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CHAPTER

Thermal Forces
and Diffusion

n addition to the mechanical forces discussed in Chapter 2, proteins and cells

are subject to thermal forces that arise from collisions with water and other

molecules in the surrounding fluid. During each short-lived collision, the
change in momentum of the fluid molecule imparts an impulsive force on the
object that it strikes. These collisional forces are called thermal forces because
their amplitudes are proportional to the temperature of the fluid molecules. The
resulting movement is called thermal motion, and the object is said to have ther-
mal energy. Because the forces are randomly directed, the motion is character-
ized by frequent changes in direction and is called diffusion. The diffusion of a
free particle or molecule is called Brownian motion.

Understanding thermal motion is crucial for molecular and cellular mechan-
ics because the chemical reactions that drive biological processes have ener-
gies that are only a little higher than thermal energy; as a result, diffusive
motions are quite large compared to directed ones, and thermal fluctuations
are necessary for proteins to reach their transition states. It is the noisy, diffu-
sive environment in which protein machines operate that distinguishes molec-
ular machines from the macroscopic machines that we experience in our every-
day world.

This chapter begins with Boltzmann's law, the fundamental physical law that
describes how the probability of a molecule having a certain energy depends
on the surrounding temperature. We then discuss some of the many corollar-
ies of Boltzmann'’s law. These include the Principle of Equipartition of Energy,
which states how much thermal energy a molecule has at a certain tempera-
ture, and the Einstein relation, which relates the diffusion coefficient of a mol-
ecule to its drag coefficient. Next we examine the diffusion of molecules under
several different circumstances. One of these, diffusion up an energy gradient
(i.e., against a force), is especially interesting and important because it makes
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predictions of how forces affect the rates of diffusion-limited reactions, a sub-
ject that is explored in more detail in Chapter 5. The present chapter ends with
a discussion of the dynamics of a particle or molecule undergoing Brownian
motion. We show that thermal motion can be exactly simulated by an applied
mechanical force of a particular amplitude and time course that acts via the
damping elements (the dashpots).

Boltzmann’s Law

A particle or molecule always tends towards its lowest energy state. However,
except at the absolute zero of temperature, the particles are agitated by molec-
ular collisions. As a result, they do not spend all their time in the state with the
lowest energy, but instead spend a fraction of their time in states with higher
energy (Figure 4.1). Boltzmann’s law says that if such a particle (or a group of
particles or molecules in a larger system) is in thermal equilibrium, then the
probability, p,, of finding the particle (or group) in a state i that has energy U, is

pi= lexp[— i:l where Z = constant = Z.exp[— &} 4.1)

Z ' kT
k is the Boltzmann constant and T is the absolute temperature. The Boltzmann
constant is equal to 1.381 x 102 ]/K. At the standard temperature of 25°C, cor-
responding to 298.15 K, kT is therefore equal to 4.116 x 102! J (Table 4.1). The
value of kT is compared to other biologically relevant energies in Table 4.2. Z
is a constant, sometimes called the partition function, whose value assures that
the sum of all the probabilities adds up to 1 (Zp; = 1). Equation 4.1 is some-
times called Boltzmann's equation, Boltzmann’s distribution, or Boltzmann'’s
formula, and the exponential term in the equation is called the Boltzmann
factor.

Energy

i Figure 4.1 Molecules in an
| energy landscape
According to Boltzmann’s law,
the probability of finding a
molecule in state 2 relative to
state 1 is exp(—-AU/KT).
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Table 4.1 Thermal energy

Quantity 25°C 37°C

kT 4.1164 x 10721 ] 4.2821 x 107217
RT (= NkT) 2.4789 KJ /mol 2.5787 kJ /mol
RT 0.5921 kcal /mol 0.6159 kcal /mol
kT /e(= RT/F) 25.69 mV 26.73 mV

Note: Conversions; Temperature, 0K = ~273.15°C; Energy, 1 calorie = 4.1868 joules.

Boltzmann’s law is very general. The energy could correspond to the par-
ticle’s potential energy (gravitational, elastic, or electrical), its kinetic energy,
or the energy associated with its phase, or electronic or chemical state. The state
of a particle (or group of particles) is specified by the position and velocity of
the constituent atoms as well as their electronic states. If there are just two states
with energies U, and U, (and energy difference AU = U, - U,), then the ratio
of the probabilities of being in the two states is

P2 AU
i 81 «

Boltzmann’s law is a corollary of a postulate in statistical mechanics stating
that each configuration of a closed system (a system of fixed total energy) is
equally likely, The derivation of Boltzmann's law from this postulate can be
found in Pauling (1970) and Berg (1993). Boltzmann’s law is the most impor-
tant physical law in biology and chemistry because it has so many conse-
quences. Some of these consequences are illustrated in Example 4.1, some are
illustrated in the next sections, and some in the next chapter. Boltzmann's law
is also nonlinear, a point that should be heeded by those who seek linear
approximations.

In our statement of Boltzmann’s law we defined neither equilibrium nor
temperature. These are deep concepts that might take an entire course in sta-
tistical physics to explore. Luckily, there is a simple way out. So fundamental
is Boltzmann’s law that we can use it to define temperature and equilibrium.
We will say that a system is at equilibrium if Boltzmann’s law holds, and we
will define the temperature as the corresponding constant in the exponent of
Equation 4.1. This definition of equilibrium is consistent with the more usual
definition of equilibrium and temperature. First, if two systems are each in

Table 4.2 A comparison of energies

Energy Formula Value (107%1])
Thermal energy (25°C) kT 4.1
Photon (green, A = 500 nm) hv =he/h 397

ATP hydrolysis in the cell AG 100
Electron transport (180 mV) eV 28.8

g
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equilibrium with a third system, then the two systems are in equilibrium with
each other. This follows from Boltzmann's law because the exponential func-
tion satisfies exp[-a] X exp[-b] = exp[(a + b)]. And second, if a system is at equi-
librium then it is at steady state, meaning that its (average) properties do not
change with time. This follows from Boltzmann's law because if the energy U
does not change with time (as we are implicitly assuming in our statement of
the law), then the probability p also does not change with time. The differ-
ence between steady state and equilibrium is that in the former there can be a
constant net flux of particles, but in the latter the net flux is zero.

- EARTH'S ATMOSPHERE. The density of molecules in a gravitational field
falls exponentially with the height (see figure below). The gravitational
potential energy of a particle of mass m is U = mgh, where g is the accel-
eration due to gravity and / is the height above the Earth’s surface. Let 1,
be the height at which this energy equals kT (i.e., mgh, = kT). According
 to Boltzmann’s law, the probability of finding the particle at this height is
- 37% (1/e) that of finding it at zero height. For an oxygen molecule of mo-
~ lecular mass 32, h, = 7.5 km, the approximate height of Earth’s atmo-

sphere.
- s .~
* - * o
hJ . : » -.
e oy - ..
Position Probability

* SETTLING OF BEADS. Instead of an oxygen molecule, consider a glass
sphere of density (p) twice that of water (p, ), and radius r. The cor-
| responding height of the “atmosphere” is

ly =KT/mg = KT/(p— p,, Vg = 3KT/An(p— pyy)gr°

For a 200-nm-diameter bead, this corresponds to ~100 pm. For a 2-jim-
diameter bead, the height decreases 1000-fold to 100 nm.

ANALYTIC CENTRIFUGATION. A molecule in a centrifuge experiencing a
centrifugal acceleration, #,, has potential energy U = (m - m,,)a i, where
m - m,, is the additional mass over that of the displaced solvent and A is
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the height above the bottom of the centrifuge tube. For a 100 kDa protein
in water (m — m,, = 66 x 10?4 kg) spinning at 4 = 10,000 g, h,=6 mm.Inan
| analytic ultracentrifuge, the protein “atmosphere” is measured and hjesti-
- mated from the exponential decrease in the protein concentration; this

| allows measurement of the mass of the protein.

- THE NERNST EQUATION. If molecules with charge g are free fo equilibrate
between two compartments at electrical potential 0 and V volts, then the
concentrations in the two compartments, C, and Cy, are related by

oo fhef ]
CU Pa = 5 kT ] exp_ kT

This is known as the Nernst equation (Hille, 1992). At 37°C, kT/e equals
26.7 mV (see Table 4.1), where e is the charge of the electron. The Nemnst
equation says that for each 26.7 mV increase in voltage, the concentration
of monovalent cations decreases e-fold.

Equipartition of Energy

Boltzmann’s law allows one to calculate the average thermal energy of a mol-
ecule (or system of molecules). Suppose that the molecule is at equilibrium in
an energy landscape, LI(x), that varies with position, x, but not with time. For
example, the molecule could be connected to a spring with potential energy
U(x) = % xx% where x is the extension (Figure 4.2). Due to thermal agitation,
the molecule is constantly changing position. Now there are two ways that
we can calculate the statistical properties of the molecule’s position, such as
its mean or its variance. First, we could follow the molecule over a long period
of time, T, and measure its time-averaged mean position or mean-squared
position

T
[x*(t)-dx
0

|

1 T
(I =] xt)-dx () =
0

Alternatively, we could use Boltzmann’s law to calculate the probability, p(x),
of finding the molecule at position x, and then calculate the expected value
of the position or position squared according to

oo

E(x)= [ xp(x)-dx E(x*)= szp(x)-dx

—oa —oo

If we measure for a long enough time, then these two estimates of the aver-
age position should agree with each other

(x) =(x),, = E(x) (x*) = (x?). =E(x?) (4.3)

*
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In this way, we can relate measurements (time averages) to the expectations
based on Boltzmann'’s law. Equation 4.3 is the link between experiment and
theory! Equation 4.3 holds generally for any function of x: E[f(x)] = {f(x)). In
particular it holds for the variance of x,

o2 ={(x— )"y = (") - (x)?

Often the mean of a variable is zero (e.g., the mean extension of a spring, the
mean velocity), in which case the variance is equal to the mean square.

This approach can be used to calculate the average energy of a molecule.
For example, consider the spring in Figure 4.2. The average energy is

Uy =hxlx?y =Y« [x*p(x)-dx=2kT (4.4)
where we have used Boltzmann’s law for p(x) (Equation 4.1) and evaluated the
integral in Appendix 4.1. This result is remarkable because the average energy

does not depend on the stiffness of the spring! It only depends on the tem-
perature. This is a special case of a general theorem known as the Principle

(A) (B) Energy (UI)

I

1 1 ]

1 2 3
Position (x)
(D) Probability (p)
04
0.2
| 1 L 1
-3 -2 -1 1 2 3
Position (x)

Figure 4.2 Thermal fluctuations of a molecule attached to a spring

A molecule attached to a spring (A) sits in a parabolic potential well (B). While it fluctuates
(C), it spends more time near the center of the well (the deepest region) than at the periph-
ery;its probability distribution (D) is a Gaussian (or Normal) distribution, which is peaked at
the center.
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of Equipartition of Energy, which states that if the energy of a molecule de-
pends on the square of a parameter such as position or speed, then the mean
energy associated with the degree of freedom measured by that parameter is
(U) = KT. Another example of the principle is that the average kinetic energy
of a molecule (in one direction) with mass m is (K.E.) = %m(v?®) = %kT. If the
molecule (or system of molecules) has two (or more) degrees of freedom that
are independent, as defined in Appendix 4.1, then each degree of freedom con-
tains AT of energy. An example of independent degrees of freedom are the
components of the velocity of a molecule in the x-, y-,and z-directions: There
is /2kT of kinetic energy in each, so the total kinetic energy is %kT. The root-
mean-square speed, v, of a molecule in three dimensions is therefore

Vpms = (07) = 4/% (4.5)

For example, the root-mean-square speed of a water molecule is 640 m/s (in
air or water), that of a 100 kDa protein is 8.6 m/s at 25°C, and that of a bac-
terium of volume 1 um? is 3.5 mm/s.

The Equipartition principle breaks down in a number of circumstances. First,
itis generally true only if the energy dependence is quadratic (see, e.g., Prob-
lem 4.7). Second, it breaks down if the thermal energy kT is small compared to
the energy levels between different quantum states. In this case, the degree of
freedom is said to be “frozen out.” But for proteins at room temperature, ther-
mal energy is large compared to the mechanical vibrational energy levels
because proteins are relatively soft materials, and so the Equipartition princi-
ple applies to elastic deformations of proteins (Appendix 4.1).

Diffusion as a Random Walk

The forces that agitate molecules cause diffusion. Diffusion is a form of ran-
dom motion that is characterized by frequent, abrupt changes in direction. The
randomness is the result of the collisions with surrounding molecules, which
themselves are moving in random directions. Some examples of diffusive
motion are shown in Figure 4.3. The aim of this section is to derive the diffu-
sion equation, which describes how the average concentration of a collection
of molecules changes over time due to the diffusive motion of the individual
molecules.

Diffusion plays a crucial role in many physical and chemical processes. Ein-
stein was cited in his Nobel prize award for elucidating the molecular mech-
anism of Brownian motion. His original papers (see Einstein, 1956) are still
among the clearest treatments of the subject. Careful measurements of the dif-
fusion of micron-sized particles by Perrin and Svedberg, who won Nobel prizes
in 1926 in physics and chemistry, respectively, confirmed Einstein’s theory and
permitted the measurement of Boltzmann's constant, k. Because the ideal gas
constant R = Nk was already known, the measurements allowed the determi-
nation of the Avogadro number N to within a few percent. Thus the study of

;
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Figure 4.3 Examples of Brownian motion in two dimensions

Each simulated walk consists of 10,000 steps starting from the origin; each step has size +1
or -1 in both the horizontal and vertical directions. The positions at 100-step intervals are
connected by dotted lines and every 400th position is marked by a filled circle. Note that
the trajectories between the points are themselves as highly convoluted, but this is not
shown.The scale bar corresponds to 100 step sizes. If the particle is a 100 kDa protein dif-
fusing in water (diffusion coefficient 50 um?s; see Table 2.2) and the step interval were 1
second (10,000 s total time), then the scale bar would equal 1 mm.If the intervals were 100
us (1 s total time), then the scale bar would equal 10 um.

Brownian motion confirmed the atomic theory of gases and liquids and bridged
the gap between visible objects and invisible molecules. The rich history means
that virtually every equation has a name!

The first result needed to derive the diffusion equation is the following inter-
esting consequence of random motion. If molecules are moving in random
directions, then, on average, they will tend to move from areas of high con-
centration to areas of low concentration. The proof is in Appendix 4.2. The pre-
diction, confirmed experimentally, is that the concentration flux, J(x), the rate
of movement of molecules per unit area, is proportional to the concentration
gradient, dc/dx:

d
J(x)=-D ﬁ (x) (4.6)
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Figure 4.4 Flux and concentration change

(A) According to Fick's law, molecules diffuse from regions of high concentration to regions
of low concentration. (B) Change in concentration due to change in flux. If the flux is not
uniform—for example, if there is less flux out of a region than into it—then the concentra-
tion will change.

This equation is known as Fick’s law and is shown in Figure 4.4A. The con-
stant of proportionality, D, is called the diffusion coefficient. It is related to
the size and frequency of the steps underlying the random motion: The larger
and more frequent the steps, the greater the diffusion coefficient (Appendix
4.2). The negative sign reflects the tendency of molecules to move from regions
of high concentration to regions of low concentration. The concentration, c,
will usually be expressed in units of molecules per cubic meter, though some-
times moles per cubic meter or moles per liter will be used. The flux has units
of molecules per unit area per second, so the diffusion coefficient has units of
m%s.

To derive the diffusion equation we need to relate the flux back to the con-
centration. Consider Figure 4.4B. If fewer molecules leave a region to the right
than enter it from the left, then there will be a net increase in the concentration
in that region. In other words, provided that there are no sinks or sources of
molecules, the change in concentration over time at any point equals the neg-
ative of the flux gradient at that point

dc _d]
ot =g D) (47)
This is also proved in the Appendix. One application of this equation is that if
the system is in the steady state—that is, if there is no change in concentra-
tion over time (dc/dt = 0)—then the flux is the same everywhere in the solution
(d]/dx = 0). Conversely, if the flux does not change from one position to another,
then the concentration does not change with time.

Substituting Equation 4.6 into Fick’s law gives:

dc a%c
5 =D (1)

(4.8)

s
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This is known as the diffusion equation. Usually we are thinking about sin-
gle molecules and want to know the probability, p(x,t), of finding a molecule
at position x at time ¢, rather than the concentration, c(x, £), of a large number
of molecules. Because the probability is proportional to the concentration (it is
the concentration divided by the total number of molecules) and because dif-
ferentiation is a linear operation (d[a - f(x)]/dx = a - df/dx), it follows that the
probability, p(x, t), also satisfies the diffusion equation.

Einstein Relation

Boltzmann’s law allows us to derive an expression that relates the diffusion
coefficient to the drag coefficient, introduced in Chapter 2. Suppose that an
external force, F(x), acts on a diffusing molecule. The force could be due to grav-
ity or to an attached spring. The force will cause the molecule to move with
velocity o(x) = F(x)/y, where 7y is the drag coefficient (Chapter 2). This “drift”
velocity is an average speed superimposed on the diffusive motion. It is
straightforward to show that the external force increases the flux by v(x)-
c(x,1), or by v(x)-p(x,t) if we are thinking of the probability flux, j(x):

F (x)

) - L
jx¥)==D = (x)+ == p(x) (49)

Thus, in the presence of a force, the probablhty satisfies
F
a” L= D ( 1) - [ g") plx r)] (4.10)

This equation, which describes diffusion with drift, is known as the forward
diffusion equation, or the Fokker-Planck equation (Papoulis, 1991).

If the system is in equilibrium, the probability does not change with time.
The Fokker-Planck equation can then be solved to obtain p(x). When this solu-
tion is compared to Boltzmann's law (Equation 4.1), it is found that the flux
must be equal to zero everywhere, and that the diffusion coefficient is related
to the drag coefficient by

kT
D=— 411
Y (4.11)

This is known as the Einstein relation. It is proved in Appendix 4.2. By relat-
ing a molecular parameter, the drag coefficient, to a macroscopic parameter,
the diffusion coefficient, the Einstein relation provides the link between the
microscopic and macroscopic theories of diffusion. With the help of Stokes’
law (Equation 3.6), this equation allows one to estimate the diffusion coeffi-
cient from the size of the particle and the viscosity of the solution

kT

D=
o (4.12)
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where 7 is the radius of a spherical particle, and n is the viscosity. Conversely,

knowledge of the viscosity and the diffusion coefficient permits an estimate of
the size of the particle, as shown in the following example.

F_Example 4.2 Diffusion ofions A sodium ion has a diffusion coefficient of

- 1.33x 10°m%s at 25°C (Hille, 1992). From Einstein’s relation and Stokes’

| law, this corresponds to an apparent radius of 1.8 A, where we used 1 =
0.89 mPa-s and kT = 4.12.x 10-*! ] at this temperature. This is about two
times the ionic radius of 0.95 A measured in crystals (Eille, 1992), A useful

- rule of thumb is that a diffusion coefficient of 10-*m?%s correspondsto1 |
pm?/ms, s0 a small ion diffuses ~1 pm in 1 ms.

In this chapter we consider only the case where there is no chance of the
molecule being destroyed. In other words, the total probability is unity at all
times, or o
| pta,t)-dx=1 (4.13)

In later chapters, when we consider the polymerization of cytoskeletal filaments
and the movement of motor proteins, we will relax this condition by allowing
chemical reactions to convert one type of molecule into another, or to destroy
or create molecules. When these reactions also depend on position, the motion
becomes very rich and is described by the reaction—diffusion equation

iy Pig 3 [F)
= (x,t)—Dax2 (x,1) ax[ ; p,(x,t)] (4.14)

+Z[kji(x)'f’j(x1 £)=ky(x) - pi(x, t)]
i

where p,, p;, and so forth are the probabilities of the molecule being in various
chemical states 7, j, and so on, and kij- is the rate constant for the transition
between the i and j states.

Some Solutions to the Diffusion Equation

The utility of the diffusion equation is that it allows one to calculate how
quickly, on average, it takes for a molecule to diffuse through a certain distance.
This information can be used to evaluate the efficiency of diffusion as a trans-
port process within cells. Furthermore, with the aid of the Fokker-Planck equa-
tion, we can calculate the time that it takes for a molecule to diffuse against
an applied force. By turning this argument around, one can then gain insight
into how forces affect chemical rates, a subject dealt with in detail in the next
chapter. In this section we solve the diffusion equation in a few special cases
that are relevant to cellular and molecular mechanics. Solutions for a wide vari-
ety of other cases can be found in Carslaw and Jaeger (1986).

g—
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Figure 4.5 Diffusion of a molecule released at time 0 at the origin
(A) The curves show the probability of finding a molecule at increasing times.
(B) The growth in the root-mean-square displacement (x_.) as a function of time.

Free Diffusion fram a Point Source

If a molecule is released at the origin and allowed to diffuse in one dimension,
then the probability of finding it at position x at time ¢ later is

1 x?
pix,t)= mexp 4Dt t>0 (4.15)

The solution is illustrated in Figure 4.5A. Note that the total probability is unity
for all times greater than 0. The probability distribution corresponds to a nor-
mal, or Gaussian, distribution whose variance, 62, is 2Dt. The root-mean-square
displacement, x_ _ (which equals the standard deviation, ), therefore increases
in proportion to the square root of time (Figure 4.5B). This is in contrast to
motion with constant velocity, v, where the displacement increases in propor-
tion to time (x = vf) and is always in one direction.

Example 4.3 The efficiency of diffusion as a cellular transport mechanism

. Consider a 3-nm-radius protein (corresponding to a molecular mass of

- 100 kDa) diffusing through water. Its diffusion coefficient is ~100 pm%s

- (at 37°C). The table on page 61 shows how long it takes for the protein to
 diffuse various distances. Because the average distance a particle diffuses
 increases only with the square root of time, diffusion of proteins becomes
- slow, greater than ~1 minute, over distances greater than ~100 pm. This

| might explain why the diameters of eukaryotic cells are usually smaller

- than 100 pm. On the other hand, a 1-im-diameter organelle (such as a

| mitochondrion) in water has a diffusion coefficient of only ~0.5 pm%s (at
- 25°C). Diffusion through 100 pm in this case takes ~3 hours; in a real cell
it would take much, much longer because the cytoplasm is more like a
gel with a mesh size of only ~50 nm (Luby-Phelps et al., 1987), so that

o
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organelles larger than 50 nm are almost immobile. Thus even small
eukaryotic cells will require motor proteins to move organelles from
one place to another. The low mobility of organelles does have a bene-
fit, though: Large organelles will stay where they are put and the inter-
nal structure of the cell will therefore be reasonably stable. For highly
elongated cells—an extreme example are the neurons of the sciatic
nerve, whose processes bridge from the spinal cord to the foot—active
 transport is essential, even for small metabolites and proteins.

. Times for one-dimensional diffusion in aqueous solution

: Distance diffused

Object 1pm 00pm  10mm 1m
K 025ms  25s 25x10%s 25%10%s

(7 hrs) (8 years)
Protein 5ms 505 (~1min) 5x10°s 5x10%s

(6days) (150 years)
Organelle ls 10%s (~3 hr) 10%s 10% s

_ Gyeen)  (30millennia

| Note: K*: Radius ~0.1 nm, T = 25°C, D = 2000 pm?/s.
Protein: Radius = 3 nm, viscosity = 0.6916 mPa-s~, T =37°C, D = 100 pm?/s.
Organelle: Radius = 500 nm, viscosity = 0.8904 mPass™, T = 25°C, D = 0.5 um?s.

First-Passage Times

In the previous section we answered the question: How far, on average, does
a molecule diffuse in a given time? However, a more relevant question is: How
long, on average, does it take a molecule to diffuse through a given distance?
We call this time the first-passage time. The rephrased question is more rele-
vant because it allows us to calculate the rate of a process that is limited by dif-
fusion. The diffusion-limited rate is the reciprocal of the first-passage time.
The first-passage time can be calculated by solving the diffusion equation
for the particular geometry of the problem. In the absence of an external force,
the first-passage time for one-dimensional diffusion through a distance x; is

2
Xo

t=—- 4.16
D (4.16)

(Appendix 4.2). Not coincidentally, this is the same answer that we got when
we approached the problem the other way round by considering the average
distance diffused!

—
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| Example 4.4 Diffusion over molecular dimensions The first-passage time
| is very small when the distances are small. For example, consider a 1-tm-
 diameter spherical organelle diffusing in aqueous solution near a micro-
 tubule. If the sphere were kept from diffusing away from the microtubule
but free to diffuse along it, then diffusion through 8 nm, the distance between
adjacent tubulin dimers along the microtubule lattice, would only take 64
| us! Thus it is an appealing idea that motor proteins exploit this rapid motion
| by somehow allowing diffusion to occur in only one direction. But as we
- will see in later chapters, such a model for the motor mechanism is ruled

The first-passage time becomes more interesting from a biological point of
view when we consider diffusion in the presence of an external force. For exam-
ple: How long does it take for a molecule to diffuse over an energy barrier at
x = x,? When the force is constant—that is, when the potential energy is U(x)
= —Fx—the first-passage time is

2
(Y kT Fx, Fx,
£ Z(ZDJ[FXOJ {exp( T ) 1+ T } (4.17)
This equation is plotted in Figure 4.6. When the diffusion is steeply downhill—
that is, the force is large and positive—the first-passage time approaches x,/v,
where v is the drift velocity (v = F/Y), as expected for a molecule drifting at
constant speed. When the diffusion is steeply uphill—that is, the force is large
and negative—the first-passage time increases approximately exponentially

as the opposing force is increased. In this case, the diffusion rate, the inverse
of the first-passage time, decreases approximately exponentially as the force

Time to diffuse 8 nm (jis)

Uphill
diffusion

Figure 4.6 Time fora 100 kDa
protein to diffuse 8 nm

When diffusion is uphill (against
an opposing force) the first-pas- L y
sage time is long (left-hand side). Sl
When diffusion is downhill (in the t~——
direction of the force), the first- T T T T
passage time is short (right-hand -4 -2 2 4
side). Force (pN)

e —.— o e |
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Figure 4.7 Diffusion of a molecule out of a hemiparabolic energy well

times the distance increases. In other words, the diffusive process behaves as
though there is a barrier with energy U, = |F|-x, (Chapter 5).

If the force opposes the motion and has amplitude proportional to posi-
tion (Figure 4.7)—that is, the molecule is attached to an elastic element so that
F = —xx—the first-passage time is

n kT UO
tK T " EXP( J ( )

where T = v/« is the drag coefficient divided by the spring constant. This equa-
tion is derived in Appendix 4.2 and assumes that the height of the energy bar-
rier is high—that is, Uy = U(xy) = 72 xx,? >> kT, £ is called the Kramers time,
after Kramers, who first derived it (Kramers, 1940). This equation forms the
basis of the Kramers rate theory, which postulates that the rate of reactions is
limited by diffusion over a high-energy transition state (Chapter 5).

Correlation Times*

So far I have been vague about the nature of the thermal forces that drive dif-
fusion and Brownian motion. Indeed, we didn’t need any information about
the thermal forces to derive the Principle of Equipartition of Energy, only that
Boltzmann's law was satisfied, and we only needed to assume that the ther-
mal forces were randomly directed to derive the diffusion equation and to relate
the diffusion coefficient to the drag coefficient. However, there are several
“microscopic” details of diffusive motion that are important. For example, how
long, on average, will a free molecule keep moving in one direction before

*An asterisk next to a heading denotes a more advanced section.

_————
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the thermal forces randomize its direction of motion? In other words, what is
the persistence time (or correlation time) of the velocity? Another important
question is: How long, on average, will it take for a molecule in a potential well
to explore the different energy levels? In particular, how long will the mole-
cule spend at each energy level? In other words, what is the persistence time,
or correlation time, of the position? Finally, what are the amplitudes and sta-
tistical properties of the thermal forces? In this chapter, we will answer these
questions. Because the answers require quite advanced mathematics, namely
concepts from Fourier analysis, this section is more advanced than the other
sections in this book. For those without this mathematical background, the next
three sections can be skipped, except for Examples 4.5 and 4.6, which illustrate
the main results.

Let F(t) be the thermal force acting on a molecule due to collisions with sur-
rounding solvent molecules: It comprises very brief impulses with random
direction, occurring at random times. The equation of motion of the molecule
in response to this force is

(t)+7 (t)+1<x(t) F(t) (4.19)

and is known as the Langevm equation (Langevm, 1908). Because the thermal

force is a random one, the most we can hope for is a description of the statis-

tical properties of the resulting motion. These properties are described by the

autocorrelation function, R (1), of the position x(t) of a molecule, which is

defined by
o 4 %

R, (1) ={x(t)-x(t—1)) = %gr; {F J' x(H)x(t—1)- dt} (4.20)

-T/2

The autocorrelation at delay 7 is calculated by multiplying the position at a
given time by the position at time 7 earlier, and averaging over all times.

The autocorrelation function R, (t) has the properties that coincide with our
intuitive notion of temporal correlation or persistence time. The autocorrela-
tion function has its maximum value (equal to the variance of the signal (x?)
= 0%) when 1 = 0 and it falls to zero when 1 = = (we are assuming that the sig-
nal has mean (x) = 0). This accords with the positions at two closely spaced
times being highly correlated, but the positions at two widely separated times
being uncorrelated. In addition, the autocorrelation is symmetric, R (1) = R (-1).
This relationship means that the correlation drops equally quickly whether we
compare the signal with itself at earlier or later times.

The crucial additional property is that the autocorrelation function satisfies
the equation of motion!

dZRI
d 2

(D+y s Tx (1) +xR,(1)=0 1>0 (4.21)
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(Appendix 4.3). This means that the autocorrelation function has the same form
as the response of the molecule to an impulsive external force. For example, in
the case of overdamped motion appropriate for protein dynamics (Chapters
2 and 3), Equation 4.21 yields an autocorrelation function that is the sum of
two exponentials, a fast, small-amplitude one with time constant /y (on the
order of ps) and a slow, large-amplitude one with a time constant equal to
y/x. This result is elaborated in Examples 4.5 and 4.6.

 Example 4.5 Diffusion of a free protein Consider a protein of molecular

- mass 100 kDa whose velocity (in one dimension) is simulated in the fig-

~ ure below. It has a mass of 166 x 1024 kg (see Table 2.2) and a root-mean-

- squate speed, v, = (3kT/m)?® = 8.6 m/s. The time constant is T = m/Y,

- where yis the drag. If the protein is globular with a radius of 3 nm, then

~ the damping is 6mnr = 60 pN-s/m (see Table 2.2) and the time constant is

~ only ~3 ps! This is the persistence time, or correlation time, of the velocity.
~ Over this time the protein will move 0.24 A, only ~1/300th its diameter!

- Thus even though the speeds of molecules are large, the high damping
 that they experience in water means that their inertia carries them for
 extremely small distances, 50 that after a fraction of an angstrom, they are
 likely to be moving in a different direction. Thus the model of diffusion as
~ arandom walk is a good one, provided that the time between the postu-
 lated steps is much longer than the 3 ps inertial time.

) (B) Velodity (mf)

An important consequence of Equation 4.21 is that it suggests a strategy for
estimating a molecule’s molecular properties, such as stiffness and damping.
Measure the thermal motion, calculate the autocorrelation function via Equa-
tion 4.20, and compare it to the theoretical autocorrelation function predicted
from a particular model (via Equation 4.21) to obtain the molecular parame-
ters that give the best fit. However, rather than calculating the autocorrela-
tion of a fluctuating signal, it is more common to perform a Fourier analysis
on the signal, and compare that to the predicted behavior, as described in the
next section.

—
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example is attached to a spring. Its position is simulated in the figure below. If the stiff-
| ness is 1 pN/nm, it will have a root-mean-square displacement, x__ = sz> S m

| =2 nm. This is independent of its molecular mass! How long will it take such a pro-

| tein to relax to a new position? The time constant is T = ¥/k =~ 60 ns, which is ~20,000

| times greater than the inertial time constant (see the figure in Example 4.5). This is the

| persistence time, or correlation time, of the protein’s position. The protein’s position will
| be correlated on the nanosecond time scale: After times less than 60 ns, the protein will

| still be “quite near” to where it was. But over much longer times (>> 60 ns) the protein’s
position will be uncorrelated, and the probability of finding the protein in a certain posi-
| tion will depend only on its potential energy and not on time.

{A) {B) Displacement (hm)

Fourier Analysis*

Fourier analysis is a technique by which a signal that varies in time, such as an
electrical or mechanical signal, or in space, such as an optical signal (an image)
or the spatial pattern of atoms in a molecule, is split up into its constituent tem-
poral or spatial frequency components. This approach is widely used in engi-
neering to analyze the dynamic behavior of electrical or mechanical systems.
In addition, Fourier analysis is used in optics and structural biology because
when light waves or X rays pass through and are diffracted by a material, the
light or X rays that exit the specimen in a particular direction correspond to
the scattering due to a particular spatial frequency of structures in the mate-
rial. In other words, diffraction is a physical way of separating the different
spatial frequency components. Likewise, the graphic equalizer on a stereo sys-
tem is an analogue circuit that separates electrical signals into different tem-
poral frequency components. The ear is another example of an analogue
Fourier analyzer: Different frequencies of sound are separated into mechani-
cal vibrations at different spatial locations along the cochlea. We are going to
apply Fourier analysis to the dynamics of a molecule undergoing thermal
motion. But the underlying principles are generally applicable and can be used
to interpret shape fluctuations of polymers, to understand various contrast
techniques used in light microscopy, and to see how diffraction patterns are
used to deduce the structures of proteins.

o
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Fourier analysis is based on the following mathematical property: A signal
x(t) whose total duration is T can be expressed as a Fourier series

xlE) ="y n, contib b, sin 2 (4.22)
n=1 T T
where the amplitudes of the cosine and sine components, 4, and b, are calcu-
lated from the time averages
T/2
a,= 2<x(t) cos 21;,“) = -:‘2: J' x(t)cos ik -dt 1
-T/2
2nnt\ _ 2 T2 2nnt
b, = 2<x(t)sin > == I x(t)sin -dt >
1
T T ;p T n

As in the last section, we are assuming that the mean of the signal is zero (if
not, the mean can simply be subtracted). There are a number of fast algorithms
for calculating the Fourier series from digitized time traces (e.g., the
Cooley-Tukey algorithm; Bendat and Piersol, 1986; Press, 1997).

For our purposes, the crucial function obtained from the Fourier analysis of
a signal is the power spectrum. The power spectrum, G,(f), of a signal, x({),
is defined so that G,(f)-Af is the mean-square displacement, or variance, of the
signal in the frequency range (f, f + Af). The power spectrum has the follow-
ing physical meaning. If a signal x(t) is passed through a filter with center fre-
quency f Hz, and bandwidth Af Hz (this corresponds to a “notch” filter) to
obtain a signal x;,(f), then G,(f)-Af is the mean-squared value of this filtered
signal (Figure 4.8). The power spectrum can be calculated directly from the
Fourier series. If we pass x(f) through a filter of bandwidth Af=1/T, and take
the variance we obtain

G () Af =(xfp ) =K(ay + b})  f=n/T>0, 4= 1T (423)

This is derived in Appendix 4.3. There are a number of slightly different ways
of defining the power spectrum (Bendat and Piersol, 1986; Bracewell, 1986;
Papoulis, 1991): The definition of Equation 4.23 corresponds to the “one-sided

g ) B
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Figure 4.8 Definition of the power spectrum of a signal x(t)
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power spectrum,” for which only positive frequencies are considered. If the
signal corresponds to a displacement, then the units of G,(f)-Af are m? The
unit of G(f) is therefore m% Hz. If the signal were a force or a voltage, the units
would be N?/Hz or V¥ Hz. Thus the power spectrum is not a true distribution
of power, which would have units of W/Hz. The misnomer arose because the
power spectrum was first used for electrical signals, in which case the square
of the voltage is proportional to the power (V2 = VR = P-R by Ohms law). The
power spectrum is analogous to the intensity distribution of a diffraction
pattern.

The reason why the power spectrum is so useful for analyzing thermal
motion is that the power spectrum is the Fourier transform of the autocorre-
lation function

G,(f)=2 [ R (e 2™ - dv=4[ R (t)cos(2nft) -dv  f>0

E 0 (4.24)
where we have a factor of two in the middle expression because we are using
the one-sided power spectrum, and the right-hand expression follows because
the autocorrelation function is symmetrical (Appendix 4.4). This relationship
is significant because it allows one to compare the power spectrum, computed
directly from the experimental recordings via the Fourier series, with a theo-
retical expression for the power spectrum, which is calculated with the help of
Equation 4.24 from the predicted autocorrelation function (Equation 4.21). Fig-
ure 4.9 summarizes this approach. First, we measure the thermal motion ofa
molecule and calculate the power spectrum. Then we compare this power spec-
trum with the power spectrum predicted by a model equation of motion, which
has variables of mass, damping, and stiffness. The model is refined by adjust-
ing the variables until the best fit is found. In this way, the molecular param-
eters—the mass, damping and stiffness—can be deduced from the thermal
motion. This process is shown in the following example. An analogous ap-
proach is used in X-ray crystallography; the power spectrum corresponds to
the intensity of the diffracted pattern, which is compared to theoretical dif-
fraction patterns predicted by structural models.

Measure Compute

GED

Comparison

Model (m,Y,x)

Adjust parameters [«

Figure 4.9 Using Fourier analysis to measure molecular parameters

= ———————a
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 Example 4.7 Power spectrum of a damped spring Figure A shows the

| position of the tip of a flexible glass fiber undergoing thermal motion. The
noisy cuirve in Figure B shows the power spectrum of this motion calcu-

| lated via the Fourier series (Equation 4.23). The smooth curve is the theo-

| retical curve obtained as follows. First, the autocorrelation function is

. found as the solution to Equation 4.21 with zero mass

R.(v)= %Z—:exp(—l'c[/ To) To =Y/

where we have used R (0) = (x* > = kT/x from the Equipartition principle.
| The associated power spectrum is calculated via Equation 4.24 to be

Sy, L

_ &) x* 1+(Q2nfty)?

- This curve is called a Lorenzian and corresponds to the smooth curve in
Figure B with parameters k = 0.043 mN/m and y = 0.16 pN-s/m. By this
means, the stiffness and damping are deduced from the thermal motion.
There are other approaches to estimating the stiffness and the drag coeffi-
cient. For example, measuring the mean-square displacement, (x*) =kT/x,

| and the correlation time, © = v/x (or cutoff frequency f=1/2n7), allows

| one to solve for k = kT/(x?) and y = T«. In this example, T = 3.7 ms.
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(After Meyhéfer and Howard, 1995.)

The Magnitude of the Thermal Force*

Now that we know the power spectrum of the molecule’s position, it should
be possible to calculate the power spectrum of the equivalent force necessary
to produce the motion. This is the thermal force, and it is shown in Appendix
4.3 to have a power spectrum equal to

G (f) = 4kTy (4.25)

—_
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This equation has a number of important implications. First, it says that to
account for the thermal motion, we simply redraw the mechanical circuit to
include a force generator that has a variance 4kTy N%/Hz in each frequency
interval (Figure 4.10). Second, the variance of the thermal force is independent
of the frequency: This is equivalent to the force being due to impulsive colli-
sions, as we have claimed (see also Appendix 4.3). The third implication is that
the amplitude of the force depends only on the drag coefficient, and not on the
stiffness (or on the mass if it had been included). This finding is quite general
and is known as the Fluctuation-Dissipation theorem (Landau et al., 1980).
Another way of stating this result is that the fluctuations come from the dissi-
pative elements, namely the dashpots. In general, to simulate the thermal
motion of any linear mechanical circuit, we place a random force generator
with power spectrum 4kTY; in parallel with each damping element ¥;.

 is the Johnson noise that originates in the resistors of electrical circuits.

- Johnson noise is due to thermally driven voltage fluctuations. Its power
spectrum is Gy, (f) = 4kTR, where R is the resistance. In an electrical circuit
with a feedback resistor of 1 G, typical of the feedback resistors in patch- |
clamp headstages, the root-mean-square voltage noise over a 1000 Hz

- bandwidth is 126 UV, Using Ohm's law (V = iR), the root-mean-square

- current noise is therefore 0.13 pA (Sigworth, 1995).

Equation 4.25 suggests that the thermal forces are instantaneous because
they have power at all temporal frequencies. However, the velocity of a mol-
ecule is correlated over times T = m/y. This limits the power at high frequen-
cies and, as a result, the variance of the thermal force is finite. It equals

o2 =(F3y=v*(v?) (4.26)

Figure 4.10 Representation
of the thermal force

The thermal force is repre-
sented as a random force in
parallel with the dashpot.
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(Appendix 4.3). This equation shows that the root-mean-square thermal force
is proportional to the root-mean-square velocity times the damping, in accor-
dance with the notion that the thermal force has the same physical origin as
the damping force.

Summary

Because molecules are agitated by collisions with other molecules, they are not
always found in their lowest energy state. The probability of a molecule being
in a higher energy state is given by Boltzmann’s law. Boltzmann's law has sev-
eral corollaries. One corollary is the Principle of Equipartition of Energy, which
says that each degree of freedom of the molecule (which meets certain crite-
ria) has 72kT of energy associated with it. k is the Boltzmann constant and T
is the absolute temperature, so kT = 4 x 1072 ] at room temperature. An exam-
ple of this principle is that the average potential energy of a spring is % kT.
Another example is that the average kinetic energy of a molecule is %2 kT (the
3 appears because there are three components of velocity and therefore 3
degrees of freedom). The randomly directed collisions with the surrounding
molecules cause particles to diffuse, and the statistical properties of diffusing
particles can be determined by solving the diffusion equation. A second corol-
lary of Boltzmann’s law is that the diffusion coefficient (D) is related to the drag
coefficient (y) via the equation D = kT/y, known as the Einstein relation. A
detailed analysis of diffusion of a particle shows that the velocity persists (or
is correlated) over times shorter than m/y, where m is the mass. For a protein,
this time is on the order of picoseconds (1072 s), after which time the protein
is likely to be moving in a different direction and with a different speed. If the
protein is tethered by a spring of stiffness x, then the position is correlated over
times shorter than y/x, which ranges from 1 nanosecond to 1 microsecond for
spring constants between 0.016 and 16 pN/nm. Using Fourier analysis, it is
possible to deduce the molecular properties of a mechanical system, such
as the stiffness, the damping, and the mass, from an analysis of the thermal
motion,

Problems

4.1 Consider a stack of ten shelves and suppose that the spacing of the shelves
is such that the potential energy on each shelf is 1 kT higher energy than
that on the shelf below. Suppose that 1000 books are placed on the shelves
according to Boltzmann's law. How many books are there on each shelf?
[Answer: From the bottom there are 632, 233, 85,31, 12,4,2,1,0and 0
books on each shelf.]

4.2 A solution of gold spheres is stored on a shelf. After a week or so, it is
noticed that the spheres have settled stably in the container and that the

5
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4.3

44

4.5

4.6

4.7*

4.8*

4.9*%

density (as estimated from the color) decreases e-fold every 20 mm from
bottom to top. Given that the density of gold is 19.3 times that of water,
what is the diameter of particles?

A protein solution was placed in an analytic centrifuge and spun until equi-
[ibrium was reached. The measurement was then repeated. But it was real-
ized, too late, that prior to the second run, the protein had been denatured
by the rotating graduate student. Remarkably, it was found that the dis-
tribution was the same for both runs. Why is this?

The Stokes’ radius of a sodium ion, the apparent radius obtained from the
diffusion coefficient, is about twice the ionic radius, found in crystals (see
Example 4.2). Why might this be?

Calculate the root-mean-square velocity of a bacterium (assume it is spher-
ical of radius 1 pm and that it is 10% heavier than water). What is the cor-
relation time of the velocity? How far will the bacterium move during this
correlation time?

Consider our canonical 100 kDa protein (see Table 2.2). How long will
it take to diffuse 40 nm? Suppose there is a force of 1 pN. How long will it
take to diffuse 40 nm in the direction of the force? How long will it take to
diffuse 40 nm against the force? [Answers: 24 s, 4 s, 11 ms.]

If U(x) = Fl x|, that is, a particle is trapped between two linear inclines,
show that (U) = kT (and not % kT).

If a particle is released at the origin and there are absorbing walls at x =
-a and x = b, show that the probability of being absorbed at -z divided by
the probability of being absorbed at b is b/a (Goel and Richter-Dyn, 1974).

The flow of heat also satisfies Fick’s law and the diffusion equation. The
flux of heat is proportional to the thermal gradient, where the constant of
proportionality is the thermal conductivity, K. The flow of heat then
changes the temperature of a unit volume of solid by cp, where c is the heat
capacity and p is the density. For the case of heat flow in solids, the equiv-
alent to the diffusion coefficient is

Dthermal = K/Cp

For water at 25°C, K = 0.606 W/m-K, c = 4.18 kJ/kg'K, and p = 997 kg/ms.

(a) What is Dy,,,,..; for water? (Check that the units are m?%/s.) How does
this compare with the diffusion coefficient for an ion? [Answer: 0.15
mm?/s.]

* The asterisk denotes more advanced problems.
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(b) Suppose, hypothetically, that heat were carried by little particles (called
calorics). Use Stokes’ law to calculate the radius of the heat particle,

(c) How long does it take heat to diffuse 3 nm, roughly the distance from
the center of a globular protein to the surrounding fluid? [Answer: ~10

ps for diffusion in 3 dimensions.]




