


CHAPTER

Chemical Forces

ical forces. By chemical forces, we mean the forces that arise from the for-

mation of intermolecular bonds. For example, consider what happens when
a protein first comes in contact with another molecule such as a small ligand or
another protein. As energetically favorable contacts are made, the protein may
become stretched or distorted from its equilibrium conformation. If the protein
can adopt two different structures, the binding could preferentially stabilize one
of these structures. Chemical forces also arise from changes in bound ligands.
One example is the cis-to-trans isomerization of retinal bound to the opsin pro-
tein: Following the adsorption of light, the all-trans-retinal is initially in a highly
strained conformation, and its relaxation drives the slower structural changes of
the opsin (Peteanu et al., 1993). Another example is the hydrolysis of the gamma
phosphate bond of ATP bound to myosin (Chapter 14). In all the above cases,
the chemical change produces a local distortion that in turn pushes the protein
into a new low-energy conformation.

To understand how protein machines work, it is essential to understand how
proteins move in response to these chemical forces. Just as a chemical force might
cause a protein to move in one direction, an external mechanical force might
cause the protein to move in the opposite direction. For example, the binding
of a ligand might stabilize the closure of a cleft, whereas an external tensile force
might stabilize the opening of the cleft; as a result, the mechanical force is
expected to oppose the binding of the ligand. Thus mechanical forces can oppose
chemical reactions, and, conversely, chemical reactions can oppose mechanical
ones. If the chemical force is strong enough, the chemical reaction will proceed
even in the presence of a mechanical load. In this case we say that the reaction
generates force.

_—

In addition to mechanical and thermal forces, proteins are also subject to chem-




76 CHAPTER 5

The purpose of this chapter is to elucidate the general principles by which
applied forces affect both the rates and equilibria of chemical reactions, and, by
extension, how chemical reactions generate force.

Chemical Equilibria

A central question is how force affects the equilibrium between two structural
states of a protein E —FE
153
However, we immediately encounter a difficulty: What is a structural state of a
protein? The difficulty arises because thermal fluctuations cause a complex mol-
ecule like a protein to occupy, sequentially, an enormous number of different
conformational states, where a conformational state is a set of positions or coor-
dinates of all the atoms. (We ignore the velocities of the atoms, which will aver-
age out over the picosecond timescale, as argued in the last chapter.) If the fluc-
tuations in the positions of the atoms are not too large (or if the atoms do not
spend too much time at large distortions), then we can think of the different con-
formations as small deviations about a stable, minimum-energy state. We call
the time-average of these conformational states a structural state; it will be sim-
ilar to the minimum-energy state (and the two will be the same if the fluctua-
tions are symmetrical). Structural states can be solved by X-ray crystallography
or NMR. According to our definition, a structural state is an ensemble of a large
number of the individual conformational states that do not vary too much from
the mean. An unfolded protein, by contrast, has such large fluctuations that the
distances between atoms in different amino acids vary by more than the size of
the amino acids themselves; in this case, we say that the protein is unstructured.

It is possible that the conformational states segregate into two ensembles
with different means. In this case we say that the protein adopts two structural
states. We denote the states as E; and E,. The different structural states might
have different functional properties. An enzyme in one state might be catalyt-
ically active whereas in the other state it might be inactive. In this case, the
structural states are “on” and “off.” An ion channel might be open or closed.
Different states might have different affinities for another protein, for DNA, or
for aligand. In the case of a motor protein, the lever might be up or down, cor-
responding to the pre- and post-working strokes.

To determine the probability of finding the protein in one of the two struc-
tural states E, and E,, we would like to apply Boltzmann’s law. However, as
stated in the last chapter, Boltzmann’s law applies only to individual confor-
mational states and not to ensembles of states, There is, however, a way around
this. For a structural state, E, which is really an ensemble of states with ener-
gies (U} (Figure 5.1), we define the free energy as

G=U-TS (5.1)

where U is the average potential energy, T is the temperature, and S is the
entropy (Appendix 5.1). U comprises the internal energy—the energy associ-

_
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Figure 5.1 Ensembles of states
S : Suppose a molecule can be in one of two
v : structural states E, and E,, each comprising
Energy an ensemble of individual conformational
u) 1 states with different potential energies.
6 Each conformational state has energy U, or
u; and, at equilibrium, the probability of
5 4 finding the molecule in conformational
state j, p, is proportional to exp[-U/kT].
The probability of finding the molecule in
3 — (L) structural state E, is the sum of all the
probabilities p,. Likewise, the probability of
2 e finding the channel in structural state £, is
the sum of all the probabilities p;The result
1 of this calculation, given in Appendix 5.1, is
Jorme———— a generalized form of Boltzmann's law that
Structural Structural relates the probabilities to the free ener-

state 1 state 2 gies (see Equation 5.2).
E; = {state;} Ej = [state;)

{Uy) —

ated with all the bonds (covalent, electrostatic, van der Waals)—plus other
terms corresponding to potential energies arising from external variables such
as pressure, force, electrical fields, or gravity. The entropy is a measure of dis-
order: The larger the number of conformations in an ensemble, the greater
the entropy. It is shown in the Appendix that Boltzmann's law holds for ensem-
bles of conformational states, E; and E,, if the energies are replaced by the
free energies, G, and G,. In other words,

[ 2] P2 AG :| - = = -
[ 1] 1 exp‘ constan & =Gy (5.2)

This equation is important because it shows that there is such a thing as an
equilibrium constant, K. It is a constant in the sense that it does not depend
on the concentrations of E, and E,, though in general it will depend on the tem-
perature, ionic strength, and other variables. Equation 5.2 is known as the Law
of Mass Action because if E, and E, are in equilibrium and more protein in the
E, form is added, then the amount of E, will increase as the system returns to
the equilibrium ratio. Likewise, adding E, pushes the reaction back toward E,.
The law applies equally well to the equilibrium between small molecules such
as substrate and product as between protein conformations E; and E,.

If we ignore the external potential energy terms, G is the Helmholtz free
energy. If the only potential energy corresponds to pressure-volume work,
PV, then G is the Gibbs free energy and U is called the enthalpy. If there are
other potential energy terms arising from mechanical forces or electrical poten-
tials, then we simply call G the free energy. Usually, the difference between the

;
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Helmholtz and Gibbs free energies can be ignored because the volume changes
associated with structural changes in proteins are quite small, no more than a
few percent of the total volume. Because the total volume of proteins is small
anyway, on the order of 120 nm? for a 100 kDa protein, the volume changes are
only on the order of 1 nm?. At the standard pressure of 1 atmosphere (~100
kPa), the PAV work is only ~0.1 x 107! ], which, because it is much less than
KT (4 x 1072 ]), will have very little effect on the equilibrium. Volume changes
are expected to be important only in the depths of the ocean where pressures
may exceed 100 atmospheres. On the other hand, as we shall see, the potential
energy due to mechanical external forces can be very significant.

The Effect of Force on Chemical Equilibria

Boltzmann’s law allows us to calculate how a force influences the equilibrium
between two (or more) structural states. If the difference between two struc-
tural states is purely translational—that is, if state E, corresponds to a move-
ment through a distance Ax with respect to state E;, as occurs when a motor
moves along a filament against a constant force—then the difference in free
energy is AG = - F-Ax, where F is the magnitude of the force in the direction of
the translation (Figure 5.2A). If the length of a molecule changes by a distance
Ax as a result of a conformational change (Figure 5.2B), then the difference in
free energy is
AG = AG" - FAx

Figure 5.2 Displacements associated with structural changes
(A) Translation. (B) Lengthening. (C) Lengthening with constant stiffness.
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where F is the tension across the molecule and AGU is the free energy difference
in the absence of tension. The equality is exact if the molecule is composed of rigid
domains that undergo relative translation as shown in Figure 5.2B, or if the two
structural states have equal stiffness (Figure 5.2C) (see below). At equilibrium

E o_
% = exp{_ £:| = exp[— —AG kTPAx] = 1<2q exp[%} 5.3)

where Kgqis the equilibrium constant in the absence of the force. The crucial
point is that an external force will couple to a structural change if it is associ-
ated with a length change in the direction of the force. If the change in length
of the molecule is 4 nm, then a force of 1 pN will change the free energy by 4
pN-nm =kT. According to Equation 5.3, this will lead to an e-fold change in the
ratio of the concentrations. Because protein conformational changes are meas-
ured in nanometers, and energies range from 1 kT (thermal energy) to 25 kT
(ATP hydrolysis) (see Table 4.2), it is expected that relevant biological forces
will be on the scale of piconewtons.

An example of how forces modulate the state of a protein—in this case a
mechanically sensitive ion channel—is explored in Example 5.1.

An expression analogous to Equation 5.3 holds for voltage-gated ion chan-
nels (Hille, 1992). In this case, the structural change associated with the open-
ing of such a channel is coupled to movement of charge, Ag, across the elec-
tric field caused by the transmembrane potential, V. Mutagenesis studies
indicate that the moving charges include positively charged arginine residues
in the 54 transmembrane helix (Hille, 1992). From a physical viewpoint, charge
(Aq) is analogous to displacement (Ax), and potential (V) is analogous to force
(F). The energy difference between the open and closed states therefore includes
a term VAg, and this makes the opening sensitive to the voltage. The openings
of the voltage-dependent Na and K channels that underlie the action potential
are strongly voltage dependent: Classic experiments by Hodgkin and Huxley
showed that the ratio of the open probability to the closed probability increased
approximately e-fold per 4 mV (Hodgkin, 1964). This indicates that the open-
ing of each channel is associated with the movement of about six electronic
charges across the membrane (Ag=kT/V = 6e, where e is the charge on the elec-
tron). The predicted movement of these electronic charges has been directly
measured as a nonlinear capacitance of the membrane (Armstrong and Bez-
anilla, 1974) that is analogous to the nonlinear stiffness of the hair bundle in
Example 5.1.

Protein conformational changes are sensitive to many other “generalized”
forces including membrane tension, osmotic pressure, hydrostatic pressure,
and temperature. Sensitivity to these forces requires that conjugate structural
changes occur in the protein (Howard et al., 1988). In the case of membrane
tension, o, the conjugate variable is area, Ag, and the energy difference equals
oAa: The sensitivity of stretch-activated ion channels to membrane tension
(Guharay and Sachs, 1984; Chang et al., 1998; Batiza et al., 1999) suggests that
the conformational change associated with channel opening leads to an increase

—
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| Example 5.1 Mechanically sensitive ion channels in hair cells
~ The sensory hair cells of the inner ear underlie the perception of sound,

linear acceleration, angular acceleration, and gravity. When the hairbun-
dle is deflected by an external force, there is shear between adjacent stereo-

| cilia within the bundle (see Figure 8.2). This shear in turn tenses elastic tp
| links that pull on and open ion channels at the tips of the stereocilia (Fig-
| ures A and B). Because the opening of a channel shortens the tip link, the

open state is stabilized by deflections that increase the tension in the tip

 link. As a result, the open probability increases as the hair bundle is dis-
| placed to the right, defined as the positive direction (Figure B). Flow of

potassium ions through the channels alters the electrical potential across
the membrane, producing the receptor potential that can be measured by

 inserting a glass microelectrode into the cell (Figure C). The receptor
| potential triggers synaptic release and eventually leads to perception by
| the central nervous system. Due to the extra degree of freedom correspond-

ing to the opening and closing of the channels, the stiffness of the hair

 bundle is ot constant, but depends on the displacement. The stiffness
| can be measured by displacing the bundle with a flexible glass fiber (see

Figure 15.3) and measuring the flexion in the fiber using a photodiode
detector (see Figure 15.5). As seen in Figure D, the stiffness has a mini-
mum when the channels are open 50% of the time. The displacement

| dependence of the stiffness indicates that the “swing” of the gate (Ax) is 2
| to4nm and that there are 1 or 2 channels per stereocilium (Howard and

Hudspeth, 1988; Hudspeth et al,, 1990; Denk et al., 1995).
The open probability is
1

E;[:”E‘—xq F=ax(X~X,)
kT

Popen =

| where a (= 0.14) is a geometric factor that relates the displacement of the
| bundle to the shear between stereocilia, « is the stiffness of the tip link,

| X is the average displacement of the hair bundle, and X, is the displace-
 ment at which the channels are open 50% of the time. This equation fol-

- lows from Equation 5.3, and provides a good fit to the receptor potential

(Figure C). The stiffness of the hair bundle is

4%G S kAx)
K=E5{7==KS+NW2-N-(—&}(—T—);&(1»;1)

| where the free energy of the bundle, G, includes an entropy term corre-

sponding to the opening and closing of the channels (see Appendix 5.1)

. (Hudspeth et al., 1990; Markin and Hudspeth, 1995). K is an additional
| constant term corresponding to stiffness arising from the bending of the

bases of the stereocilia, and N is the number of channels. This equation
provides a good fit to the stiffness data, with Ax =4 nmand k= 0.5

i PN/ nm.
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in membrane area of 4 to 8 nm? Sensitivity of channels to changes in osmotic
pressure, 7, induced by addition of sucrose or sorbitol, suggests that their
opening is associated with a change in “solute accessible volume”: AV is ~1
nm? for the potassium channel from nerve (Zimmerberg et al., 1990) and
~30 nm® for the large anion channel from mitochondria (Zimmerberg and
Parsegian, 1986). These volumes correspond to 30 to 1000 water molecules.
The sensitivity of the acetylcholine receptor channel to pressure (Heinemann
et al., 1987), suggests that the binding of acetylcholine and subsequent open-

;
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ing of the channel is associated with an increase in (water-accessible) volume
of 0.08 nmm®, equivalent to ~3 water molecules. This small change in volume is
in accordance with the earlier assertion that volume changes of proteins are
usually negligible. Proteins unfold when the temperature is increased: An e-
fold increase in the ratio of unfolded to folded species per 3°C would suggest
an entropy difference, AS, of ~100 k. Other studies suggest that unfolding
increases the entropy about 2 k per amino acid (Creighton, 1993). The high sen-
sitivity of the vanilloid receptor channels to temperature changes (Caterina et
al., 1997; Caterina et al., 1999) indicates that the opening of these channels may
be coupled to the unfolding of a large domain within the protein.

The free energy difference depends linearly on force according to Equation
5.3 only if the change in length, Ax, is independent of the force. This condi-
tion is not satisfied if the two states have different stiffnesses as illustrated in
Figure 5.3. If state 1 has stiffness k, and state 2 stiffness x,, then the force will
stretch the states by F/x; and F/, respectively, and will increase the potential
energy of the states by /2 F¥x, and % F¥x,, respectively. The free energy change
will then be

AG=AG" - FAx® - % F? [i = iJ (5.4)

where Ax’= x,—x, is the length change in the absence of force (Sachs and Lecar,
1991). The term in F? will be small if the force is small, if the stiffnesses of the
two structural states are similar, or if the states are very rigid. However, if the
force is large and the stiffnesses of the structural states are different, then this
theory makes an unusual prediction: If state 1 is shorter and softer than state
2, then as the rightward force is increased, the probability of being in state 2
first increases, but then it decreases as the softer state 1 becomes more favored.
This nonmonotonic behavior is not seen in hair cell channels where the F2 term
is small and can be ignored (Corey and Howard, 1994); it would be interesting
if such nonmonotonic behavior were seen in other systems.

(A) No force (B) Force
) o F
Stiffness %, ‘St?teé_f‘ 6‘6‘6‘6 \ I' & :%St;!te. f\(\(\(ﬂm__b
| |
“, —'iIAxorf '“' —-{l Ax L——
| |

Stiffness xp > xy | St;f‘-‘ g G\ 6—\_1 PR 5‘?"— _/-\(\p_l Fy

Figure 5.3 Differences in compliance between structural states
(A) No force. (B) Force.The effect of force on the free energy is calculated in detail in Appen-
dix 5.1 and summarized in Equation 5.4.
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Rate Theories of Chemical Reactions

Forces also affect the rates of chemical reactions. In order to understand how
this occurs, we must first discuss theories of chemical reactions.
The simplest chemical reaction is the interconversion between two species

that satisfies
k d[E

This reaction is said to obey first-order kinetics because the rate of change depends
linearly on the concentration of the species. The constants of proportionality, k,
and k_; are called rate constants and they have units of s1. The solution is

N M

This equation says that the reactant (E,) approaches its equilibrium concen-
tration with an exponential time course. The time constant is (k; +k_, ). The prod-
uct (E,) also approaches its equilibrium concentration exponentially (with the
same time constant). Such exponential time courses, which are characteristic of
first-order reactions, were first measured in 1850 as changes in optical rotation
associated with the acid-induced hydrolysis of sucrose (Eyring and Eyring, 1963).

When the reaction described by Equation 5.5 reaches equilibrium, it is at
steady state with the forward and reverse reactions exactly balanced (d[E,]/dt
= 0). At equilibrium, we therefore have

b _[B]_, _ . T AG
P e

This shows that the equilibrium constant (K, defined in Equation 5.2 is
equal to the ratio of the forward and reverse rate constants. This makes sense,
because if the forward rate constant is increased, then the equilibrium con-
centration of product will also increase as expected for a larger equilibrium
constant. On the other hand, if Equation 5.7 is satisfied, then the reaction is at
equilibrium because Boltzmann'’s law is satisfied. If the free energy difference
between product and reactant, AG, depends on the force, then either the for-
ward or the reverse rate (or both) must depend on force.

The physical picture behind a first-order reaction is that it corresponds to a
very rapid (almost instantaneous) transition between two structural states, In
other words, the duration of the transition is very much shorter than the aver-
age lifetimes of the states (1/ k, for E; and 1/k_; for E,). How fast might the
transition be? Covalent chemical changes occur very rapidly, on the 0.1 picosec-
ond timescale of molecular vibrations (corresponding to optical wavenumbers

\ of ~1000 cm™). But global protein conformational changes occur much more
| slowly. The speed is ultimately limited by the speed of sound (Appendix 5.2),
| so the fastest relaxations of very rigid proteins have time constants of ~10 ps
| (see Problem 3.5). For more typical, softer proteins such as motor proteins,
: the relaxations are even slower, with time constants on the order of 10 ns (see
Example 2.5 and Figure 2.4D). Nevertheless, even a transition lasting 10 ns is



84 CHAPTER 5

a very short time compared to the lifetimes of structural states, which are typ-
ically 1 ms or longer.

Several properties of first-order reactions can be understood using the idea
that the reaction proceeds via a high-energy activated state, or transition state
= (Figure 5.4). Because the activated state has a free energy, G,, much greater than
that of the initial or final states, the probability that the protein will be in the
activated state is very low. The short-lived activated state accords with the tran-
sition itself being very rapid. Because the activated state occurs at an energy
maximum, it differs from a structural state in that it is not stable; We do not
expect to be able to crystallize a protein in one of its transition states.

The activated-state concept leads naturally to the idea that chemical reac-
tions can indeed be described using rate constants. To make this connection
requires two additional assumptions. First, it is assumed that the reactant (E;)
is in equilibrium with the activated state (E,). And second, it is assumed that
the activated state is equally likely to break down to reactant or product with
some rate A. By Boltzmann's law, the probability of being in the activated state
is [E,]/[E,] = exp[-(G,~ G,)/kT] and so the rate of formation of productis A[E,]
= A[E,lexp[G, - G,)/kT]. Thus the rate is linearly proportional to reagent con-
centration, [E,], as expected for a first-order reaction. The rate constant is

k=A exp[— %} AG,, =G, -G, (5.8)

A similar expression holds for the reverse reaction; the ratio, k,/k ; = Keq,
accords with the Law of Mass Action. Equation 5.8 is called the Arrhenius equa-
tion and the constant A is called the frequency factor, or pre-exponential factor.

The activated-state concept also accounts for the strong temperature depend-
ence of chemical reactions. Because the frequency factor, A, is not expected to
depend strongly on temperature, the Arrhenius equation predicts that the rate
constant depends on temperature according to ~exp(-AG,,/kT). This agrees

with the experimental results that biochemical reactions have strong temper-

Activated or
transition state
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Figure 5.4 The activated state State 2
The activated state corresponds to a position L L L
x1 Xa X2

(x,) along the reaction coordinate, intermediate

between the initial (x,) and final (x,) positions. Reaction coordinate
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ature dependencies. Typically, the rates of biochemical reactions double to
quadruple for every 10°C increase in temperature: We say that the Q,, is
between 2 and 4. Such Q108 imply that the enthalpy, AU,, of the transition state
is some 20 to 40 kT above the initial state (Appendix 5.2). Thus, as argued by
Arrhenius, the strong temperature dependence of chemical reactions supports
the concept of a high-energy activated state.

To predict the absolute rate of a biochemical reaction, a more detailed the-
ory is needed because the Arrhenius theory provides no information about the
frequency factor, A. Two such detailed theories are the Eyring rate theory and
the Kramers rate theory. Both require that the reaction coordinate, the param-
eter that measures the progression of the reaction, be specified. If a protein
changes overall length as a result of the E, — E, transition, then we could make
length the reaction coordinate, though many other reaction coordinates are
possible; indeed, the distance between any two atoms that move relative to one
another during the reaction could be used as a reaction coordinate. If the pro-
tein is subject to a force, then a natural reaction coordinate is the length of the protein
in the direction of the force.

In the Eyring rate theory, the reaction is assumed to correspond to the break-
down of a single quantum-mechanical vibration of the protein. In this case the
frequency factor is ~kT/h =6 x 102 s, where k1 is the Planck constant (Atkins,
1986). The absolute rate is then the frequency factor reduced by the exponen-
tial term. For example, a reaction with a rate constant of 10° s™! would have
an activation free energy (AG,,) of 22 kT. The Eyring theory is expected to apply
to covalent changes of proteins and their ligands. However, it is not expected
to apply to global conformational changes of proteins in which a large num-
ber of bonds are made and broken, because in this case the reaction does not
correspond to a single mode of vibration of the protein.

In the case of global protein conformational changes, a more physically real-
istic model is the Kramers rate theory. According to this model, the protein dif-
fuses into the transition state with a rate that is the reciprocal of the diffusion time

g 1 [AG AG
k=1 = |8Ya1 [m_a_lJ AG,, =G, -G (5.9
" T ¥ KT =P kT ! !

€ is an “efficiency factor” equal to the probability of making the transition when
at the transition state (Appendix 5.2). According to Kramers rate theory, the fre-
quency factor is approximately equal to the inverse of the relaxation time, 1 =
K/ (the other pre-exponential terms are close to unity). This makes intuitive
sense: We can think of the protein sampling a different energy level every T sec-
onds, because 7 is the time over which the protein’s shape becomes statistically
uncorrelated. The protein can react only when it attains the energy of the transi-
i tion state, and the probability of this occurring is proportional to exp(-AG,, /T).
The Eyring and Kramers rate theories represent two extreme views of the
mechanism of global conformational changes of proteins. In the Eyring model,
the transition state is like the initial state (Figure 5.5). A sudden, local chemi-
cal change (such as the binding of a ligand or the chemical change in a bound
ligand) creates a highly strained protein that then relaxes into a new stable con-
formation. The relaxation is along the quadratic energy curve and has time
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Figure 5.5 Eyring-like mechanism

(A) Energy diagram. (B) Monomolecular model. (C) Bimolecular model. The reaction coordi-
nate is the extent of opening or closing of the cleft. The shaded structures are the strained
transition states.

constant T = y/k. This formulation has been used to model the working stroke
of myosin (Eisenberg and Hill, 1978; see Figure 16.3): After myosin has bound
to actin in its pre-powerstroke state, the phosphate rapidly dissociates, leav-
ing the protein in a highly strained post-powerstroke state. The relaxation of
this highly strained state drives the sliding of the filaments and the shortening
of the muscle. If the filaments are prevented from sliding, the strained state
will maintain the tension in the muscle.

The energy profile associated with an Eyring-like protein conformational
change is analogous to that associated with a spectroscopic change. When a
small molecule absorbs light and undergoes an electronic change, the transi-
tion is drawn as a vertical line in accordance with the Franck-Condon princi-
ple, which states that the more massive nuclei take much longer to move than
the lighter electrons. Consequently, the newly formed state is strained and

—
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relaxes slowly (though still on the subpicosecond timescale) as the nuclei move
into their new stable positions. The analogous principle for proteins is that
global structural or “physical” changes of proteins are much slower than local
chemical changes, because structural changes are slowed by protein and sol-
vent viscosity. The fast local changes leave the protein in an unstable global

. conformation which then relaxes more slowly into a new stable state. (These
ideas are expanded in Figure 16.2.) The transition is not really vertical: it is actu-
ally a very steep parabola, with curvature appropriate for the high rigidity of
the local bonds.

In the Kramers view, the protein undergoes a global diffusion into the acti-
vated state. When a sufficiently large conformational change has been achieved,
the protein converts to the final state (Figure 5.6). This is reminiscent of the
mechanism postulated by Marcus to explain electrochemical reactions in solu-
tion (Marcus, 1996). In the extreme, the protein diffuses all the way to the final
state, which is then locked in by a subsequent chemical change (Figure 5.7). This
extreme case has been called a thermal ratchet mechanism on account of the
prominent role played by diffusion in reaching the transition state (Hunt et

' al., 1994; Peskin and Oster, 1995). The application of these ideas to motor pro-
: teins is discussed in Example 5.2. Of course, if the forward process is purely dif-
fusive, then the reverse is Eyring-like. However, it should be pointed out that
even in the Eyring-like mechanism, the activated state is also reached by a ther-

&)

Free
energy

(B)

O]

Figure 5.6 Marcus mechanism

(A) Energy diagram. (B) Physical model that gives the reaction profile.The reaction coordi-
nate is the position of the end of the lever. The shaded structure is the high-energy transi-
tion state,

&
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Figure 5.7 Kramers-like mechanism (thermal ratchet)

(A) Energy diagram. (B) Monomolecular model (C) Bimolecular model. The physical picture
is of a "foot-in-the-door” mechanism such that the global conformational change must be
completed before the structural change can occur. The reaction coordinate is the extent of
opening of the cleft or the gate. The shaded structures are the strained transition states.

mal fluctuation, just one that is more localized. The role of these different mech-
anisms in force generation by motor proteins is discussed in Chapter 16.

Effect of Force on Chemical Rate Constants

The activated-state concept makes specific predictions of how rate constants
depend on external force. If the protein structures are very rigid and the tran-
sitions E;— E, —E, are associated with displacements x;, x,, and x, in the direc-

il
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tion of the force, F, then the energies of the states will be decreased by-Fx,, Fx;,
and Fx,, respectively. This implies that

k =Aexpl:-—£a1;]—,%J=kf exP[—I%} (5.10)

where AG,; = G, - G, and Ax,, =x, - x,. An analogous expression holds for k_,.
Another way of writing this is to let Ax,, = 6(x, - x;), where 6 is the fraction of
the distance of the transition state toward the final state (Hille, 1992). Note that
the ratio of the forward and reverse rate constants must give the correct force
dependence for the equilibrium (Equations 5.3 and 5.7),

A useful way of thinking about the effect of force on the reaction rates is
that it tilts the free energy diagram of the reaction (Figure 5.8). If the dis-
placement of the activated state is intermediate between the initial and final
states (x; < x, < x,), then a negative external force (a load) will slow the reac-
tion, whereas a positive external force (a push) will accelerate the reaction.
However, if x, = x,—that is, if the transition state is reactant-like—then force
will have little effect on the forward rate constant, On the other hand, if X, =
x,—that is, if the transition state is product-like—then the force will have lit-
tle effect on the reverse rate constant. If the displacement of the activated state
is not intermediate, it is even possible that a load could actually increase the
forward rate constant (if x, < x,), though in this case the backward rate would
be increased even more.

| Example 5.2 Thermal ratchet models for motor proteins

| Consider a hypothetical motor protein with k = 4 PN/nm and radius 3 nm

| (Example 2.4) and where the total free energy available from ATP hydrol-

 ysis at physiological ATP, ADP, and P, concentrations is 25 kT, The drag

 coefficient, v, is 60 pN's:m™! (see Table 2.2), and the relaxation time is ~15

| 18, According to the Kramers theory (Equation 5.9), it would take about

| 10's to pick up 20T of energy by a purely diffusive Pprocess. But for

myosin, the complete ATP hydrolysis reaction only takes about 0.05 s

| (Chapter 14). Therefore, if the ATP hydrolysis reaction has an efficiency of

- 80% (20 kT/25 kT), such a diffusive step could not be on myosin’s reaction

- pathway. This was the argument used by Eisenberg and Hill (1978) to rule

| outa Kramers-like mechanism postulated by A. E Huxley (1957). How-

| ©ver, amore reasonable efficiency for myosin is 50% (Chapter 16), corre-

| sponding to an energy of 12.5 kT To pick up this amount of energy would |

| take only 7 ms, less than the time that myosin spends detached from the

actin filament. Thus the kinetics of myosin is not inconsistent with a
Kramers-like mechanism after all,

g
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Figure 5.8 Force tilts the energy profile (A)
(A) The energy profile in the presence of nega-
tive (dashed) and positive (dotted) external
forces. The external force is equal to the slope
of the tilt shown in (B). A negative external
force is a load that slows down the reaction. A
positive external force is a push that acceler- EG
ates the reaction. E
1 1 1
x1 Xa X2
Displacement
(B) _em—F<0
el F=0
"""""""""""" F>0

The activated-state concept makes several predictions for how forces affect
the rates of chemical reactions. It is a challenge for experimentalists to test these
predictions. For example, the rate constant for the opening of the transduction
channels in hair cells is strongly force dependent, but that for closing is not
(Corey and Hudspeth, 1983). This suggests that the transition state is more like
the open state: The gate has to move almost all the way towards its open posi-
tion before the conductance becomes significant (Howard et al., 1988). The rate
constant for the opening of voltage-dependent ion channels is also more volt-
age dependent than the closing (Hille, 1992). Another example of force-depend-
ent rate constants is the detachment of myosin from actin. Negative force (load)
slows down the detachment rate (Finer et al.,, 1994), suggesting that the tran-
sition state is associated with the movement towards the post-powerstroke
position. Another example is the unfolding and folding of titin (Erickson, 1994;
Kellermayer et al., 1997; Rief et al., 1997; Tskhovrebova et al., 1997), illustrated
in Example 5.3.

In general, the transition state could correspond to a distortion of the initial
state in any of three directions, not just in the direction corresponding to the
final state (Lecar and Morris, 1993). In this general case, the rate constant will
be affected by any force that has a component in the direction of the transi-
tion state. This can be appreciated by making an analogy to a door handle or
a latch, where the transition state (handle down) corresponds to movement
in a direction perpendicular to the direction of opening of the door (Figure 5.9).
An example of this occurs with motor proteins: Under certain circumstances,
the speed of movement of kinesin along a microtubule can be accelerated by

—
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force microscope  An atomic force micro-

| scope can be used fo reversibly unfold immunoglobulin modules, ~100 amino acid

domains found in a variety of proteins including the muscle protein titin. This is shown

| in Figure A, where the one end of the protein is attached to a solid support, and the other
end is attached to the tip of an AFM and pulled. The unfolding rate depends only ]

- weakly on force (e-fold increase per 16 pN), indicating that the transition state for unfold-

| ing is of similar length to the folded state (Ax = kT/F = 0.25 nm). On the other hand, the

| folding is strongly dependent on force (e-fold slowing per 1.6 pN). These reslts support

 the energy profile shown in Figure B: A small strain of 0.25 nm, about 5% of the length of

 the folded protein (5.1 nm), is enough to completely destabilize the structure and lead to

~ unfolding. But the folding of the protein requires the formation of a nearly fully folded

| transition state. The free energies in Figure B are calculated from the rate constants using |

 Eyring rate theory (though this may not be valid, as argued above). The abbreviations

 in the figure are: N = native state, A = activated state, CD = compact disordered state,

- and ED = extended state (Carrion-Vazquez et al., 1999).

N

N :} cb ED—

Ax=0 025nm o ' 28.4nm

| (After Carrion-Vazquez et al., 1999))

forces perpendicular to the direction of motion (Gittes et al., 1996). Thus it is
important to realize that force is a vector quantity and that force will couple to
a reaction whenever it has a component that is in the direction of the reaction
pathway. In the most general case, the reaction pathway and its force depend-
ence could be very complicated. It could involve a highly convoluted sequence

_—
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Figure 5.9 A molecular latch
The transition state is stabilized by a force perpendicular to the direction of motion.

of steps that more closely resembles the unlocking of a door or even the unty-
ing of a knot than the passage over a single energy barrier.

Bimolecular Reactions

A bimolecular reaction is one in which two molecules come together in order
to react. The simplest case is

ki
A+B ﬁAB @ =k [A]B] - k_4[AB] (5.11)

k, is the association rate constant, also called the on-rate; it has units M.
and is referred to as a second-order rate constant. k_, is the dissociation rate
constant, or off-rate; it has units s™%. The ratio, K = k_,/k,, is the dissociation
constant; it has units M and is the reciprocal of the equilibrium constant.

Association Rates

Diffusion sets an upper limit on the association rate constant. By solving the
diffusion equation in three dimensions, it can be shown that the rate constant
for diffusion-limited collisions between spheres of equal diameter is ~8 x
10° M1.s! (Appendix 5.3). If one of the spheres is larger than the other, the rate
constant will be even larger. If one of the spheres, the target, is thought of as a
fixed point, then the collision rate constant is ~2 x 10° M™%,

_
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Only the very fastest atomic and diatomic reactions have on-rates that
approach these diffusion-limited collision rate constants. Typical ligand-
protein on-rates are in the range of 10° to 10* M1s! (e.g, pyruvate, H,0,, CO,,
ACh, GTP, tRNA; Fersht, 1985; ATP, Chapter 14). The fastest protein—protein
on-rates are in the range 10° to 10" M.s™1: Examples include the polymeriza-
tion of actin and tubulin (Chapter 10) and the binding of motors to their fila-
ments (Chapter 14).

Itis not surprising that the measured on-rates for protein reactions are less
than the diffusion-limited rate constants that describe the collision of spheres.
The reason is that the binding of ligands to proteins and proteins to proteins
is stereospecific, meaning that it depends on the precise position and orien-
tation of the reacting species. These steric considerations lead to a reduction in
the diffusion-limited collision rate. The reduction is by a factor of ~(s/2R)* (Doi,
1975; Bell, 1978; Berg and von Hippel, 1985; Appendix 5.3), where s is the posi-
tional precision and 2R is the diameter of the binding species (~1 nm for a lig-
and, ~6 nm for a protein). If the positional precision is 1A (as judged from the
crystal structures of proteins in which the atoms typically have root-mean-
square fluctuations of 0.3 to 0.5 A; Creighton, 1993), these steric considerations
reduce the diffusion-limited on-rate by ~10*-fold for a ligand and up to ~107-
fold for a protein. But now the measured on-rates are too high! This suggests
that a more appropriate value for the positional precision is 5-10 A, similar to
the Debye length describing the screening of electrostatic forces by ions. Thus
it is likely that electrostatic (Schurr, 1970a,b; Berg and von Hippel, 1985; Gilson
et al., 1994) and other (Northrup and Erickson, 1992) long-range forces accel-
erate on-rates.

Michaelis-Menten Equation

The bimolecular equation is very important in biochemistry. In enzyme kinet-
ics we can think of A being the enzyme (E), B being the substrate (S), and AB
being the intermediate that breaks down into enzyme plus product (P):

k-
E+S—ES-LE+P [E]+[ES]=[E/] (5.12)
ko

Often, the substrate, also called the reagent, is well in excess of the enzyme,
in which case the steady-state rate of product formation is

d[p
Rate < ALY/t s ko=k, Ky=Xath

= 5.13
E] = Xy+s RO

(Appendix 5.4). This is the Michaelis-Menten equation, and Ky is the
Michaelis-Menten constant. k_,, is the maximum rate per enzyme molecule and
Ky, is the concentration of substrate for which the rate is half maximal. If ES
is in equilibrium with E and S (k_; >> k;), then the reaction is said to follow a

Michaelis—-Menten kinetic mechanism. In this case, the Michaelis-Menten con-

;—
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stant is equal to the dissociation constant K, =k ,/k;, and the half-maximal rate
occurs when the enzyme is 50% occupied by substrate. Ifk , <<k, the reaction
is said to follow a Briggs-Haldane mechanism. In this case, the Ky is the sub-
strate concentration at which the enzyme spends half its time waiting for the
substrate to bind.

Protein Complexes

Another important application of the bimolecular equation (Equation 5.12) is the
case where the complex AB is an active species that catalyzes another reaction

k C
A+B=AB ¢r (5.14)
k4 D

For example, AB might be a motor (A) walking down a filament (B) catalyz-
ing the hydrolysis of ATP (C) to products (D) with some rate constant 7. Or
AB might be an active signaling complex that in turn activates another mol-
ecule or catalyzes the formation of a messenger molecule. Or it might be an
active transcription factor. The difference between this scheme and the
Michaelis-Menten scheme is that the complex can catalyze multiple additional
reactions that do not necessarily lead to the dissociation of the complex AB.
The solution is given in the Appendix.

Cyclic Reactions and Free Energy Transduction

If we permit the reverse reaction to occur, then the Michaelis-Menten scheme
becomes a cyclic reaction

k1 k:
E+S—2ES—=E+P (5.15)
k1 kg
A general cyclic reaction (an n-cycle) is
bt ke kn
Ei=E=.E,=E (5.16)
kg ko ket

where we have absorbed the concentration of [S] into the rate constant so k;*
‘s now a first-order rate constant. At steady state, the average rate of flow of
substrate through the reaction, the flux, is given by

ki|Ei]—k-i[Ein
[ ][Et][ | (5.17)

Note that the flux is the same at each step; otherwise, there would be build-up
of one of the species, confradicting the steady-state assumption. If we define

Flux =

el -
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the transition E, — E; as the completion of a cycle, then the flux is equal to
the net number of complete cycles per second.

If the reaction is at equilibrium, then the average flux equals zero (though
there will always be fluctuations in the flux just as there are thermal fluctua-
tions in the position of a particle). This is a consequence of the Principle of
Detailed Balancing;: If a system in which several chemical reactions take place
is at equilibrium, then each of the individual reactions is separately at equi-
librium. The principle follows from Boltzmann's law because, at equilibrium,
the ratio of the concentrations of the consecutive states, [E,,;]/[E;], depends
only on the relative energies of the two states and not on the absolute reac-
tion rates. Therefore, the ratio remains unchanged if we “freeze out” all the
other transitions except those between the two states in question. In this case
the steady-state condition implies that k[E;] = k_[E,, ], and so the flux is zero.
This corollary of Boltzmann's law is also called the Principle of Microscopic
Reversibility because at equilibrium a reaction is equally likely to be going
in the forward or reverse direction. Zero flux at equilibrium means that there
can be no perpetual motion machines, Conversely, if the average flux is zero,
then each step is at equilibrium (because it satisfies Boltzmann’s law, Equation
5.7) and thus the entire system is in equilibrium.

Another consequence of equilibrium is that the ratio of the products of the
forward and reverse rate constants is unity

E[E] [E]_K[S1k Kk, K[Sksks.k,
‘EZ

1=—=

[E][Es] [E] K ko Ku[P] Kikokgek_,[P]

Conversely, if this ratio is unity, then the reaction is in equilibrium (this follows
by writing k;/k_; = [E;,;]/[E;] + flux-([E, ]/[E,])). Thus there are several neces-
sary and sufficient conditions for a cyclic reaction to be in equilibrium.

The steady-state flux through a cycle can be solved in terms of the rate con-
stants using analytical methods (Hill, 1989) or matrix-inversion numerical
methods (Press, 1997). If there are many steps, then the general solution is a
complicated function of the rate constants. However, if each step is irreversible,
then there is a particularly simple formula for the steady-state flux: The aver-
age duration of one cycle (1/flux) is the sum of the average durations of each
of the steps: (rate)™ = (k,[S])? + (k)™ + - + (k) or

5] | 1 k
Flux = kca [— = — K,, =—cat
‘ KM +[S] kcat k2 kn M kl

‘ A cyclic reaction that has a nonzero flux is an example of a process that is at
} steady state but not at equilibrium, A specific example is a 2-cycle with k; = 2
|
|

X105M sk, =k, =157, k,=1x105M"Ls7, [S] = [P] = 1 uM. The flux is
equal to 0.2 s™. Evidently, the steady state is maintained by the replenishment
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of substrate molecules, which provides an energy source to maintain the sys-
tem away from equilibrium.

The energy to drive a cyclic chemical reaction comes from the change in free
energy associated with converting one molecule of 5 to a molecule of P

S
AG‘E—)P'_'AGD'*';CT]Il[—P—]:kT]n K =kTln [P] [ eq]

[S ] Keq [P eq] [S]

where AG' is defined as the standard free energy, the difference in free energy
when the substrate (or substrates) and product (or products) are both in their
standard states (Appendix 5.5). Because the standard state has both the sub-
strates and the products at 1 M concentration, another way to view the stan-
dard free energy is that it is the free energy associated with the reaction when
all the reactants are at 1 M concentration. Note that the free energy of a reac-
tion is not really dependent on the standard free energy, but rather, it depends
on the extent to which the substrates and products are out of equilibrium. For
example, the standard free energy for the hydrolysis of ATP is —54x 1072 ], but
at typical cellular concentrations of ATP, ADF, and P, (1 mM, 10 uM, and 1 mM,
respectively) the free energy is even more negative, ~101 X 10721 J (Chapter 14).
However, if the ATP concentration were 1 aM (107® M) and the ADP and P,
concentrations were each 100 mM, then the free energy would have a similar
magnitude but would be of opposite sign (~+100 x 10721]). In this case we could
view ADP, rather than ATP, as the energy source.

If a reaction is coupled to movement, such as a motor moving along a fila-
ment, then the free energy of the reaction will be affected by an external force.
If one cycle results in a net displacement through distance Ax, then

(5.18)

AGs.1» =Ac°-krln%—F-Ax 5.19)
Because the substrate and product molecules are free in solution and so are not
affected by a force, AG? is independent of force. The force at which the free
energy change is zero is the equilibrium force, F = (AG? - kTIn[S]/[P])/Ax.
When F = F,,, the free energy change is zero and the reaction is at equilibrium.
The work done by the reaction is w = FAx, which has a maximum value at equi-
librium equal to F, Ax = AG? ~kTIn[S]/[P]. At equilibrium the flux is zero and
so the velocity of movement, v = flux-Ax, is also zero. The equilibrium force is
also the reversal force. It is the force about which the velocity changes sign;
when F <F, the velocity is positive, whereas for F > F,,, the velocity is neg-
ative.

For small changes in force about the equilibrium force, I(F - Peq)Axl<< kT,
the velocity will depend linearly on (F - F,,). But for larger forces, the more
common case, the effect of force on the velocity is more complicated. To deter-
mine how the velocity depends on force, the force dependencies of all the rate
constants need to be specified, and the steady-state solution for the flux solved

—————
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Figure 5.10 Force-velocity curves

(A) Families of velocity curves, v(F), obtained by varying a single force-sensitive rate con-
stant. (B) Nonmonotonic velocity curve obtained if the cycle has a small force-sensitive
backward step followed by a large force-sensitive forward step.

in terms of these rate constants. Even for a 2-cycle with only one force-depend-
ent rate constant, the velocity can depend on the force in a number of qualita-
tively different ways (Figure 5.10A). If there are two force-dependent steps,
then the force—velocity curve can be even more interesting. Indeed, the speed
need not even be monotonic: If there is a small backward step followed by a
large forward step, then the speed can be nonmonotonic with a small load
increasing the speed and a large load eventually decreasing it (Figure 5.10B).

Summary

Forces can influence the rates and equilibria of chemical reactions. If a pro-
tein has two different structural states, then at equilibrium the probability of
finding it in one of these states is related to the difference in free energy accord-
ing to Boltzmann’s law. If work is done on the molecule as a result of the inter-
conversion between the states, then the difference in free energy is altered and
the equilibrium is shifted toward the state most stabilized by the force. The
change in equilibrium could be due to a change in the forward rate constant,
to a change in the backward rate constant, or both.

Different kinetic models make different predictions of how force affects rates
of reactions. In Eyring-like models, highly localized conformational changes
of the initial state occur prior to and drive slower global conformational
changes into the final state. Because there is little distortion of the protein in
the transition state, little work will be done on it by an external force, so the
rate constant will not depend strongly on force. On the other hand, in Kramers-
like models, global conformational changes of the initial state occur prior to
more localized changes that lock the protein into the final state. In this case,

—.
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the transition state is highly distorted, and the rate constant will depend
strongly on force.

At equilibrium the forward and reverse reaction rates are the same. How-
ever, if the interconversion between different states of a protein is coupled to
a source of chemical energy (the breakdown of a chemical substrate that is not
at equilibrium with its product), then it is possible that the interconversion rate
in one direction is greater than that in the other. In this case there is a flux,
which, if coupled to a displacement, will lead to movement of the enzyme. If
the chemical free energy associated with the conversion of a substrate mol-
ecule to product is greater than the mechanical work done by an external force,
then the flux will continue even against the mechanical load. In this way, chem-
ical reactions can generate force.

Problems

5.1 Suppose that one structural state, the T state (“tense”), is 1% denser than
the other state, the R state (“relaxed”). How could the different densities
be measured? If the molecular mass is 100 kDa, what is the volume dif-
ference? At what pressure would you expect the equilibrium between the
states to be affected? ’

5.2 Suppose that one could pull directly on the gate of an ion channel, and that
the gate swings through 2 nm as it goes from the closed to the open posi-
tion. If, in the absence of force, the channel spends half its time open and
half its time closed, how much force is needed to increase the open prob-
ability to 0.9?

5.3 Suppose that a protein has a stiffness of 2 pN/nm in state 1 and a stiffness
of 1 pN/nm in state 2, but that the two states have the same resting length
(the length in the absence of a force). If there is initially a very low proba-
bility of being in state 2, how much force is needed to increase the open
probability e-fold?

5.4* Suppose that the ratio of substrate to product in a mixture is ten times
greater than the ratio at equilibrium. How much mechanical work could
be obtained by converting one molecule of substrate to one molecule of
product? Suppose that you have a total of N substrate plus product mol-
ecules and that the equilibrium ratio is 1. What is the total amount of
mechanical work that could be done with the mixture before it becomes
completely spent?

*More difficult

_
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CHAPTER

Polymer Mechanics

rods whose lengths are much greater than their diameters, Slender rods

are good models for biological polymers such as DNA and the protein fil-
aments that make up the cytoskeleton. I ask: How do slender rods bend in
response to mechanical and hydrodynamic forces? How much force is needed
to buckle a slender rod? How quickly will it bend or buckle? And how much
does the shape of a slender rod fluctuate in response to thermal forces?

Because the cytoskeletal filaments are the most important structural elements
within cells, knowing the forces required to bend and buckle slender rods should
allow one to model the mechanical properties of cells. Such cellular models are
the starting point for modeling the mechanical properties of tissues and organs,
In this way, the theory of slender rods developed here allows us fo relate the
mechanical properties of individual molecules to the mechanical properties of
cells and tissues.

After discussing the statics and dynamics of more rigid polymers such as actin
filaments and microtubules, I turn to the mechanics of flexible polymers such as
DNA and unfolded protein chains. We arrive at the interesting notion of an
entropic spring: Even a completely unstructured polymer chain resists being
straightened because of its tendency to return to its more disordered configura-
tions. Thus a very flexible polymer behaves like a spring and we say it has
entropic, or rubber-like, stiffness. The entropic stiffness of segmented proteins
or even random polypeptides is remarkably large. We arrive at the counterin-
tuitive result that the entropic stiffness due to stretching a disordered domain
may be as high as the enthalpic stiffness due to bending a well-ordered domain;
This finding must be incorporated into our thinking about the molecular mechan-
ics of motors and other proteins.

" [ This chapter is about the mechanical properties of slender rods—that i,




