2 shows that the Young’s moduli of proteins are much less than that
of solids that are held together by covalent bonds (e.g., diamond), metallic
bonds, or electrostatic bonds (e.g., glass). This is because the compliance of pro-
teins (the reciprocal of the stiffness) is dominated by the softer van der Waals
bonds between the uncharged amino acids: The van der Waals bonds are the
weak links in the structure. Evidence for this statement comes from the fol-
lowing “back of the envelope” calculation. The van der Waals potential energy
between two solids whose planar surfaces are separated by a distance D is

D (D8
u(D) =-U, [% (3”) - %[-30) } energy per unit area (3.3)

(Israelachvili, 1991; and see Heinz and Hoh, 1999 for several other force laws
used to interpret AFM measurements). D, is the resting (equilibrium) sepa-
ration, which we take to be twice the van der Waals radius (Creighton, 1993):
Dy = 0.3 nm. U, is equal to twice the surface energy (also called the surface
tension): U, = 40 mJ/m? = 10 kT/nm? = 40 pN/nm for molecules like oils and
hydrocarbons that are composed of hydrogen, carbon, oxygen, and nitrogen
(Israelachvili, 1991). The first term in the square brackets in Equation 3.3 cor-
responds to the attractive dipole-dipole interactions, whereas the second term
arises from steric repulsion between adjacent atoms. In Appendix 3.1 it is
shown that a solid composed of uncharged amino acids of diameter ~0.6 nm
held together by van der Waals bonds is expected to have a Young’s modu-
lus of ~4 GPa. The experimental finding that the Young’s moduli of filamen-
tous proteins are in the range 1 to 5 GPa (see Table 3.2 and Chapter 8), close
to this theoretical value, therefore supports the notion that the rigidity of pro-
teins is primarily limited by the rigidity of the van der Waals bonds. A further
corollary of the van der Waals model is that the maximum tensile strength of
a protein ought to be 0.1 to 0.2 GPa (Appendix 3.1). These values are also sim-
ilar to those of proteins (see Table 3.2), again supporting the van der Waals
model for protein rigidity. A possible exception is silk: Its high Young’s mod-
ulus and tensile strength are probably due to the strong hydrogen bonding
along the B-sheet backbone of the silk molecules. In general, though, the van
der Waals rigidity is expected to be an upper limit. The rigidity will be less if
the protein is not well folded (i.e., the amino acids are not well packed
together) or if the protein fluctuates between a number of different confor-
mational states (Chapter 5).

Rubber and flexible proteins such as titin resist deformation for a completely
different reason than do rigid materials. Deformations tend to align the con-
stituent polymeric chains (Figure 3.4), and the loss of entropy associated with
such alignment makes the deformation energetically unfavorable. We will con-
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Figure 3.4 Deformation ofa
rubber-like material

sider the statistical physics of rubber-like elasticity in more detail in Chapter
6, and show that for small deformations, the stiffness is approximately con-
stant, so Hooke’s law again applies. At higher strains, the chains become taut,
and the stiffness increases, in contrast to the behavior of rigid materials, which
get softer before eventually yielding.

Viscous Damping

As a protein changes shape, it is subject to two types of damping forces that
slow its motion. The first arises from the viscosity of the surrounding fluid. We
call this solvent friction. The second arises from transitory interactions between
amino acids that slide with respect to one another as the protein changes shape.
We call this protein friction. The two types of damping have a similar molec-
ular origin, as is shown below.

Viscosity is defined as follows. When two surfaces submerged in a fluid are
moved slowly with respect to each other as shown in Figure 3.5, it is found
experimentally that the force per unit area required to produce the shear, F/A,
is proportional to the velocity gradient, dv/dx in the fluid between them:

F__dv
2 =nZ= 34
A 34)
The constant of proportionality, 1, is called the coefficient of viscosity, or
simply the viscosity. Because the unit of pressure is the pascal and the unit
for velocity gradient (also called shear rate) is s, the unit of viscosity is Pa-s.
Afluid for which the viscosity is independent of the velocity gradient is called

Figure 3.5 Velocity gradient in a viscous
fluid between two surfaces
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Table 3.3 Viscosities of various liquids

Viscosity at 20°C
Liquid (mPa-s)
Acetone 0.32
Water 1.00
N-hexadecane 3.34
Phenol 12.7
Motor oil (5.A.E. 30) 30
Olive oil 84
Ficoll 400 (50% w/v) 600
Glycerol 1408

Note: Data from Tennent, 1971; Kaye and Laby, 1986; and Resnick et
al., 1992, except for Ficoll 400 (Pharmacia), a highly branched poly-
saccharide of molecular mass 400 kDa.

a Newtonian fluid. Most common liquids are Newtonian. The most common
deviation from Newtonian behavior is shear thinning, the tendency for the
viscosity to decrease at high velocity gradients. The viscosity of several fluids
is given in Table 3.3.

An object moving through a viscous fluid will experience a drag force that
opposes its motion. The magnitude of the drag force depends on the pattern
of fluid flow around the object. This, in turn, depends on the Reynolds num-

ber defined by oLy

ll

where p is the density of the liquid, L is the characteristic length of the object
(in the direction of the flow), v is the speed of the object, and 1 is the viscosity.
Note that the Reynolds number is dimensionless, and its physical meaning is
that it is the ratio of the inertial and the viscous forces. The Reynolds number
tells you what opposes the acceleration of an ocean liner or a bacterium (see
Table 3.4). For the ocean liner (Re >> 1), it is the mass; for the bacterium
(Re << 1), it is the drag, and the mass does not matter. If the Reynolds num-
ber is less than 1, the flow is laminar and nonturbulent and is referred to as
creeping flow. The Reynolds number scales with the size of the object, L: The
smaller the object, the smaller the ratio of inertial to viscous forces. As illus-
trated in Table 3.4, microscopic objects like cells and proteins have a Reynolds
number less than 1.

At low Reynolds number (i.e., Re <1), the drag force is proportional to the
speed, and for a sphere of radius r moving at constant velocity v in an
unbounded fluid, the drag force is given by Stokes’ law:

Re (3.5)

F; =—yo=—6nnrv or y=6mnr (3:6)

Stokes’ law also holds when the velocity is not constant, provided that the iner-
tial forces are less than the viscous forces (i.e., the motion is overdamped,
Appendix 3.2). A nearby surface significantly increases the drag coefficient

«———
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Table 3.4 Reynolds numbers

Density of Viscosity of Reynolds
Object Size Speed the fluid (kg/m3)  the fluid (Pa:s) number
Ocean liner 100 m 30m/s 1000 10 3x10°
Swimmer 2m 1m/s 1000 103 2x106
Bee 10 mm 014 m/s 1.3 18 % 1076 100
Protein 6nm 8m/s 1000 1072 0.05
Bacterium 2 pm 25 um/s 1000 102 5x10°°

(Happel and Brenner, 1983): For example, if the surface of a sphere is within a
radius of a plane surface, then the drag is increased ~40%.

. to Stokes’ law, to pull a honey spoon, a sphere of diameter 20 mm, out of
ajar of honey at a rate of 1 m/s requires a force of about 18 N. We can
check that the Reynolds number is ~0.2, so Stokes” law does apply. This

| force corresponds to the weight of a 1.8 kg mass, so it is not surprising

| that we can actually pick up the jar with the viscous force.

The Molecular Basis of Viscosity

Although the molecular basis for the viscosity of gases is well understood, that
of liquids is not. In an ideal gas, the force needed to shear two adjacent planes
in the gas arises from the transfer of momentum due to the diffusion of the gas
molecules from regions of high speed to regions of low speed. Because the rate
of diffusion (and therefore the change in momentum) increases with temper-
ature, the viscosity of gases actually increases with temperature! By contrast,
the viscosity of liquids decreases with temperature; this suggests that the vis-
cosity of liquids is due to intermolecular bonds that break more rapidly at
higher temperatures.

I now derive a simple theory of viscosity based on molecular friction
between two surfaces (Figure 3.6). Suppose that the molecules on one surface

1/Tun“1/'tuff5_ ’h’b"\ﬂ | | ’h’b

Figure 3.6 Protein friction due to transient crosslinks between two surfaces

_




40

CHAPTER 3

make transitory crosslinks with the molecules on an adjacent surface, and that
the surfaces slide past one another at a speed that is slow compared to the
breaking of the crosslinks—that is, while the crosslink is attached, the surfaces
move through a distance that is small compared to the molecular size. Let the
rate of detachment be 1/1__ (the reciprocal of the time, 1, that they spend
attached), and suppose the speed of movement is ». Then each molecule will
be stretched by an average amount t,, v during each attachment. If the stiff-
ness of each molecular bond is k, then the average force opposing the shear is
—xt,_v. If each molecule spends a fraction p of its time attached as a crosslink,
then the average force per molecule is —pxt, . Because this force is propor-
tional to the speed, we can think of it as being a drag force. The associated drag

coefficient (per molecule) is

Y =PKTon (3.7)

This drag coefficient is independent of speed provided that pt,, is inde-
pendent of speed, which occurs if both the attachment and detachment rates
are independent of the speed. For low speeds this is likely to be the case. A sim-
ilar expression has been derived by Schoenberg (1985), Tawada and Sekimoto
(1991), and Leibler and Huse (1993).

Equation 3.7 accounts for many features of viscous damping. As expected,
the damping increases with the number of molecular bonds between the sur-
faces. The drag increases as the attached time increases because the crosslinks
get more stretched and produce a greater force. The drag also increases with
the stiffness of the crosslinks, again because a greater opposing force is gener-
ated. Because the attached time is expected to decrease with temperature, so
too will the viscosity (p is expected to change little with temperature). Fur-
thermore, for large speeds, corresponding to large shear rates, we expect the
attached time to decrease as the shear disrupts the bonds. Thus the model pre-
dicts that the viscosity should eventually decrease as the velocity gradient is
increased, giving rise to shear thinning.

We can develop this approach a little further to derive an approximate
expression for the viscosity of a liquid in terms of molecular parameters. The
number of molecules per unit area is ~1/8?, where  is the dimension of the
molecule. The separation of the layers is also ~8. We can therefore write

Force  pKTy,v 2 ( 1 j [U)~ dv
PR s 1Yo (2 e, 2 38
e 4 b= O b S @8

where w is the intermolecular bond energy and c is the concentration (mol-
ecules/m?). Provided that the lifetime of the intermolecular association, 1, is
a constant (see below), then the force will be proportional to the velocity gra-
dient, dv/dx, as expected for the viscous force in a Newtonian fluid (see Equa-
tion 3.4). The corresponding viscosity is n = wet,,. For water, ¢ = 55,000
moles/m? = 33 x 10 molecules/m?, w = 8 kT = 32 x 107! J/molecule (the
strength of a hydrogen bond in water; McCammon and Harvey, 1987), and
1. = 10 ps (Eisenberg and Kauzmann, 1969). The predicted viscosity is there-
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fore ~10 mPa-s, which is close to (though a little higher than) the viscosity of
water at room temperature, ~1 mPa-s. This analysis assumes that the distances
through which the crosslinks are deformed are much less than the size of the
bonds. This relationship is satisfied provided that the velocity gradient is much
smaller than the detachment rate, 1/7,. In the case of water, the analysis should
be valid for velocity gradients up to ~ 10° 571, which corresponds to a very high
shear rate.

Because the sliding of protein domains past each other also entails the break-
ing and unbreaking of numerous weak bonds, we expect that protein move-
ments will be slowed down by internal viscosity. Internal viscosity, or protein
friction, has been measured in relaxed muscle fibers where the myosin heads
make transitory crossbridges to the actin filaments (Brenner et al., 1982). Mol-
ecular dynamics modeling suggests that the interior of proteins is liquid-like
and hence should possess viscosity (McCammon et al., 1977). Protein friction
has been measured in myoglobin where it is found to contribute a damping
force that is four times greater than that from the solvent (Ansari et al,, 1992).
The magnitude of the internal friction for other proteins is not known. How-
ever, because the viscosities of aromatics and light oils are in the range of 1 to
30 times that of water, we expect protein friction to be at least as important as
solvent friction, If more long-lived crosslinks must be broken, then protein fric-
tion could be much larger. A challenge for experimentalists is to measure the
internal viscosity, preferably at the single-protein level, to determine the extent
to which protein friction limits the speed of conformational changes.

The Global Motions of Proteins Are Overdamped

In Chapter 2 I established criteria for whether the motion of an object in
response to a mechanical force is oscillatory (underdamped) or monotonic
(overdamped). It was shown that the behavior depends on the relative mag-
nitudes of the inertial and viscous forces. These in turn depend on the mate-
rial properties of the object—its mass, stiffness, and damping. In this chapter
I have described the material properties of proteins. We are therefore now in
a position to determine whether the global motions of proteins are under-
damped or overdamped. The answer is arrived at through a scaling argument:
As the dimension of an object gets smaller, the viscous forces increase relative
to the inertial forces, and as a result, the global motions of small, comparatively soft
objects such as proteins in aqueous solution are expected to be overdamped.

To develop the scaling argument, we consider first a crude mechanical
model of a globular protein as a homogenous and isotropic cube with side L,
density p, and Young’s modulus E, damped by a fluid of viscosity 1. The mass
is m = pV = pL®. The stiffness is k = EL (Example 3.1), assuming that the pro-
tein is globular rather than elongated. (See the end of this section for an analy-
sis of elongated proteins such as cytoskeletal filaments.) The drag force asso-
ciated with a global conformational change that alters the shape of a protein
should be roughly given by Stokes’ law, for which the drag coefficient is y=

s—
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3mL (Appendix 3.3). In Chapter 2 I showed that the motion is overdamped if
the ratio 4mik/y? is less than 1. In the present case

Amx  4-pI®-EL ( 2 )2 pE ,

- efn el PEG

7 (37 L)2 3n) (3.9)

The important feature of this equation is that it shows how the ratio scales with
dimension, L: The smaller the object, the smaller the ratio, and the less is the ten-
dency for oscillation. The reason for this scaling behavior is that while the damp-
ing and the stiffness decrease in proportion to the length, the mass decreases
much faster (to the third power), so the inertial forces decrease more quickly than
the viscous forces. While the numerical term on the right-hand side of Equa-
tion 3.9 depends on the particular model, the scaling behavior does not.

How small must a protein be to ensure that its motion is overdamped and
that it does not oscillate when subject to an external force? The most rigid pro-
teins have Young’s moduli, E, on the order of 1 GPa (see Table 3.2). The den-
sity, p, is on the order of 10° kg/m®, and the viscosity of water, 7, is on the order
of 1 mPa:s (see Table 3.3). Thus for a rigid protein in water,n?/pE=1 nm?, and
according to Equation 3.9, the motions of globular proteins or protein domains

of diameter less than a characteristic length L, = (3% /2){/n’ / pE =5nm will

be overdamped. This length corresponds to a medium-sized globular protein
of ~1000 amino acids. Thus the model predicts that global motions of rigid
globular proteins or protein domains of molecular weight less than 100 kDa
should be overdamped. This conclusion is confirmed by the more accurate
analysis presented in Appendix 3.2. The analysis in the Appendix also justifies
the use of Stokes’ law for the drag coefficient, which strictly applies only if the
motion is overdamped. Although the quality of motion of proteins is difficult
to measure experimentally, molecular dynamics modeling studies lend sup-
port to these arguments (McCammon et al., 1976).

There are several additional arguments for why the motions of even large
proteins (L>5 nm) ought to be overdamped:

1. The rigidity of allosteric, energy-transducing proteins such as motor pro-
teins and the ribosome (Example 3.6) is likely to be much less than that of
rigid proteins like those of the cytoskeleton. Consider a protein that under-
goes a fairly modest conformational change of 1 nm, corresponding approx-
imately to the size of a nucleotide or an amino acid. Many proteins and pro-
tein complexes such as motors (Chapter 12), G-proteins, and ribosomes
(Frank, 1998) undergo substantially larger conformational changes (for
review, see Gerstein et al., 1994). Suppose that the conformational change is
associated with a large amount of mechanical work, say 100 x 1021J (=25
kT) equal to the free energy of hydrolysis of the gamma phosphate bond of
one molecule of ATP (Chapter 14). Because the mechanical work done on
the proteins is equal to %xx? the stiffness is 0.2 N/m, only ~1% of the stiff-
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Example 3.6 Ribosome If a large protein were to oscillate, how fast and
how large might these oscillations be? Consider the ribosome, a globular

| protein-RNA enzyme complex of diameter ~30 nm (Ban et al., 1999,
Clemons et al., 1999). The tibosome is the molecular machine that synthe-
sizes proteins. If the ribosome were very rigid (E = 1 GPa), and the only

| damping came from the surrounding fluid, then it would oscillate at a fre-

| quency of ~(k/m)°° /21 Hz = (E/p)*>/2rL ~ 5 GHz, corresponding to a

| period of 200 ps. The oscillation would decay quickly, with a time constant

| of 2m/y~ (2/3m)pL?/m ~ 200 ps (Equation A2.1 in the Appendix). In other

| words, the oscillations would die out after only a few cycles. The magni-

| tude of the oscillations would depend on the size of the force. Suppose

| that the force did work on the protein equal to 100 x 107% J (= 25 kT), the

| free energy associated with the hydrolysis of one molectile of ATP (Chap-

| ter 14). If we think of this chemical energy as being converted into

| mechanical potential energy within the protein during the protein synthe-

| sis reaction, then the amplitude, x, of the deformation would be only ~0.8
A (energy = %xx? and we assume that ribosome is as rigid as a cytoskele-

| tal protein with k = EL = 30 N/m). The oscillations, if they occurred,

- would be very small indeed. Considering that the lifetimes of different

- chemical states are in the order of microseconds to milliseconds, it is

| unlikely that such small oscillations, even it they were to occur, would

| play important roles in the chemistry of protein synthesis.

ness of a rigid protein of length 10 nm and Young’s modulus 2 GPa. This
low value of stiffness leads to a much greater characteristic length of 50 nm,
implying that even the motion of a ribosome, one of the largest protein
machines, would be overdamped. Because this calculation used a small
value for the conformational change and a large value for the work, even
this low stiffness is likely to be an overestimate; indeed, the stiffness of motor
proteins is on the order of only ~1mN/m. This argues strongly that protein
motions are overdamped.

2. We expect that protein friction due to the fluid-like nature of the interior of
proteins (McCammon and Harvey, 1987) will further dampen out any ten-
dency to oscillate. There is little data on the magnitude of this effect, though
experimental data of Ansari et al. (1992) indicate that the internal damping
of myoglobin is four times greater than the external damping from the fluid.

3. Elongated proteins are more highly damped than globular proteins of the
same molecular weight (Appendix 3.4). This is because as the aspect ratio
increases, the damping increases while the stiffness decreases. For example,
if the aspect ratio is 10, then the characteristic length for stretching motions
is ~100 nm, while that for bending motions is ~4000 nm. Thus the motions
of proteins with large axial ratios will always be overdamped.

e
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4. For a protein filament, the damping ratio actually increases as the length
increases: The longer the filament the more highly damped (Appendix 3.4),
a scaling behavior opposite to that of globular proteins. This leads to the impor-
tant conclusion that the motion of the cytoskeleton is overdamped.

I have belabored this discussion of mechanical damping because the quality
of motion of a protein is very important for understanding how it works. Over-
damping rules out many wacky ideas about high-frequency resonances and
long-distance information transfer and processing in proteins (e.g., Penrose,
1994). Instead, we have a relatively simple view of proteins as mechanical
devices that move monotonically into new structural states in response to
applied (and internally generated) forces.

To get a feeling for how proteins move, imagine that the size of a protein
were increased by a factor of 107, so that a 5-nm-diameter protein became a
mechanical device of diameter 50 mm, fitting nicely in the palm of one’s hand.
Let’s keep the density and Young's modulus the same so our device could as
well be built of plastic or Plexiglas. Now, if the viscosity of the fluid bathing
the device were increased by the same factor by putting it in treacle, then the
ratio of the inertial to the viscous forces will the same for both protein and
device (Equation 3.9). The Reynolds number will be unchanged and the pat-
tern of fluid flow will be preserved (just scaled in size). However, to deform
the plastic device to the same relative extent will require a much larger force
because the device has a much greater cross-sectional area: Whereas a force
of only 1 pN might be needed to induce a protein conformational change of 1
nm (corresponding to a strain of 20%), a force of 100 N, corresponding to a
weight of 10 kg, would be required to produce the same strain in the plastic
device. In response to the respective forces, the protein and the mechanical
device will move at the same initial speed, but because the protein conforma-
tional change is so much smaller, the relaxation of the protein will be complete
in much less time: A relaxation that took an almost imperceptible 100 ns for the
protein will take a leisurely 1 s for the device.

The Motions of the Cytoskeleton and Cells
Are Also Overdamped

One might expect, based on the scaling argument for globular proteins, that cells,
whose linear dimensions are some 1000 times larger than those of proteins, might
undergo underdamped, oscillatory motions. However, experimental measure-
ments show that this is not the case: The motions of cells are very highly damped.
For example, the cytoplasm of macrophages that have ingested 1-um-diameter
magnetic particles can be perturbed using a weak external magnetic field. The
particles reorient extremely slowly, with time constants of minutes. The appar-
ent intracellular viscosity is very high, ~1000 Pa-s (a million times the viscosity
of water) for velocity gradients of 0.01 s™* (Valberg and Feldman, 1987). The
motion is highly overdamped. Because actin gels crosslinked with the actin bind-
ing protein ABP have similar viscoelastic properties to cells (Zaner and Valberg,
1989; see Problem 3.6 for the definition of viscoelasticity), it is likely that the

|
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viscoelasticity of cells arises from the stiffness of and damping on the cytoskele-
tal filaments. And because the long cytoskeletal filaments are highly damped,
as argued in the previous section, so too are cells.

The high apparent viscosity of cytoplasm measured in the Valberg and Feld-
man experiment is still consistent with the cytoplasm being an aqueous envi-
ronment. Indeed, small fluorescent probes of diameter ~1 nm are highly mobile
inside cells, having rotational and translational diffusion coefficients similar
to those in aqueous solution (Fushimi and Verkman, 1991). Even particles of
diameter 6 nm, corresponding to that of a 100 kDa protein, diffuse quickly
inside cells, as though the viscosity were about three times that of water (Luby-
Phelps et al., 1987; Seksek et al., 1997). But larger particles are not nearly so
mobile: 50 to 500-nm-diameter particles diffuse very slowly inside cells, indi-
cating an apparent viscosity 30 to 300 times that of water (Luby-Phelps et al.,
1987; Alexander and Rieder, 1991). Thus it appears that the cytoskeletal fila-
ments form a gel with a mesh size of ~50 nm. Small solutes and proteins can
readily diffuse through the pores, but the motion of larger particles, such as
ribosomes and organelles, is severely restricted.

Even in cases where the cytoskeletal filaments are highly aligned and tightly
crosslinked for maximum rigidity, the viscous forces dominate the inertial ones;
this is true for cilia and flagella, which are composed of microtubules, as well
as for the stereocilia of hair cells, which are composed of tightly crosslinked
actin filaments (Chapter 8). Thus, even though it is conceivable that the rigid-
ity of the whole cell could be large enough to result in underdamped motion,
the cytoskeletal filaments are too sparsely crosslinked to make the network
sufficiently rigid. It is only at the organismal level, where large multicellular
structures are in contact with air, that oscillations—of the belly of an elephant,
for example—are possible.
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Summary

The rigidity of cytoskeletal proteins such as actin, tubulin, and keratin, which
serve structural roles in cells, is similar to that of hard plastics like polypropy-
lene, but substantially less than that of materials such as metal, glass, and wood.
This is because proteins are held together by relatively weak van der Waals
bonds. The rigidity of protein machines, proteins that are designed to undergo
large conformational changes as they transduce chemical energy into mechan-
ical work, is expected to be substantially less than that of structural proteins.
As proteins move and change shape, they experience damping forces from the
surrounding fluid as well as from internal friction. These viscous forces arise
from the rapid making and breaking of bonds. Owing to the small size of pro-
teins, the viscous forces on proteins are generally much greater than the iner-
tial forces. Consequently, the global motions of proteins, especially less rigid
ones, are highly overdamped: They creep rather than oscillate when subject to
applied forces. The motions of the long, thin cytoskeletal filaments are also
overdamped, due to their large aspect ratios. This, in turn, causes the motion
of cells to be overdamped.
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CHAPTER 3

Problems

3.1

32

3.3

34

3.5

3.6

The Young's modulus of an active muscle (in the longitudinal direction) is
~40 MPa (Bagshaw, 1993). What is the spring constant of a muscle of length
100 mm and cross-sectional area 1000 mm??

By how much would such a muscle be extended by the weight of a mass
of 10 kg? What is the fractional extension?

Using the Young’s modulus for actin in Table 3.2 and a cross-sectional area
of 20 nm?, calculate the stiffness of a 1-um-long actin filament.

Given that there are ~10% actin filaments per square meter of cross-sec-
tional area of a muscle and that the cross-sectional area of an actin filament
is 20 nm?, calculate the fraction of the cross-section occupied by actin. If a
muscle were composed solely of continuous actin filaments (stretching
from one end of the muscle to the other) occupying this volume fraction,
what would be its Young’s modulus? How does this compare with the
value stated in Problem 3.1? What conclusions can you draw about the
molecular basis for the rigidity of muscle? (Note that the actin filaments
are not continuous but instead alternate with the myosin-containing thick
filaments [see Figure 1.1]. The compliance contributed by actin is similar
to that contributed by the crosslinks [the myosin heads] between the thin
and thick filaments [Chapter 8].)

Show that the relaxation time of a rigid globular protein whose motion is
highly damped by the solvent is ~10 ps, independent of the size of the
protein.
y 3mlL _, ’7m_, 1 .
T T=—~r———=30——=3n— ~ = .
[Answer: 1 " EA/L L 10 ps using m = 1 mPa's/m

and E =1 GPa.]

Viscoelasticity Another way to deform a material is to place it under
shear (see the figure below). In this case:

F
L-ce
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where G is the shear modulus. For a homogenous isotropic material, the
shear modulus is related to the Young’s modulus by G = E/2(1 + ¢). The
parameter ¢ is Poisson’s ratio, the relative amount of sideways contraction
(Aw/w) of the material compared to the lengthwise strain (AL/L): Aw/w =
O(AL/L). Poisson’s ratio lies between -1 and +0.5; the lower value applies
to a material that has constant shape, and the upper value applies to a mate-
rial that has constant volume (i.e., incompressible). For an incompressible
solid, G = E/3. For most materials, 0.2 < 5 £ 0.5 (Kaye and Laby, 1986).

If the deformation of an elastic material requires the breaking and remak-
ing of internal molecular bonds, then it will not respond instantaneously to
an applied force, but instead it will relax more slowly to its new shape. We
say that the material is viscoelastic. With the aid of Figure 3.5 and the fig-
ure opposite in Problem 3.6, we can write the equation of motion in response
to a shearing force: E e

—=1—+G8
A "

This is formally the same as the equation of motion of a damped spring—
ie., a spring in series with a dashpot (see Figure 2.3B). The material will
deform with a time constant equal to 11/G. Note that the relaxation time con-
stant is also a material property because it does not depend on size.

If a protein has an internal viscosity (protein friction) 4 times that of water,

a Young's modulus of 1 GPa, and a Poisson ratio of 0.25, calculate the relax-
ation time constant. Compare this to Problem 3.5.




