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Shape efficiency

When materials are loaded in bending, in torsion, or are used as slender
columns, section shape becomes important

”Shape” = cross section formed to a
tubes
I-sections
tubes
hollow box-section
sandwich panels
ribbed panels

“Efficient” = use least material for given stiffness or strength
Shapes to which a material can be formed are limited by the material itself

Goals: understand the limits to shape
develop methods for co-selecting material and shape



Shape and mode of loading

Standard structural members

F | .
Column —» :

Area A matters,
not shape

Area A and shape Iy,
l,, matter

Area A and shape J
matter

Area A and shape |,
matter

Certain materials can be made to certain shapes: what is the best combination?



Shape efficiency: bending stiffness

= Take ratio of bending stiffness S of shaped section to that (S,) of a neutral
reference section of the same cross-section area

= Define a standard reference section: a solid square with area A = b?

= Second moment of area is I; stiffness scales as EI.

b* A2
IO = — = —
12~ 12

Area A = b? ﬁ
]
b

[

Area A is
constant

N\

I =]y*b(y)dy

Area A and
modulus E
unchanged

= Define shape factor for elastic bending, measuring efficiency, as

Pe =

S EI

S, EI,

~ 12

AZ




Properties of the shape factor

® The shape factor is dimensionless -- a pure number.

= |t characterizes shape.

_ -1 I-sections,
- e =10
@ Circular tubes,
¢e =10
Increasing size at constant s[@

= Each of these is roughly 10 times stiffer in bending than a
solid square section of the same cross-sectional area




Shape efficiency: bending strength

= Take ratio of bending strength F; of shaped section to that (F; ;) of a
neutral reference section of the same cross-section area

= Section modulus of area is Z; strength scales as ¢, Z

b3 A3/2 Area A is I
ZO = 6 = 6 constant l=—
Ymax
Area A = b?

ﬁ Area A and
yield strength
b ﬁ % Gy unchanged
b

= Define shape factor for onset of plasticity (failure), measuring efficiency, as

_ Ff _ Gyz -6 VA
Pf = = y 3/2
fo OyZo A




Tabulation of shape factors

Section shape Area A Second Elastic shape
m moment |, m* factor
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What values of ¢, exist in reality?

e Data for structural steel, 6061 aluminium, pultruded GFRP and timber
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Limits for Shape Factors ¢, and o

" There is an upper limit to shape factor for each material

Material Max o, Max oy
Steels 65 13
Aluminium alloys 44 10
GFRP and CFRP 39 9
Unreinforced polymers 12 5
Woods 8 3
Elastomers <6 -
Other materials ..can calculate

= Limitsetby: (a) manufacturing constraints
(b) local buckling
/Modulus

= Theoretical limit: o D
@)
y gk Yield strength




Indices that include shape

. F
Function | Beam (shaped section). Area A 1

J N 7 7
Objective | Minimise mass, m, where: H

o M=Ae i i A
Constraint | Bending stiffness of the beam S: ]

= E [ m = Mmass |
13 A = area
| is the second moment of area: L = length
1/2 p = density
_ 12 I A 121 b = edge length
Pe ? = (P— S = stiffness
€ | = second moment of area
E = Youngs Modulus

Combining the equations gives: \ J

1/2
5
. 12SL L/Z Chose materials with smallest [ P /2]
C ((PeE)1 ((PeE)1




Selecting material-shape combinations

Materials for stiff, shaped beams of minimum weight

Fixed shape (¢, fixed): choose materials with low —Ef/z

Shape o, a variable: choose materials with low ﬁ
PeE

Material p, Mg/m3| E, GPa Pomax |  P/EY? | pl(@emaxEN2
1020 Steel 7.85 205 65 0.55 0.068
6061 T4 Al 2.70 70 44 0.32 0.049
GFRP 1.75 28 39 0.35 0.053
Wood (oak) 0.9 13 8 0.25 0.088

Commentary:  Fixed shape (up to ¢, = 8): wood is best
Maximum shape (¢, = @ may): Al-alloy is best
Steel recovers some performance through high ¢ sy



Shape on selection charts
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Metals and alloys
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Silicone elastomers (SI, Q)

Elastomers
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