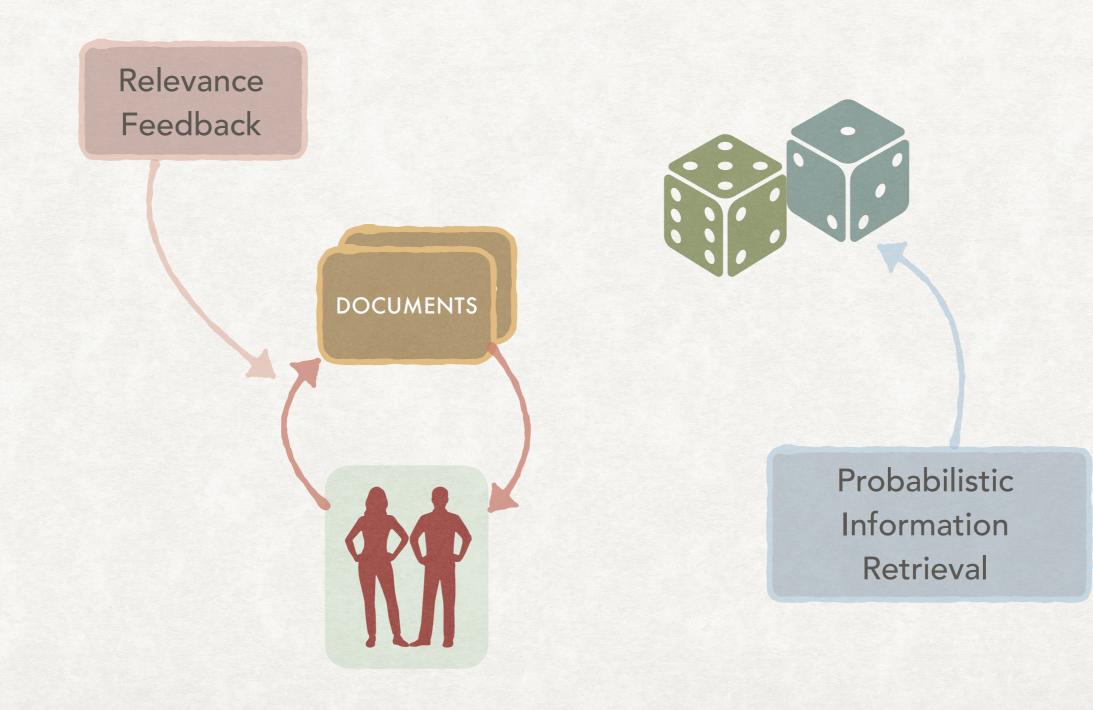
INFORMATION RETRIEVAL

Luca Manzoni Imanzoni@units.it

Lecture 6

LECTURE OUTLINE

* PROBABLY CONTAINS PROBABILITIES



RELEVANCE FEEDBACK

WHAT IS RELEVANCE FEEDBACK RECEIVING FEEDBACK FROM THE USER

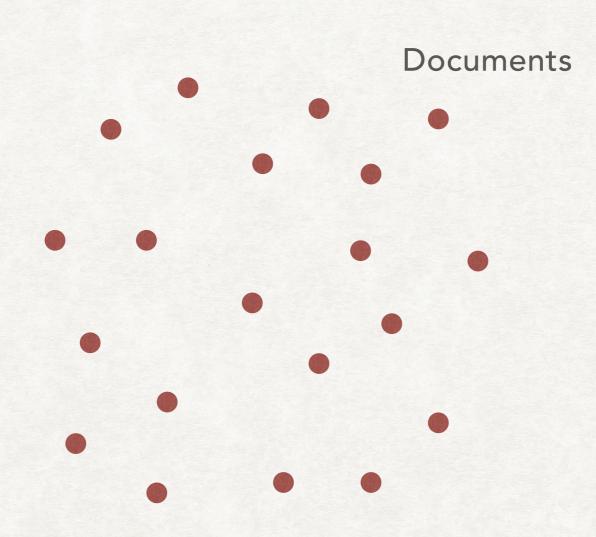
- The main idea is to involve the user in giving feedback on the initial set of results:
- The user issues a query.
- The system returns an initial set of results.
- The user decides which results are relevant and which are not.
- The system computes a new set of results based on the feedback received by the user.
- If necessary, repeat.

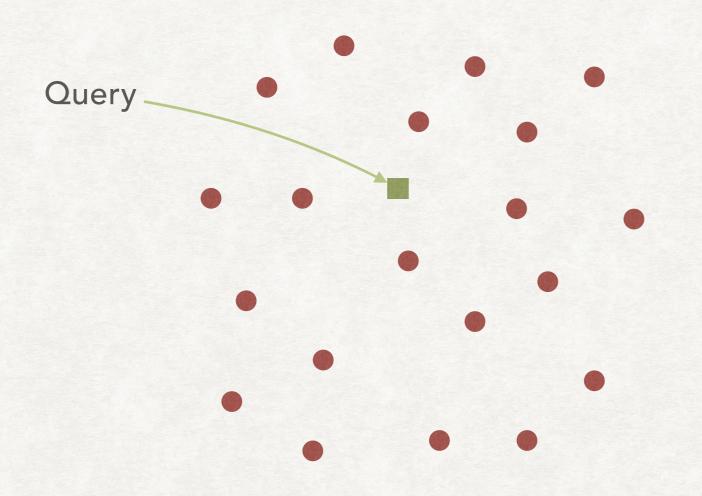
WHAT RELEVANCE FEEDBACK CAN SOLVE

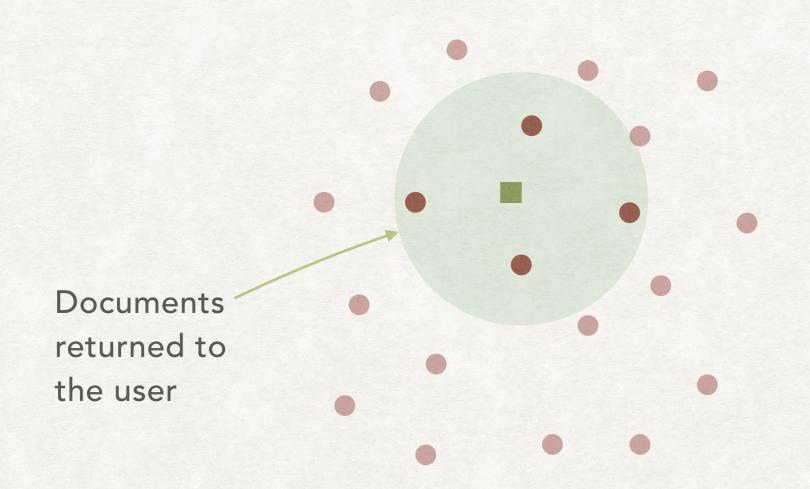
- Relevance feedback can help the user in refining the query without having him/her reformulate it manually.
- It is a local method, where the initial query is modified, in contrast to global methods that change the wording of the query (like spelling correction).
- Relevance feedback can be ineffective when in the case of
 - Misspelling (but we have seen spelling correction techniques).
 - Searching documents in another language.
 - Vocabulary mismatch between the user and the collection.

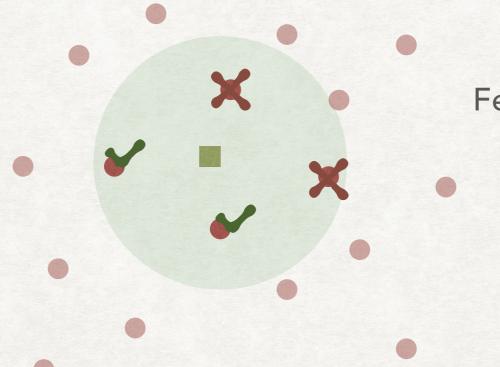
THE ROCCHIO ALGORITHM FEEDBACK FOR THE VECTOR SPACE MODEL

- It is possible to introduce relevance feedback in the vector space model
- We will see the Rocchio Algorithm (1971)
- It was introduced in the SMART (System for the Mechanical Analysis and Retrieval of Text) information retrieval system...
- ...which is also where the vector space model was firstly developed









Feedback from the user

ROCCHIO ALGORITHM: THEORY

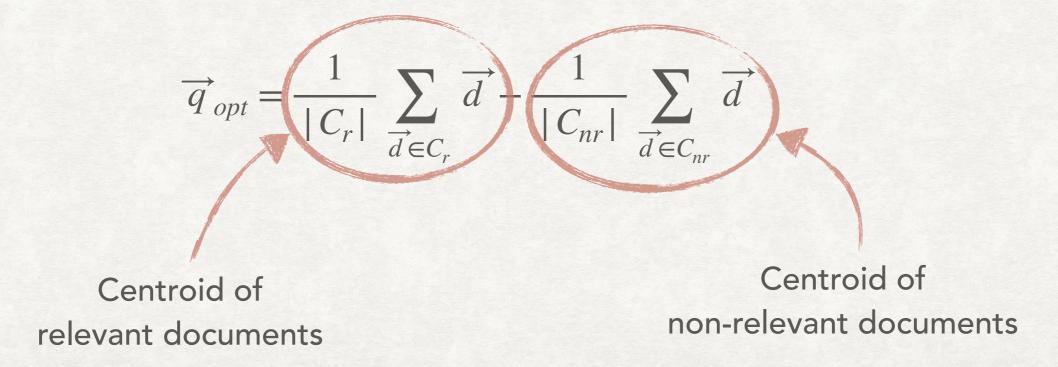
- The user gives us two sets of documents:
 - The relevant documents C_r
 - The non-relevant documents C_{nr}
- We want to maximise the similarity of the query with the set of relevant documents...
- ...while minimising it with respect to the set of non-relevant documents.

ROCCHIO ALGORITHM: THEORY

This can be formalised as defining the optimal query \vec{q}_{opt} as:

$$\overrightarrow{q}_{opt} = \arg\max_{\overrightarrow{q}}[\sin(\overrightarrow{q}, C_r) - \sin(\overrightarrow{q}, C_{nr})]$$

If we use cosine similarity, we can reformulate the definition as:



ROCCHIO ALGORITHM

However, we usually do not have knowledge of the relevance of *all* documents in the system. Instead we have:

- a set D_r of known relevant documents
- a set D_{nr} of known non-relevant documents

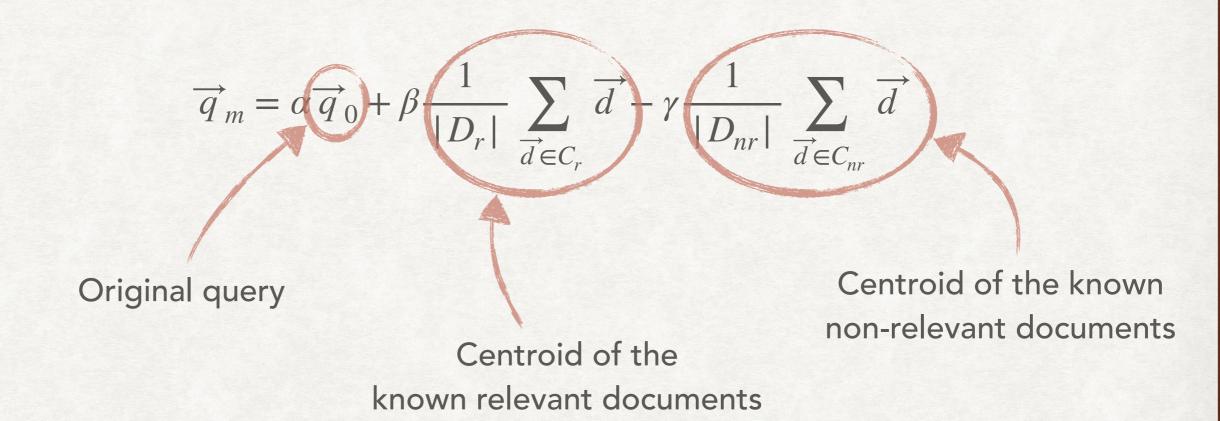
We also have the original query \vec{q}_0 performed by the user.

We can perform a linear combination of:

- The centroid of D_r
- The centroid of D_{nr}
- The original query \vec{q}_0

ROCCHIO ALGORITHM

In the Rocchio algorithm the query is updated as follows:



If one of the components of \overrightarrow{q}_m is less than 0, we set it to 0 (all documents have non-negative coordinates)

ROCCHIO ALGORITHM SELECTING THE WEIGHTS

- We need to select reasonable weights α , β , and γ :
- Positive feedback is more valuable than negative feedback, so usually $\gamma < \beta$.
- Reasonable values might be $\alpha = 1$, $\beta = 0.75$, and $\gamma = 0.15$.
- It is also possible to also have only positive feedback with $\gamma = 0$.

PSEUDO-RELEVANCE FEEDBACK NOW WITHOUT THE USER

- It is possible to perform a relevance feedback without the user...
- ...even before he/she receives the results of the first query.
- Perform the query \overrightarrow{q} as usual.
- Consider the first k retrieved documents in the ranking as relevant.
- Perform relevance feedback using this assumption.
- Might provide better results, but the retrieved documents might drift the query in an unwanted direction.

PROBABILISTIC INFORMATION RETRIEVAL

PROBABILISTIC IR MAIN IDEAS

- If we know some relevant and some non-relevant documents for a query we can estimate the probability of a document to be relevant given the terms it contains.
- This is the main idea of a probabilistic model of IR: estimate probabilities of a document being relevant with respect to a query based on its content.
- There will be some assumptions to simplify the computation of this probability...
- ...and some estimates: we do not known most of the probabilities involved!

A QUICK REVIEW BASICS OF PROBABILITY THEORY

- The probability of A and B can be written as a conditional probability:
 P(A, B) = P(A | B)P(B) = P(B | A)P(A)
- The probability of B and A plus the probability of B and not A is simply the probability of B:
 P(B) = P(B, A) + P(B, A)

• The odds of an event A is defined as: $O(A) = \frac{P(A)}{P(\overline{A})} = \frac{P(A)}{1 - P(A)}$

A QUICK REVIEW BASICS OF PROBABILITY THEORY

• The classical Bayes' rule is:

•
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} = \frac{P(B \mid A)}{\sum_{X \in [A,\overline{A}]} P(B \mid X)P(X)} P(A)$$

- Which can be interpreted as:
 - Given the prior probability P(A) of A...
 - ...how we can update it based on the evidence B, thus obtaining a posterior probability P(A | B).

AND THE BASIS FOR PROBABILISTIC IR

For each document we consider the random variable $R_{d,q}$ (or R for short) representing wether a document is relevant to not.

We want to rank documents according to their probability of being relevant to a given query q:

 $P(R = 1 \mid d, q)$

Probability of having something relevant

Given that the document is dand the query is q

1/0 LOSS AN THE OPTIMAL DECISION RULE

The simples case:

- Penalty when we retrieve a document that is not relevant.
- Penalty when we miss a relevant document.
- The penalty is the same in all cases, there are no costs associated to retrieving documents.

If we need to rank documents then we rank them by decreasing P(R = 1 | d, q).

If we need to return a set of documents we return all then ones where P(R = 1 | d, q) > P(R = 0 | d, q).

It can be proved that this choice minimise the expected loss under the 1/0 loss.

RETRIEVAL COSTS MORE THAN THE 1/0 LOSS

We can also have a more complex model for costs:

- C_1 is the cost of retrieving a relevant document.
- C_0 is the cost of retrieving a non-relevant document

Then to select the document to be retrieved d we must the one where for all *non-retrieved* documents d' it holds that:

 $C_1 \cdot P(R = 1 \,|\, d, q) + C_0 \cdot P(R = 0 \,|\, d, q) \le C_1 \cdot P(R = 1 \,|\, d', q) + C_0 \cdot P(R = 0 \,|\, d', q)$

Weighted cost of retrieving d

Weighted cost of retrieving d'

THE BINARY INDEPENDENCE MODEL

THE BINARY INDEPENDENCE MODEL OR "BIM"

Binary

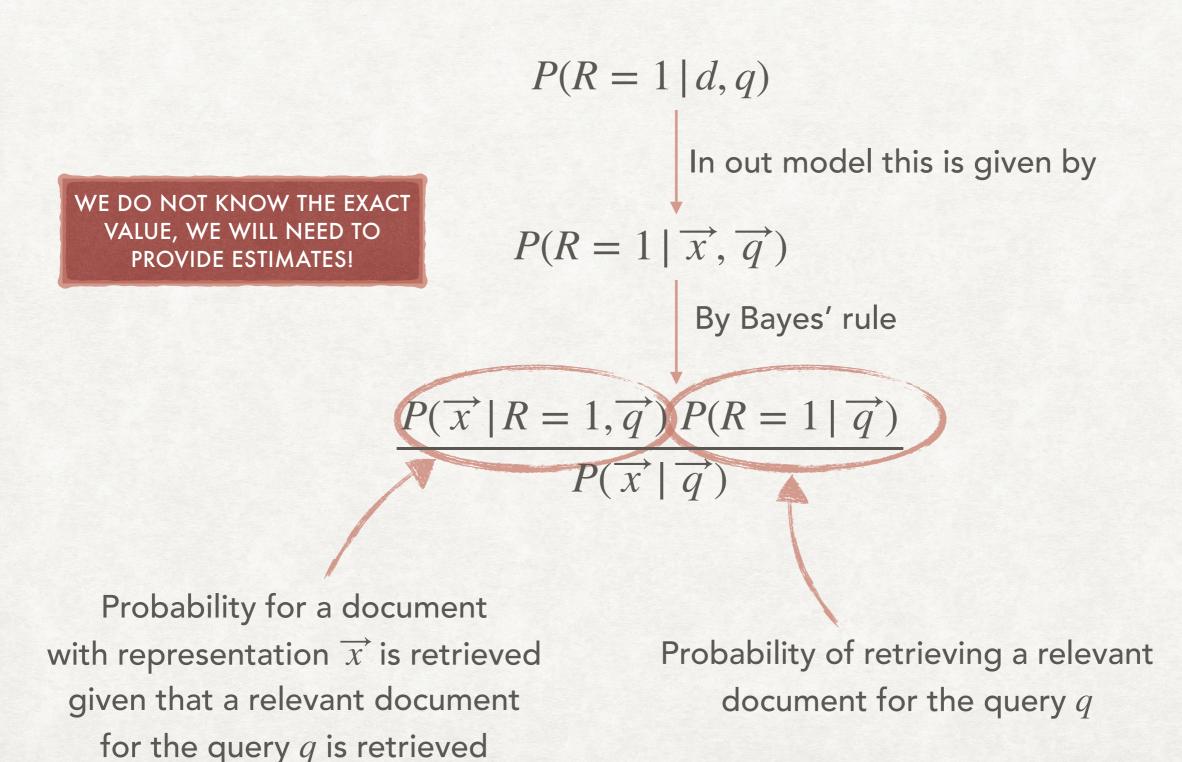
Or "Boolean". Each document (and query) is represented as a vector $\vec{x} = (x_1, ..., x_M)$ where $x_i = 1$ if the term is present and $x_i = 0$ otherwise

Independence We assume that all terms occurs in a document independently.

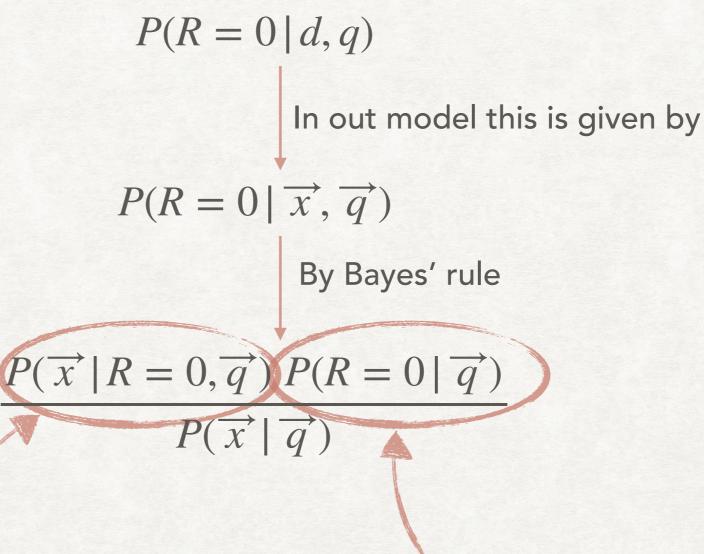
Not a correct assumption, but "it works"

Additionally, we assume the relevant of a document to be independent on the relevance of other documents. This is not true in practice: e.g., duplicate and near-duplicate documents are not independent.

ESTIMATION OF THE PROBABILITY



ESTIMATION OF THE PROBABILITY



Probability for a document with representation \overrightarrow{x} is retrieved given that a non-relevant document for the query q is retrieved

Probability of retrieving a **non**-relevant document for the query *q*

DO WE REALLY NEED TO KNOW THE PROBABILITY? FOR RANKING ODDS ARE SUFFICIENT

For the purpose of ranking, we can use a monotone function of the probability. For example, the odds of R given \vec{x} and \vec{q} :

$$O(R \mid \vec{x}, \vec{q}) = \frac{P(R = 1 \mid \vec{x}, \vec{q})}{P(R = 0 \mid \vec{x}, \vec{q})}$$

$$(CAN WE SIMPLIFY IT FURTHER?)$$

$$\frac{P(\vec{x} \mid R = 1, \vec{q}) P(R = 1 \mid \vec{q})}{P(\vec{x} \mid \vec{q})}$$

$$\frac{P(\vec{x} \mid R = 0, \vec{q}) P(R = 0 \mid \vec{q})}{P(\vec{x} \mid \vec{q})}$$

$$(CAN WE SIMPLIFY IT FURTHER?)$$

$$\frac{P(\vec{x} \mid R = 1, \vec{q}) P(R = 1 \mid \vec{q})}{P(\vec{x} \mid R = 0, \vec{q}) P(R = 0 \mid \vec{q})}$$

RANKING AND PROBABILITIES

$$\frac{P(\overrightarrow{x} | R = 1, \overrightarrow{q})}{P(\overrightarrow{x} | R = 0, \overrightarrow{q})} \frac{P(R = 1 | \overrightarrow{q})}{P(R = 0 | \overrightarrow{q})}$$

Depends on the document

The same for all documents

Does not affect the ranking

We can remove it

We now have to estimate:

$$\frac{P(\overrightarrow{x} | R = 1, \overrightarrow{q})}{P(\overrightarrow{x} | R = 0, \overrightarrow{q})}$$

USING THE BIM

$$\frac{P(\overrightarrow{x} | R = 1, \overrightarrow{q})}{P(\overrightarrow{x} | R = 0, \overrightarrow{q})}$$

We can now employ the independence assumption: each of the terms is assumed to appear independently from the others

$$\frac{P(x_1 | R = 1, \overrightarrow{q})}{P(x_1 | R = 0, \overrightarrow{q})} \times \frac{P(x_2 | R = 1, \overrightarrow{q})}{P(x_2 | R = 0, \overrightarrow{q})} \times \dots \times \frac{P(x_M | R = 1, \overrightarrow{q})}{P(x_M | R = 0, \overrightarrow{q})}$$

Which means the the value to estimate is now:

$$\prod_{i=1}^{M} \frac{P(x_i | R = 1, \overrightarrow{q})}{P(x_i | R = 0, \overrightarrow{q})}$$

SPLITTING UP FURTHER

$$\prod_{i=1}^{M} \frac{P(x_i | R = 1, \overrightarrow{q})}{P(x_i | R = 0, \overrightarrow{q})}$$

Each x_i can only assume two values: 0 if the i^{th} term is not present 1 if the i^{th} term is present

$$\prod_{i:x_i=1} \frac{P(x_i = 1 \mid R = 1, \overrightarrow{q})}{P(x_i = 1 \mid R = 0, \overrightarrow{q})}$$

$$\prod_{i:x_i=0} \frac{P(x_i=0 \mid R=1, \overrightarrow{q})}{P(x_i=0 \mid R=0, \overrightarrow{q})}$$

For the terms in the document

For the terms not in the document

HOW MANY PROBABILITIES TO ESTIMATE?

$$\prod_{i:x_i=1} \frac{P(x_i=1 | R=1, \vec{q})}{P(x_i=1 | R=0, \vec{q})} \cdot \prod_{i:x_i=0} \frac{P(x_i=0 | R=1, \vec{q})}{P(x_i=0 | R=0, \vec{q})}$$

For each term we need only to estimate four probabilities:

	Document relevant	Document not relevant
Term present	<i>p</i> _i	u _i
Tern absent	$1 - p_i$	1 – <i>u_i</i>

SIMPLIFYING FURTHER

$$\prod_{i:x_i=1} \frac{p_i}{u_i} \cdot \prod_{i:x_i=0} \frac{1-p_i}{1-u_i}$$

Let us assume that all query terms **not** in the query appears equally in relevant and non-relevant documents. That is, $p_i = u_i$ when $q_i = 0$.

We can remove the factors for all terms not in the query, obtaining:

$$\prod_{i:x_i=1;q_i=1} \frac{p_i}{u_i} \cdot \prod_{i:x_i=0;q_i=1} \frac{1-p_i}{1-u_i}$$

SIMPLIFYING FURTHER

$$\prod_{i:x_i=1;q_i=1} \frac{p_i}{u_i} \cdot \prod_{i:x_i=0;q_i=1} \frac{1-p_i}{1-u_i}$$

We now multiply everything by

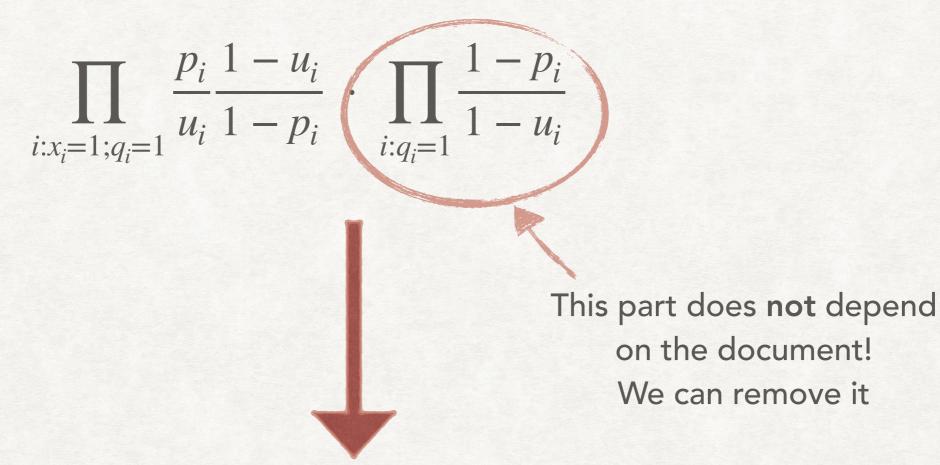
Each term is actually 1.

$$\prod_{i:x_i=1;q_i=1} \frac{1-p_i}{1-u_i} \cdot \frac{1-u_i}{1-p_i}$$

By rearranging the factors we obtain:

$$\prod_{i:x_i=1;q_i=1} \frac{p_i}{u_i} \frac{1-u_i}{1-p_i} \cdot \prod_{i:q_i=1} \frac{1-p_i}{1-u_i}$$

SIMPLIFYING FURTHER



 $\prod_{i:x_i=1;q_i=1} \frac{p_i}{u_i} \frac{1-u_i}{1-p_i}$

RATIO OF ODDS

$$\prod_{i:x_i=1;q_i=1} \frac{p_i}{u_i} \frac{1-u_i}{1-p_i}$$

Each factor can be seen as two odds:

 $\frac{p_i}{1-p_i}$

Odds of the term appearing in the document if the document is relevant $\frac{1-u_i}{u_i}$

Inverse odds of the term appearing in the document if the document is **not** relevant

RETRIEVAL STATUS VALUE

The **Retrieval Status Value (RSV) of a document** *d* is defined as the logarithm of the quantity that we now have:

$$RSV_{d} = \log\left(\prod_{i:x_{i}=1;q_{i}=1} \frac{p_{i}}{u_{i}} \frac{1-u_{i}}{1-p_{i}}\right)$$
$$= \sum_{i:x_{i}=1;q_{i}=1} \log \frac{p_{i}}{u_{i}} \frac{1-u_{i}}{1-p_{i}}$$

RETRIEVAL STATUS VALUE

Consider each term of the sum:

$$c_i = \log \frac{p_i}{u_i} \frac{1 - u_i}{1 - p_i}$$

Which can be rewritten as a log odds ratio:

$$c_i = \log \frac{p_i}{1 - p_i} + \log \frac{1 - u_i}{u_i}$$

 c_i can be considered the **weight** of the i^{th} term of the dictionary, and can be pre-computed (like other measures like the inverse document frequency)

RETRIEVAL STATUS VALUE

At the end the RSV of a document *d* can be written as:

$$\mathbf{RSV}_d = \sum_{i:x_i = q_i = 1} c_i$$

Which algorithmically, can be described as:

To compute the RSV of a document d, sum the weight c_i of each term contained in both the document and the query

We now need a way to estimate the various probabilities to (pre-)compute all c_i .

PROBABILITY ESTIMATION IN PRACTICE

ESTIMATION FOR NON-RELEVANT DOCUMENTS

- We assume that non-relevant documents are a majority inside the collection.
- Thus, we approximate the probability for non-relevant documents with statistics computed using the entire collection.

Usually
$$\log \frac{1 - u_i}{u_i} = \log \frac{N - df_i}{df_i}$$
 for a term *i*.

• Which is approximately $\log \frac{N}{df_i}$, which is actually the inverse document frequency idf_i for the term *i*.

ESTIMATION FOR RELEVANT DOCUMENTS

- Estimation for relevant documents is more complex. There are multiple approaches used in practice:
- We can estimate the probabilities by looking at statistics on a set of relevant documents that we have obtained in some way.
- We can put all probabilities equal to 0.5. With this estimate and assuming idf_i for non-relevant documents, this approximation is the sum of the idf_i for all query terms that occurs in the document.
- Another possibility is using some collection level statistics, for example obtaining $p_i = \frac{df_i}{N}$.

COMBINATION WITH RELEVANCE FEEDBACK

We can combine relevance feedback to help us estimate the probability used in computing the RSV_d :

- 1. Start with probabilities estimated as before
- 2. Retrive a set V of documents
- 3. The user classifies the documents retrieved and gives us a set of relevant documents: $VR = \{d \in V : R_{d,q} = 1\}$
- 4. Re-compute our estimates for p_i and u_i

COMBINATION WITH RELEVANCE FEEDBACK RE-COMPUTING ESTIMATES

If VR is large enough we can use the following updating: For each *i* let VR_i be the set of relevant documents containing the *i*th term:

$$p_i = \frac{|VR_i|}{|VR|} \qquad \qquad u_i = \frac{\mathrm{df}_i - |VR_i|}{|VR|}$$

However in most case the set of documents evaluated by the user is not large, so we use a "smoothed" version:

$$p_i = \frac{|VR_i| + \frac{1}{2}}{|VR| + 1} \qquad \qquad u_i = \frac{df_i - |VR_i| + \frac{1}{2}}{N - |VR| + 1}$$

COMBINATION WITH RELEVANCE FEEDBACK PSEUDO-RELEVANCE FEEDBACK

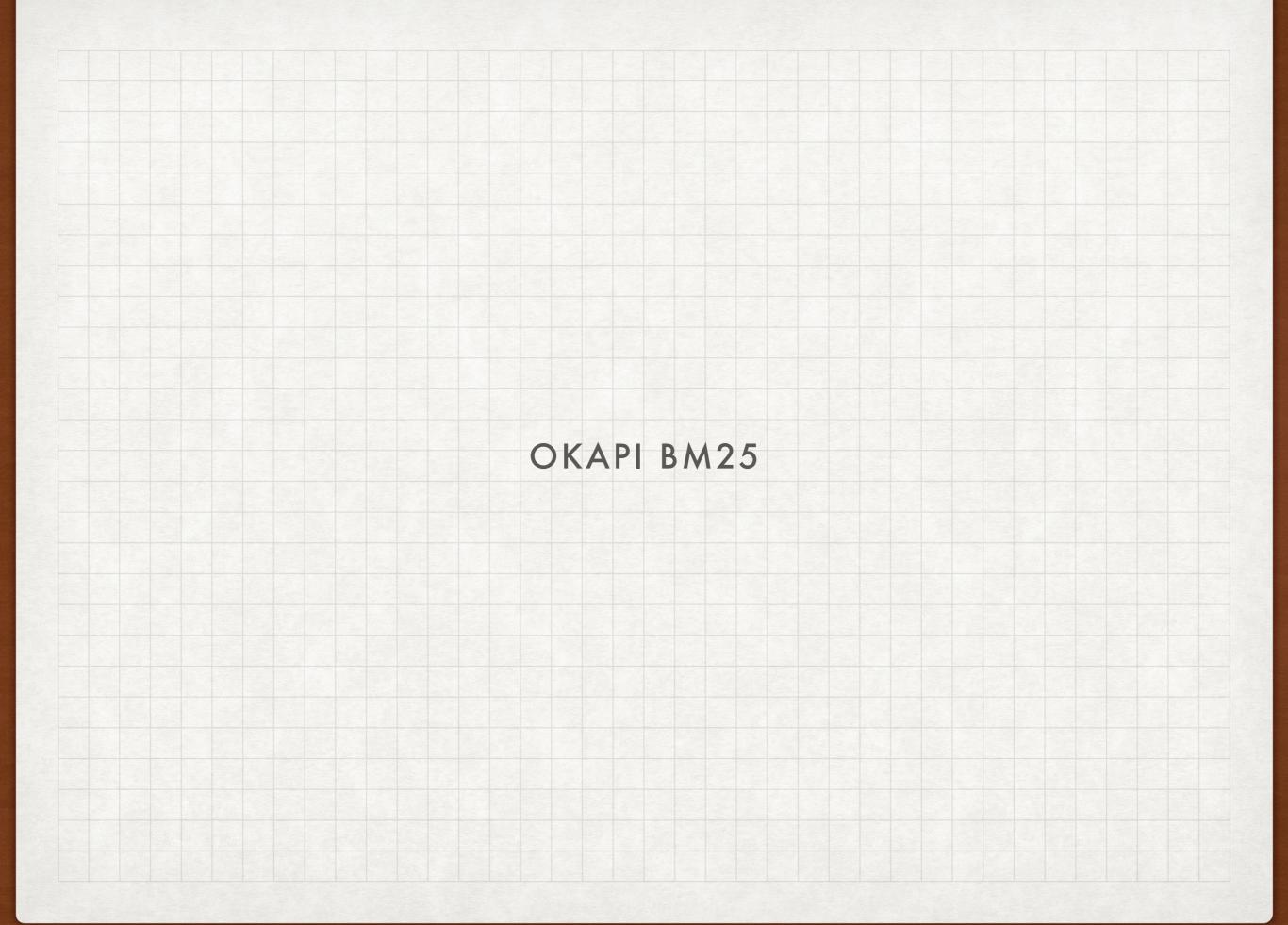
We can extend the previous model to allow for pseudo-relevance feedback.

Select the first k highest ranked documents, consider them as a set V

Consider all of them relevant, and update the probability accordingly (simply substituting VR with V in the previous equations):

$$p_i = \frac{|V_i| + \frac{1}{2}}{|V| + 1} \qquad \qquad u_i = \frac{\mathrm{df}_i - |V_i| + \frac{1}{2}}{N - |V| + 1}$$

Repeat until the ranking converges



OKAPI BM25

AKA BM25 WEIGHTING OR OKAPI WEIGHTING

This model is non-binary, since it takes into account the *frequency* of the terms inside the document.

We start with:

$$\mathrm{RSV}_d = \sum_{t \in q} \mathrm{idf}_t$$

Recall that this is the formula that we obtain with one of our estimates.

We now need a way to add information about the term frequencies

OKAPI BM25

AKA BM25 WEIGHTING OR OKAPI WEIGHTING

Let L_d be the length of the document and L_{avg} the average length of the documents in the collection.

$$\operatorname{RSV}_{d} = \sum_{t \in q} \operatorname{idf}_{t} \cdot \frac{(k_{1} + 1)\operatorname{tf}_{t,d}}{k_{1}((1 - b) + b \cdot \frac{L_{d}}{L_{avg}}) + \operatorname{tf}_{t,d}}$$

 k_1 and b are two parameters, with $b \in [0,1]$ and $k_1 \ge 0$, usually $k_1 \in [1.2, 2.0]$

OKAPI BM25

AKA BM25 WEIGHTING OR OKAPI WEIGHTING

Let us break up the formula in its components

How much to consider term frequency, With $k_1 = 0$ we have the binary model

$$\operatorname{RSV}_{d} = \sum_{t \in q} \operatorname{idf}_{t} \cdot \frac{(k_{1} + 1)\operatorname{tf}_{t,d}}{k_{1}((1 - b) + b \cdot \frac{L_{d}}{L_{avg}}) + \operatorname{tf}_{t,d}}$$

How much to normalise with respect to length, regulated by b, with b = 0: no normalisation, with b = 1, full scaling by document length