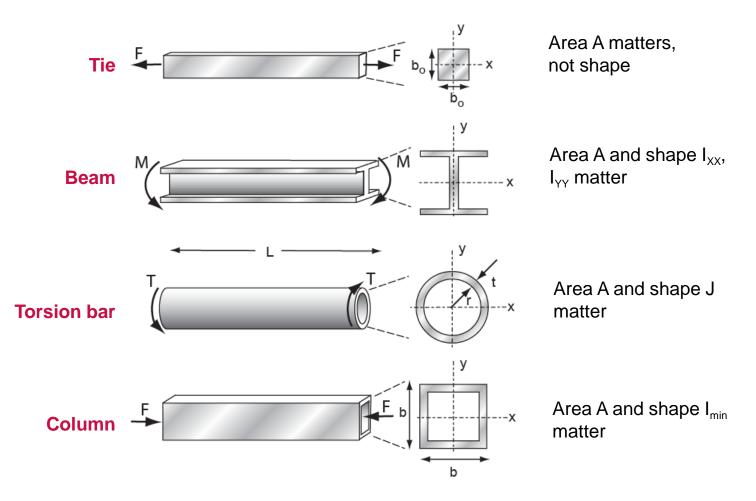
Progettazione di Materiali e Processi

Modulo 1 – Lezione 5 Progettazione e selezione di materiali e processi A.A. 2021-22 Vanni Lughi <u>vlughi@units.it</u>

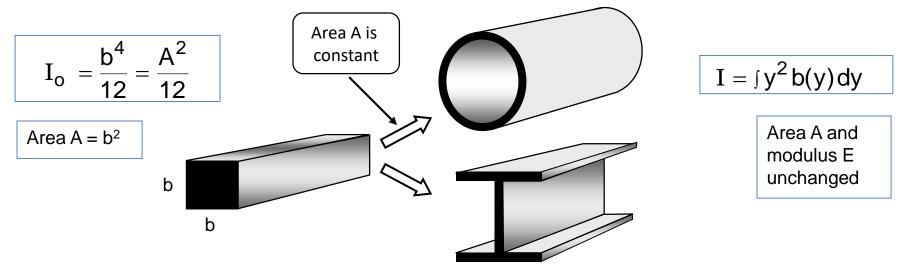
Shape efficiency


- When materials are loaded in bending, in torsion, or are used as slender columns, section shape becomes important
- "Shape" = cross section formed to a

tubes I-sections tubes hollow box-section sandwich panels ribbed panels

- "Efficient" = use least material for given stiffness or strength
- Shapes to which a material can be formed are limited by the material itself
- Goals: understand the limits to shape develop methods for co-selecting material and shape

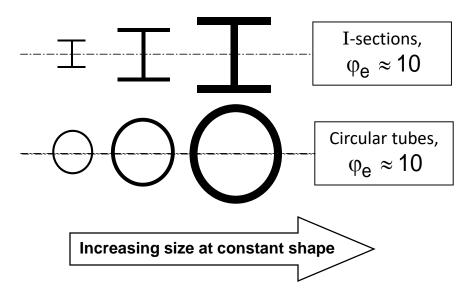
Shape and mode of loading


Standard structural members

Certain materials can be made to certain shapes: what is the best combination?

Shape efficiency: bending stiffness

- Take ratio of bending stiffness S of shaped section to that (S_o) of a neutral reference section of the same cross-section area
- Define a standard reference section: a solid square with area A = b²
- Second moment of area is I; stiffness scales as EI.

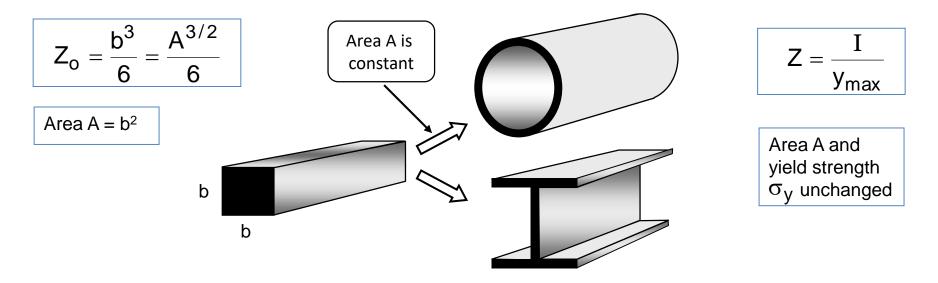


Define shape factor for elastic bending, measuring efficiency, as

$$\phi_e = \frac{S}{S_o} = \frac{EI}{EI_o} = 12\frac{I}{A^2}$$

Properties of the shape factor

- The shape factor is dimensionless -- a pure number.
- It characterizes shape.



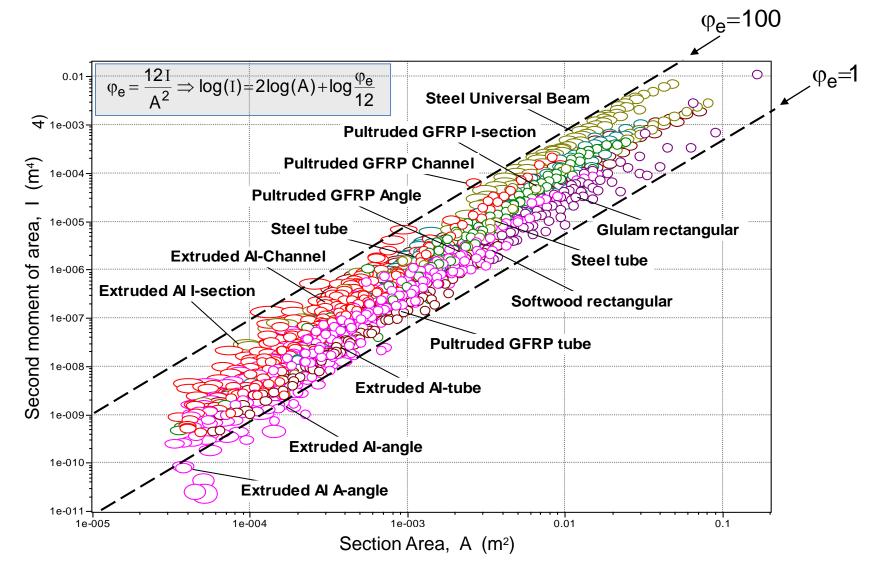
Each of these is roughly 10 times stiffer in bending than a solid square section of the same cross-sectional area

Shape efficiency: bending strength

Take ratio of bending strength F_f of shaped section to that (F_{f,o}) of a neutral reference section of the same cross-section area

Section modulus of area is Z; strength scales as σ_y Z

Define shape factor for onset of plasticity (failure), measuring efficiency, as

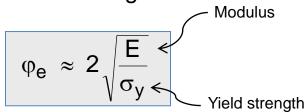

$$\phi_f = \frac{F_f}{F_{fo}} = \frac{\sigma_y Z}{\sigma_y Z_o} = 6 \frac{Z}{A^{3/2}}$$

Tabulation of shape factors

Section shape	Area A m	Second moment I, m⁴	Elastic shape factor
	bh	$\frac{bh^3}{12}$	h b
2a	πab	$\frac{\pi}{4}a^3b$	$\frac{3}{\pi}\frac{a}{b}$
	$\pi (r_0^2 - r_i^2)$ $\approx 2 \pi r t$	$\frac{\pi}{4}(r_0^4 - r_i^4)$ \$\approx \pi r^3 t\$	$\frac{3}{\pi} \left(\frac{\mathbf{r}}{\mathbf{t}} \right)$ (r >> t)
	2t(h+b) (h,b >> t)	$\frac{1}{6}h^3t(1+3\frac{b}{h})$	$\frac{1}{2} \frac{h}{t} \frac{(1+3b/h)}{(1+b/h)^2}$ (h,b>>t
	$b(h_0 - h_i) \approx 2bt$ $(h, b >> t)$	$\frac{b}{12}(h_0^3 - h_i^3)$ $\approx \frac{1}{2}bth_0^2$	$\frac{3}{2}\frac{h_o^2}{bt}$ (h,b>>t)
2t h	2t(h+b) (h,b>>t)	$\frac{1}{6}h^3t(1+3\frac{b}{h})$	$\frac{1}{2} \frac{h}{t} \frac{(1+3b/h)}{(1+b/h)^2}$ (h,b>>t)

What values of ϕ_{e} exist in reality?

• Data for structural steel, 6061 aluminium, pultruded GFRP and timber


Limits for Shape Factors $\phi_{e}\, \text{and}\, \phi_{f}$

There is an upper limit to shape factor for each material

Material	Max ϕ_e	Max ϕ_{f}	
Steels	65	13	
Aluminium alloys	44	10	
GFRP and CFRP	39	9	
Unreinforced polymers	12	5	
Woods	8	3	
Elastomers	<6	-	
Other materials	can calculate		

- Limit set by: (a) manufacturing constraints
 - (b) local buckling

Theoretical limit:

Indices that include shape

Area A

Function

Beam (shaped section).

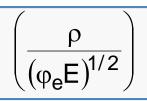
Objective

Minimise mass, m, where:m = ALp

Constraint

Bending stiffness of the beam S:

$$S = \frac{CEI}{L^3}$$


I is the second moment of area:

$$\varphi_{e} = 12 \frac{I}{A^{2}} \qquad A = \left(\frac{12I}{\varphi_{e}}\right)^{1/2}$$

Combining the equations gives:

$$m = \left(\frac{12 \text{ S } \text{L}^5}{\text{C}}\right)^{1/2} \left(\frac{\rho}{\left(\phi_e \text{E}\right)^{1/2}}\right)$$

Chose materials with smallest

F

m = mass

L = length

 $\rho = \text{density}$

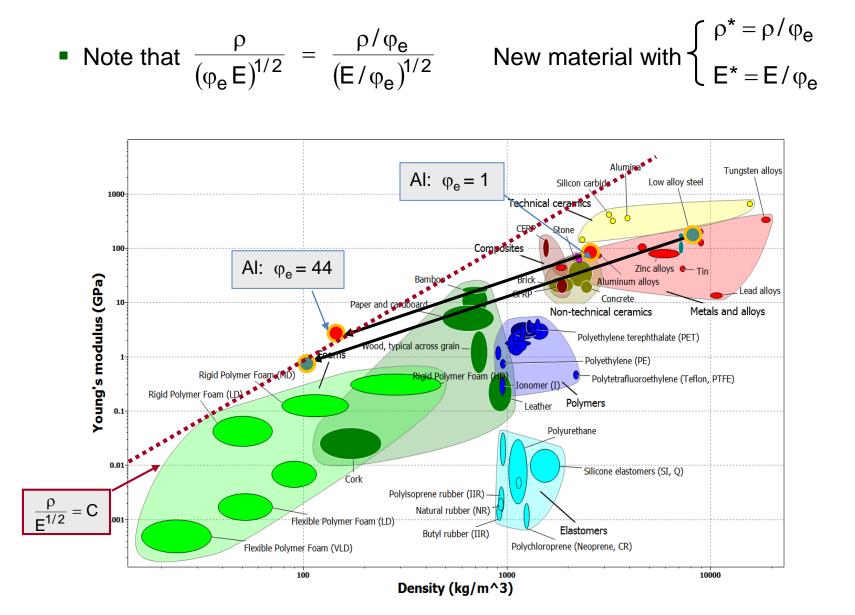
S = stiffness

b = edge length

I = second moment of area

E = Youngs Modulus

A = area


Selecting material-shape combinations

- Materials for stiff, shaped beams of minimum weight
- Fixed shape (φ_e fixed): choose materials with low $\frac{\rho}{r^{1/2}}$
- Shape φ_e a variable: choose materials with low $\frac{\rho}{(\varphi_e E)^{1/2}}$

Material	ho, Mg/m ³	E, GPa	$\phi_{e,max}$	ρ/Ε ^{1/2}	$\rho/(\phi_{e,max}E)^{1/2}$
1020 Steel	7.85	205	65	0.55	
6061 T4 AI	2.70	70	44	0.32	0.049
GFRP	1.75	28	39	0.35	0.053
Wood (oak)	0.9	13	8	0.25	0.088

• Commentary: Fixed shape (up to $\phi_e = 8$): wood is best Maximum shape ($\phi_e = \phi_{e,max}$): Al-alloy is best Steel recovers some performance through high $\phi_{e,max}$

Shape on selection charts

