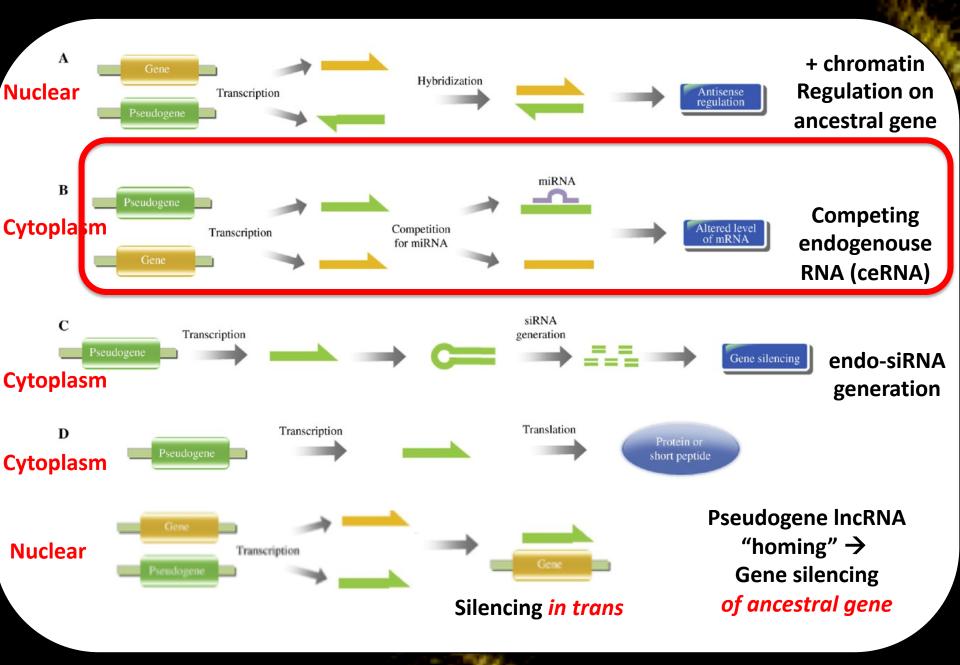
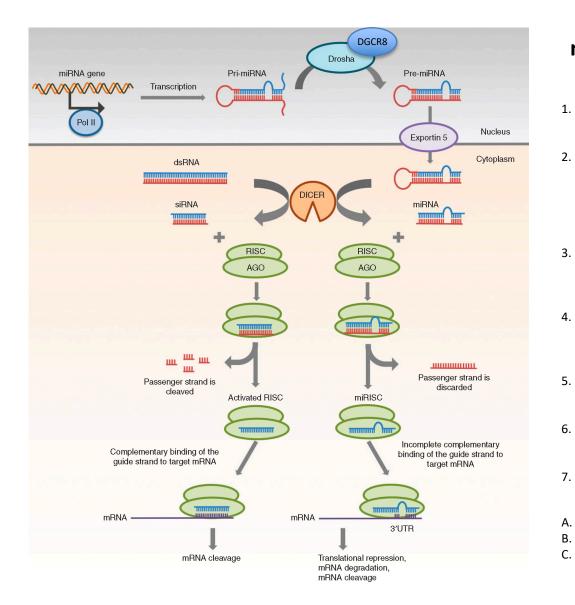

miRNAs AND

COMPETING ENDOGENOUS RNAs (ceRNAs)

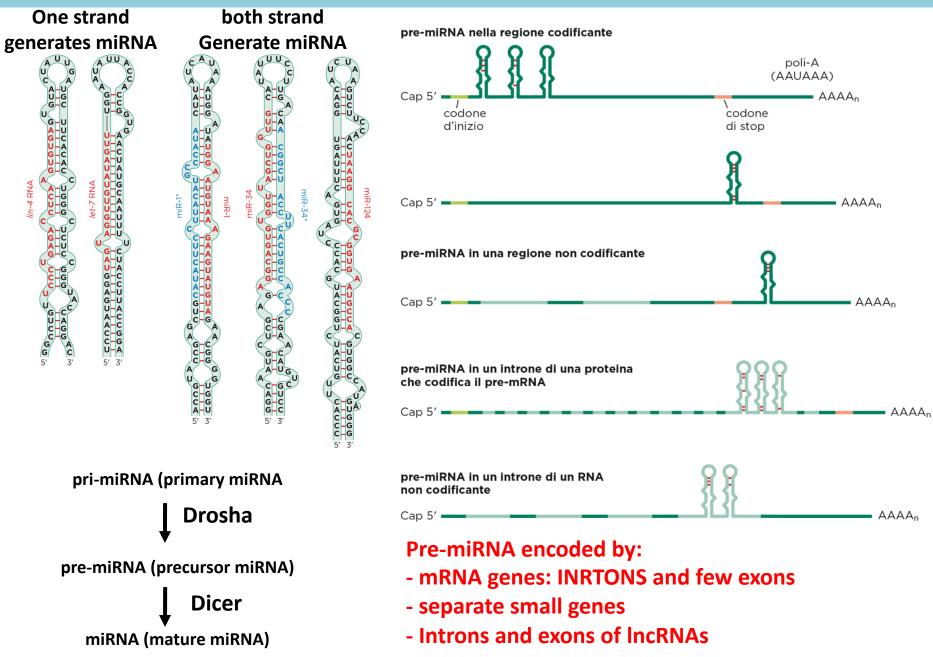

Paper: IncRNAs as ceRNAs using PTENP1 as example

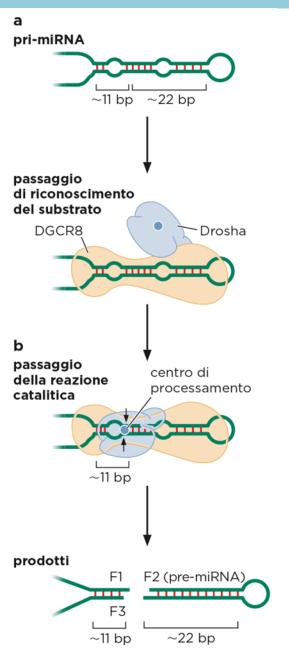
Small ncRNA and gene/chromatin regulation

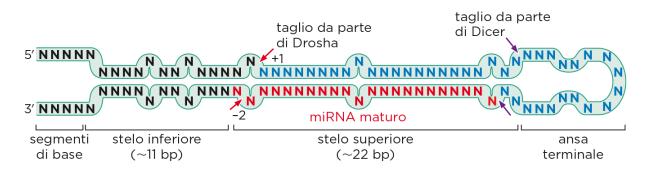


snoRNA: small nuceolar RNAs Methylation or pseudouridinylation of other RNAs (rRNA, tRNA other small RNA) **snRNAs**: localized on Cajal bodies and splicing speckles form snRNPs

seudogenes are powerful regulators of gene expressio


siRNA and miRNA biogenesis and gene regulation


miRNA biogenesis

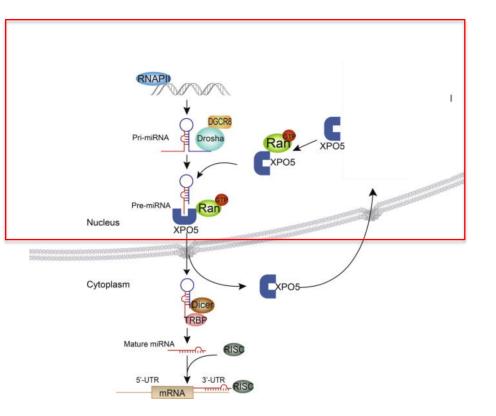

- . Long, unprocessed precursor dsRNA or stem loop RNA (pri-miRNA)
- Processing in the nucleus by the RNaseIII family protein Drosha generates a stem-loop RNA with characteristic length of 65-70 nucleotides. Drosha is in complex with DGCR8 that is important for Drosha activity
- Exportin 5-RanGTP transports pre-miRNA in ternary complex thought nuclear pore to cytoplasm. RanGAP stimulates GTP; pre-miRNA released from Exportin.
- . RNasell family enzyme Dicer processes pre-miRNA generating a 20-25 base dsRNA with overhang at the 3'end (2 bases)
- . Transfer of dsRNA to RISC complex (RNA induced silencing complex)
- Selection of guide RNA → regulatory RNA passenger RNA → will be eliminated
- RISC complex+guide RNA ightarrow regulatory function
- RNA degradation = siRNA effect (cutting = "slicing"
- inhibition of mRNA translation =mRNA effect
- transfer to nucleus and chromatin regulation = siRNA mediated silencing

miRNA dependent regulation of gene expression

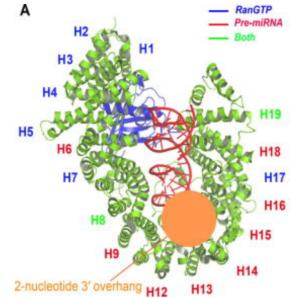
miRNA generation - DROSHER

Drosha, Dicer form the Micorprocessor comples cut 2 RNA strands in RNA duplex, leave 2 base 3'overhang!!

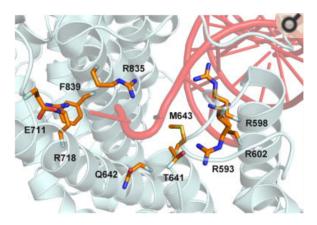
Microprocessor (Drosha and DGCR8) generates a 65-70 nt RNA stem loop:


Drosha cuts app. 11 nt after start of dsRNA region 5 components:

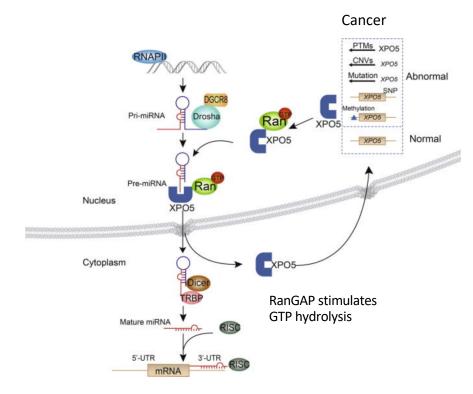
- Lower stem(11 bp);
- Upper stem (22 nt)
- Terminal loop;
- Basal segments of single stranded, unpaired RNA


2. Transfer to cytoplasma

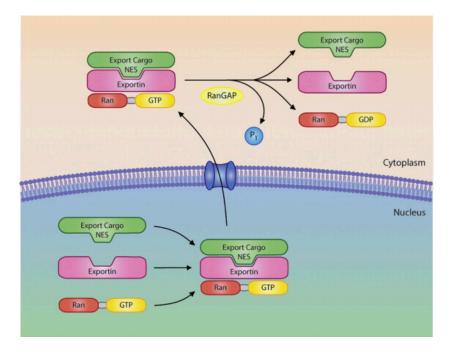
- Via the Exportin 5


miRNA generation – EXPORTIN-5 (XPO5)

Binding of pre-miRNA by XPO-5 is **not sequence specific**. XPO-5 expected to bind other eventual dsRNA molecules

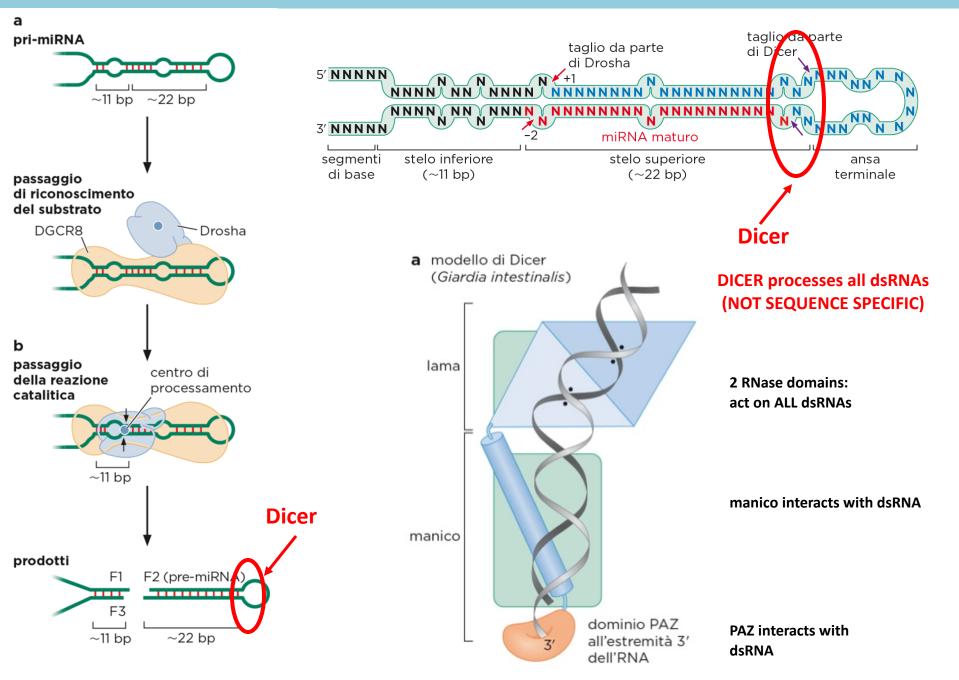


XPO5 recognizes the double-stranded stem structure of the pre-miRNAs via the XPO5 tunnel-like structure comprising HEAT repeats (a tandem repeat protein structural motif composed of two alpha helices linked by a short loop)

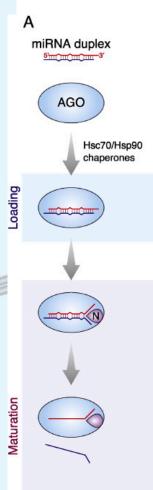


Intermolecular interaction details of the 2-nt 3'overhang structure of pre- miRNA(red) with HEAT repeats 12-15 of XPO5 (grey).

miRNA generation – EXPORTIN-5 (XPO5)



Alterations in XPO-5 can lead to alteration in mature miRNA spectrum. As observed in some cancers


The Ran cycle – Ran exists in a GTP-bound state in the nucleus and a GDP-bound state in the cytoplasm.

miRNA generation - DICER

miRNA biogenesis and gene regulation

Assembly of siRNA duplexes into RISC complex

Small RNAs commonly assemble with a member of Argonaute (Ago) family proteins into the effector ncRNP complex called RNA-induced silencing complex (RISC)

Two steps:

1. LOADING:

siRNA duplexes are loaded into AGO proteins by the aid of the Hsc70/Hsp90 chaperone machinery.

2. MATURATION

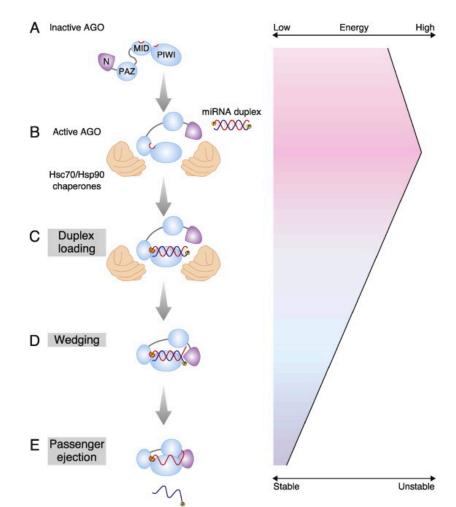
RISC maturation is initiated by wedging, in which the N domain of Ago subfamily proteins pries open base pairs at the 3' end of the guide strand (paired with the 5' end of passenger strand).

Maturation is completed by passenger ejection, in which passenger strands are ejected from AGO proteins.

IMPORTANT: Only one strand remains in RISC complex -5p or -3p miRNA strand (orientation given by pri-miRNA) i.e. miR-296-5p or miR-296-3p

	ga c		a <mark>c c</mark> 5p strand g u	gc
5 '	ag	cccuuc	gagggcc cc cucaauccu uug	С
	11			u
3'	uc	gggaag	cucucgg gg ggguuggga g ac	a
	u	c u	c a u 3p strand – u	ua

Kobayashi et al. RISC assembly: Coordination between small RNAs and Argonaute proteins. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2016


Argonaute proteins represent the core of the RISC complex

~ 22-bp dsRNAs, called miRNA/miRNA* duplexes, are ready to assemble with AGO proteins.

2 Families:

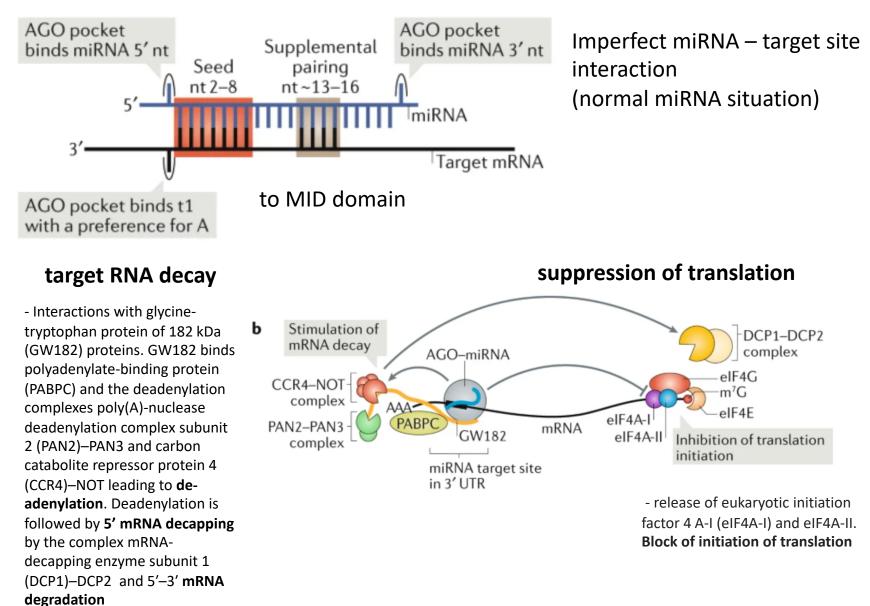
AGO subfamily (e.g., Ago1 and Ago2 in flies and Ago1, Ago2, Ago3 and Ago4 in mammals): binds to miRNAs and siRNAs

PIWI subfamily (e.g., Piwi, Aub and Ago3 in flies; Miwi, Mili and Miwi2 in mice) that binds to piRNAs.

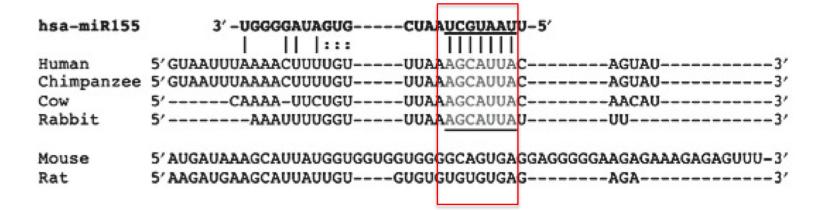
Argonaute (ago) proteins consist of four domains: N, PAZ, MID and PIWI.

<u>MID and PIWI domains</u>: at their intepface, the phosphate group and the base moiety at the 5' end of the guide small RNA strand is strongly anchored

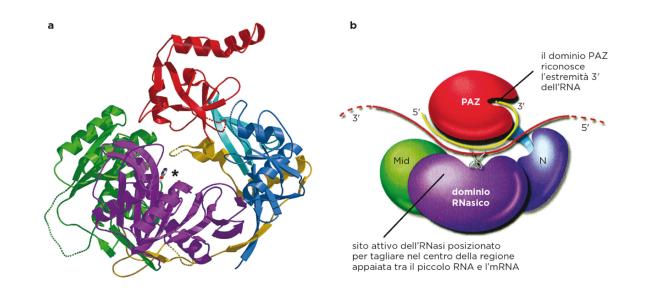
<u>PAZ domain</u> harbors a pocket that can bind the 3' end of the guide strand.

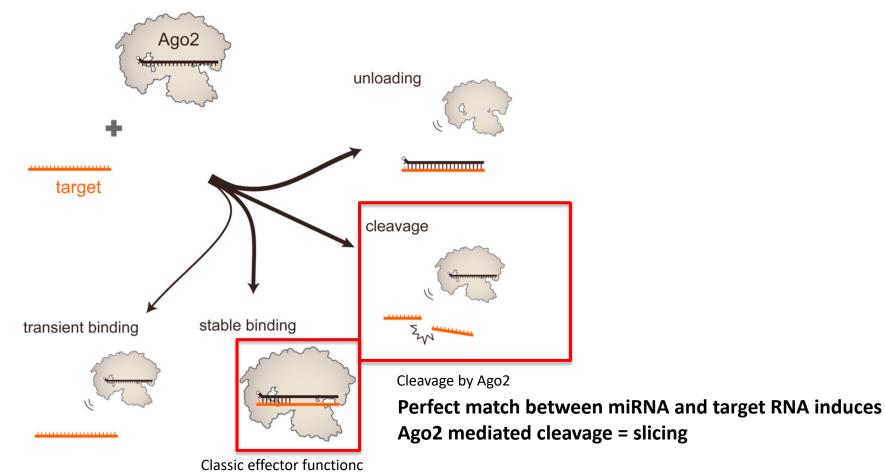

<u>PIWI domain</u> adopts a fold similar to the endoribonuclease RNase H, and binds dsRNA without cleavage.

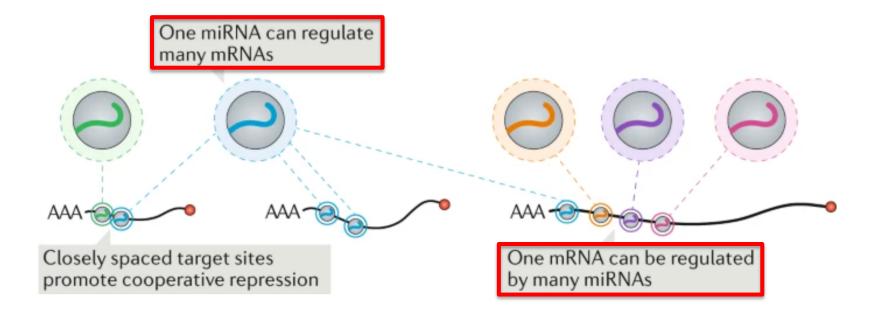
<u>The N domain plays an important role in separation of the</u> two RNA strands after duplex loading and positions the catalytic PIWI domain correctly for target RNA cleavage.

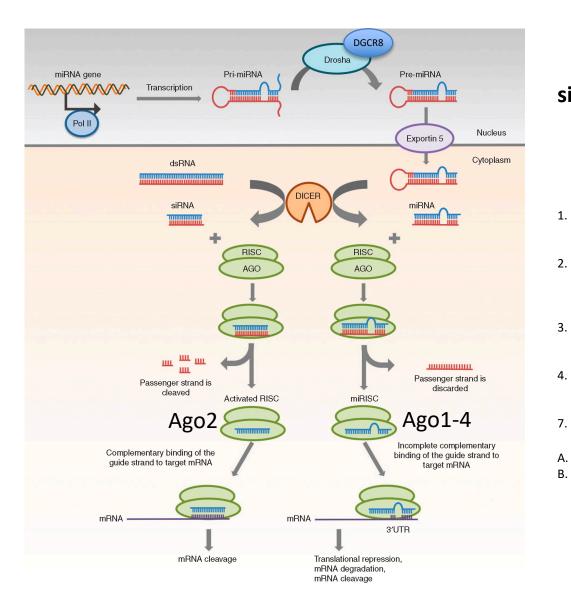

Strand selection controlled by thermpdynamic asymetry: in general, the strand harboring thermodynamically less stable base pairing at its 5' end selectively functions as the guide strand.

miRNA biogenesis and gene regulation

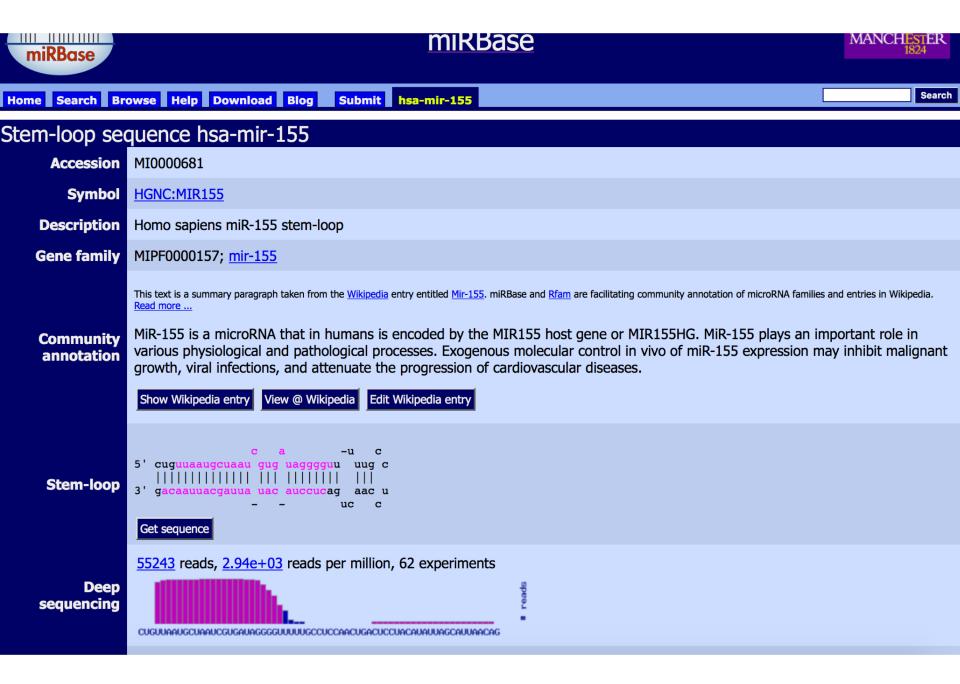

miRNA effector Function by Ago1-4


Conservation of miRNA target site interaction


Seed sequence: pos 2-8 in miRNA (5' \rightarrow 3')


miRNA effector Function by Ago2

--> Basis for siRNA mediated knock-down


miRNA and siRNA biogenesis and gene regulation

siRNA biogenesis

- 1. Long, unprocessed precursor dsRNA or stem loop in cytplasm
- 2. RNasell family enzyme Dicer processes pre-miRNA generating a 20-25 base dsRNA with overhang at the 3'end (2 bases)
- 3. Transfer of dsRNA to RISC complex (RNA induced silencing complex)
- 4. Selection of guide RNA \rightarrow regulatory RNA passenger RNA \rightarrow will be eliminated
 - RISC complex+guide RNA ightarrow regulatory function
 - RNA degradation = siRNA effect (cutting = "slicing"
 - transfer to nucleus and chromatin regulation = siRNA mediated silencing

		mirbase.org		Ċ		• 1	
hD Couapplications F	PICA - Indice CARGO File Delivery Facility	intranet.preReturnUrl=%2F	Test PreCanMed	Coupling of Holecular Cell	Alternative lenline Library	ic-Rom - +++ Marino +++ >> r MI0000747 ++	
en microRNAs with star an	nd	minra maturation - Cerca co	on - Cerca con Google miRNA Entry for MI0000747				
miRBase			miRBas	se		MANCHESTER 1824	
Home Search B	rowse Help Download Blog	Submit hsa-mir-296	5			Search	
Stem-loop se	equence hsa-mir-296						
Accession	MI0000747						
Symbol	HGNC:MIR296						
Description	Homo sapiens miR-296 stem-l	оор					
Gene family	MIPF0000159; <u>mir-296</u>						
Community annotationThis text is a summary paragraph taken from the Wikipedia entry entitled miR-296. miRBase and Rfam are facilitating community annotation of mice miR-296 is a family of microRNA precursors found in mammals, including humans. The ~22 nucleotid the precursor hairpin by the enzyme Dicer. This sequence then associates with RISC which effects RN "angiomiR" due to being characterised as a microRNA which regulates angiogenesis, the process of g miR-296 is thought to have a specific role in cancer in promoting tumour angiogenesis. It achieves the expression in endothelial cells which then results in greater number of VEGF receptors. miR-296 has p 					2 nucleotide mature mi effects RNA interferen rocess of growth and c achieves this by targeti	RNA sequence is excised from ce. miR-296 has been named an reation of new blood vessels. ng HGS mRNA, reducing its	
Stem-loop	ga ca c c 5' ag cccuuc gagggcc cc c 3' uc gggaag cucucgg gg g uc uc a u	g ugc ucaauccu uug c u gguuggga gac a – uua					
Deep sequencing			AGGCUCUCCUGAAGGG	= reads			

MicroRNA Nomenclature

Different miRNA genes that have different location in the genome, but each of them produces a miRNA with identical seqeunce (i.e. hsamiR-7

Alleles: all express same mature microRNA

_ Mature miR-7 microRNA expressed

http://www.mirbase.org

Dual precursors: express two mature microRNAs equally

Stem-loop sequence MI0003129						
Accession	MI0003129	, miR-146b-5p				
ID	hsa-mir-146b					
Symbol	HGNC:MIR146B	miB 146h 2n				
Description	Homo sapiens miR-146b stem-loop	miR-146b-3p				
Stem-loop	u g au cu ca u cc ggcacu agaacuga uccauagg od gc c ii iiiii iiiii iiiii iii gg ccgugg ucuugacu aggugucc ua cg u cc cg -a a					

System Biosciences

hsa-mir-7-1

hsa-mir-7-2

hsa-mir-7-3

Current nomenclature

Old nomenclature:

* miRNA referes to the strand present at lower levels \rightarrow thought to be non-functional

ARTICLES

A coding-independent function of gene and pseudogene mRNAs regulates tumour biology

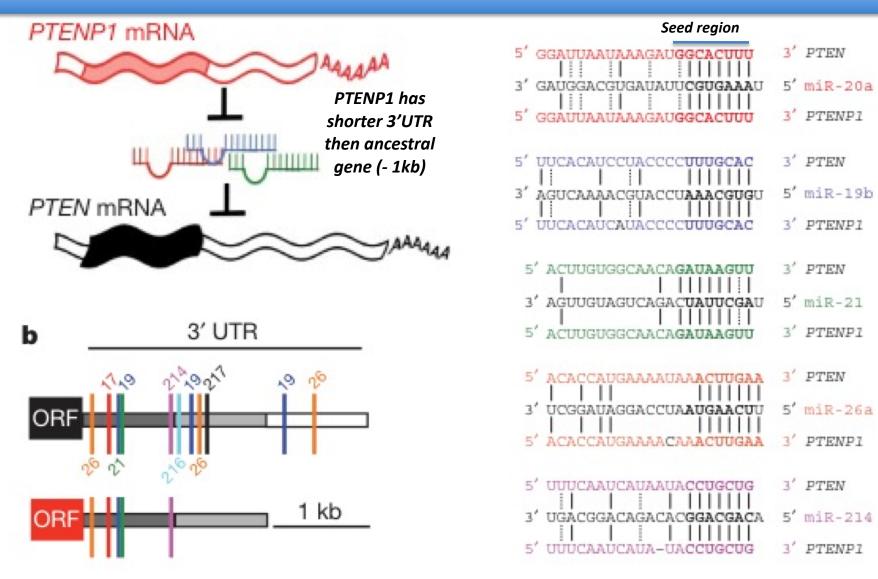
Laura Poliseno¹*[†], Leonardo Salmena¹*, Jiangwen Zhang², Brett Carver³, William J. Haveman¹ & Pier Paolo Pandolfi¹

BACKGRUND ON PTEN

PTEN: heterozygous mutations: CANCER FORMATION (=haploinsuffcient tumorsuppressor gene)

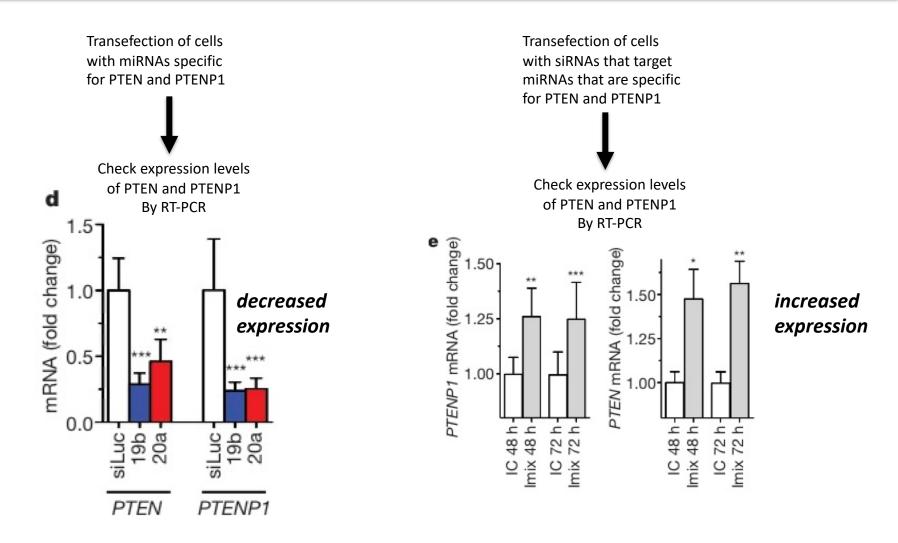
TARGETING OF PTEN BY miRNAs: reduction of PTEN expression \rightarrow promotion of tumor formation!!!!

CELLS ARE EXTREMLY SENSITIVE TO SLIGHT CHANGES IN GENE EXPRESSION LEVELS

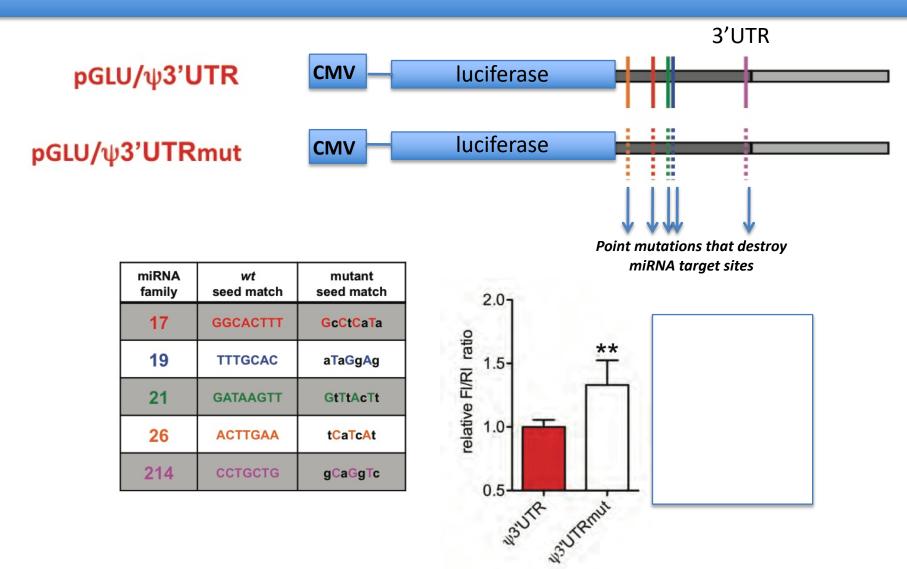

PTEN has generated one processed pseudogene: PTENP1 highly conserved to PTEN

QUESTION: DOES PTENP1 IMPACT ON PTEN EXPRESSION VIA SPONGING miRNAs???

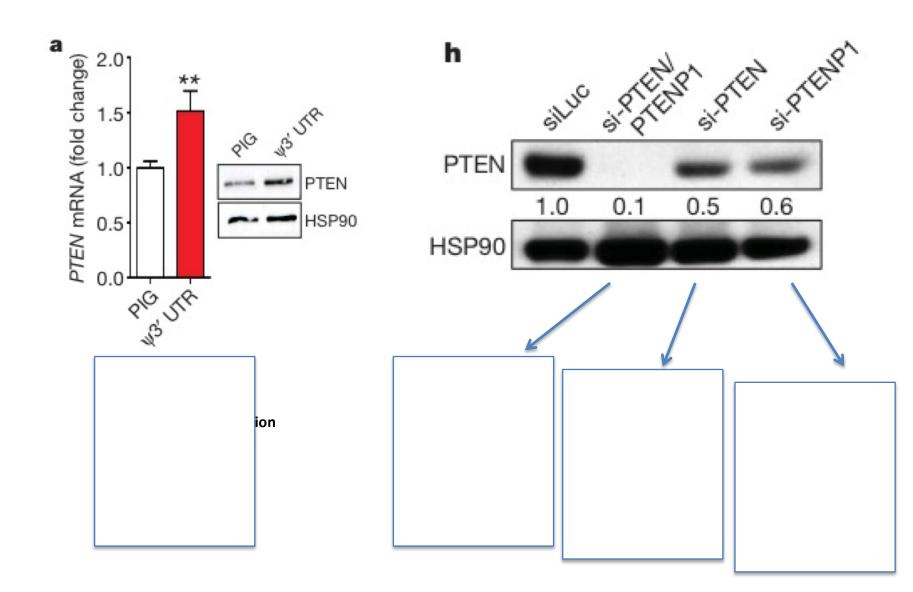
PTEN Wikipedia: Phosphatase and tensin homolog (PTEN) is a protein that, in humans, is encoded by the PTEN gene. Mutations of this gene are a step in the development of many cancers. PTEN orthologs have been identified in most mammals for which complete genome data are available.


This gene was identified as a tumor suppressor that is mutated in a large number of cancers at high frequency. The protein encoded by this gene is a phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase. It contains a tensin-like domain as well as a catalytic domain similar to that of the dual specificity protein tyrosine phosphatases. Unlike most of the protein tyrosine phosphatases, this protein preferentially dephosphorylates phosphoinositide substrates. It negatively regulates intracellular levels of phosphatidylinositol-3,4,5-trisphosphate in cells and functions as a tumor suppressor by negatively regulating Akt/PKB signaling pathway.

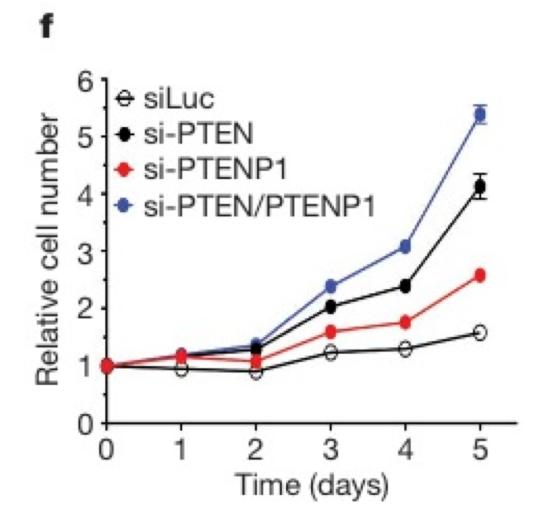
THE PTEN PSEUDOGENE PTENP1


Some target sites of PTEN specific miRNAs are also present in PTENP1

miRNAs target both RNAs: PTEN and PTENP1

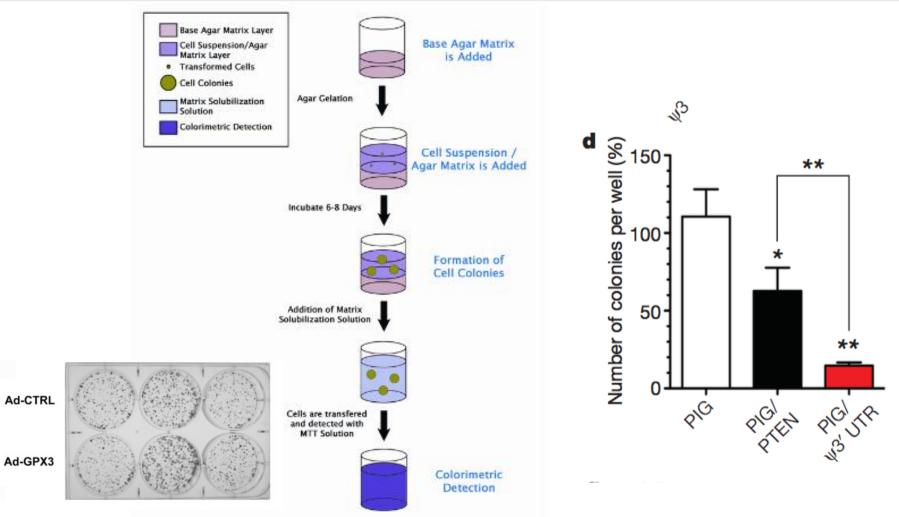

miR-19c and miR-20c target both RNAs

DEMONSTRATION OF miRNA – PTENP1_3'UTR INTERACTION USING A LUCIFERASE REPORTER ASSAY

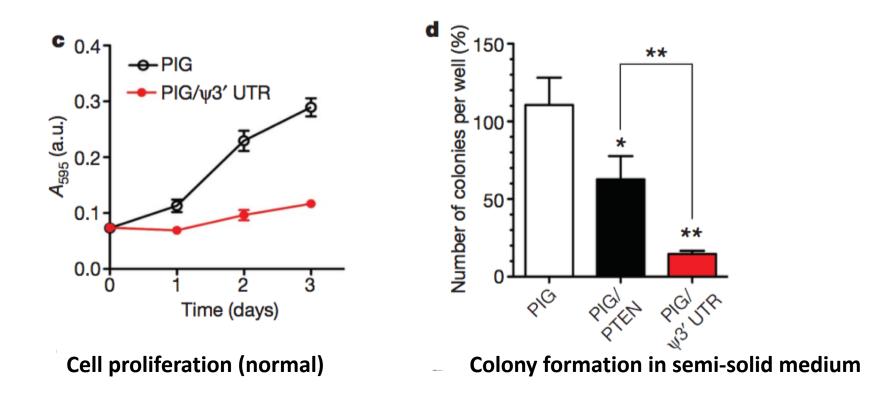


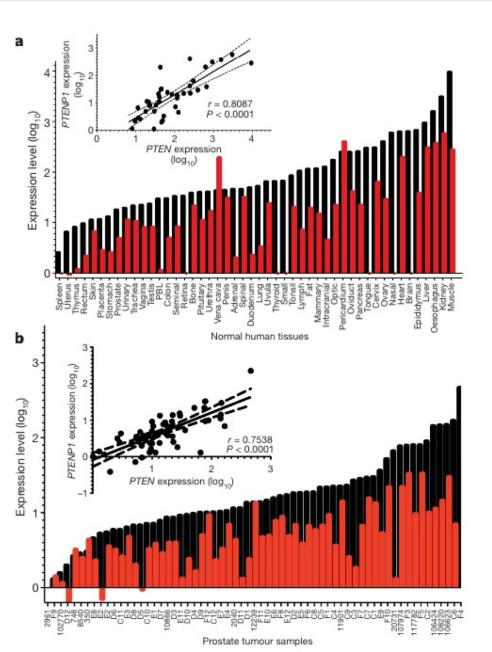
The 3'UTR of PTENP1 sequesters miRNAs

PTENP1 CONTROLS THE EXPRESSION OF PTEN



۰.

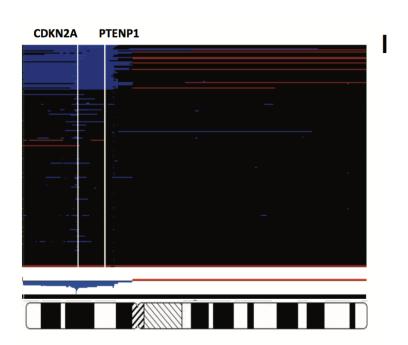



Cumulative cell numbers: Cancer cells proliferate quickly; cells with tumorsuppression proliferate at low rates

Anchorage independent cell proliferation – colony formation assay

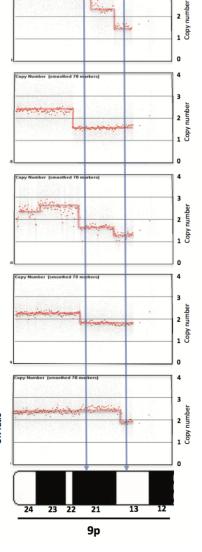
An example

PTEN mRNA expression Positively correlates with PTENP1 expression:


Presence of PTENP1 sponges miRNAs \rightarrow increased levels of PTEN

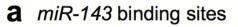
RELEVANCE IN HUMAN CANCER????

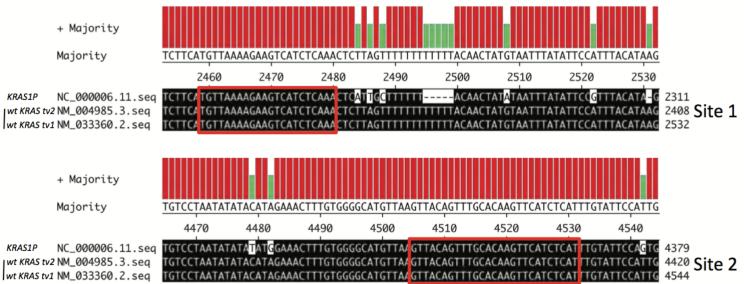
ACUTE LYMPHOBLASTIC LEUKEMIA


BREAST CANCER CDKN2A PTENP1

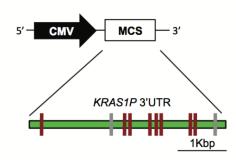
3

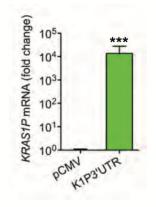
colon cancer. a. Non clustered heat map downloaded from the Cancer Workbench website (https://cgwb.nci.nih.gov/cgi-bin/ heatmap) displaying the TARGET Acute Lymphoblastic Leukemia (ALL) project CGH database from St. Jude/NCI. Data points have been sorted for loss copy number at the PTENP1 locus. Red represents number CODV gains. Blue represents copy number losses.

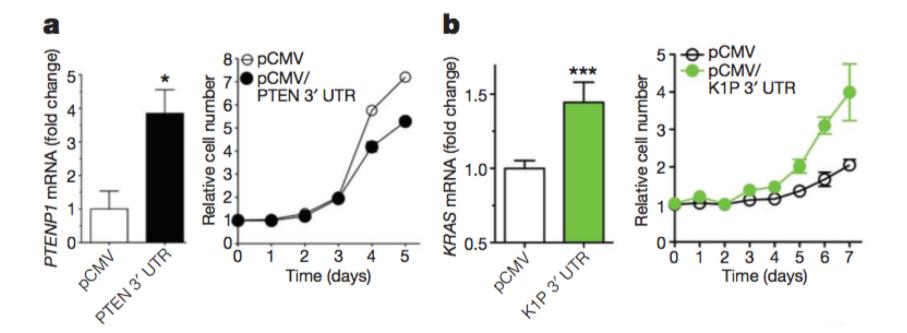

Copy number gains (red) Copy number losses (blue)

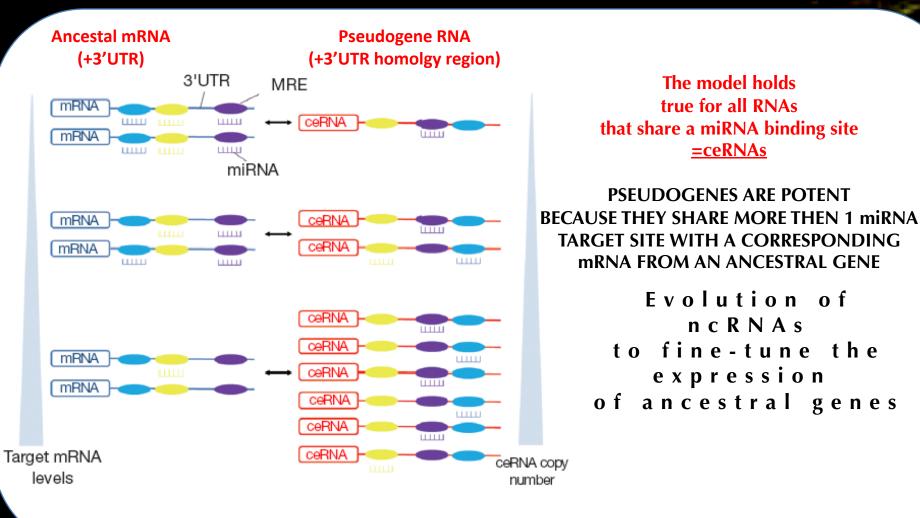


Red line: interesting genes with Copy number alteration


b. Examples of five specific breast cancer patient samples demonstrating losses at the PTENP1 locus. The graphs were generated using Partek Genomics Suite. X-axis chromosome 9p represents position and Y-axis represents copy number. The red lines highlight regions of gene loss. c.


CDKN2A, also known as **cyclin-dependent kinase Inhibitor 2A**, is a gene which in humans is located at chromosome 9, band p21.3.^[5] It is ubiquitously expressed in many tissues and cell types.^[6] The gene codes for two proteins, including the INK4 family member p16 (or p16INK4a) and p14art.^[7] Both act as tumor suppressors by regulating the cell cycle. p16 inhibits cyclin dependent kinases 4 and 6 (CDK4 and CDK6) and thereby activates the retinoblastoma (Rb) family of proteins, which block traversal from G1 to S-phase. p14ARF (known as p19ARF in the mouse) activates the p53 tumor suppressor. Somatic mutations of CDKN2A are common in the majority of human cancers, with estimates that CDCN2A is the second most commonly inactivated gene in cancer after p53. Germline mutations of CDKN2A are associated with familial melanoma, glioblastoma and pancreatic cancer.^[8] The *CDKN2A* gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.^[9]





Overexpression of KRAS1P 3'UTR increases KRAS mRNA expression

Pseudogene sponge miRNAs that target the ancestral gene

Publiced.gov US National Library of Medicine National Institutes of Health	PubMed	Create RSS Create al	ert Advanced				2010: origir	nal discover	y paper
Article types Clinical Trial Review Customize Text availability Abstract Free full text Full text Publication dates 5 years 10 years Custom range Species Humans Other Animals	S	Dou Z, Yu Q, Wang G, Wu S, R Brain Res. 2019 Oct 11:146490. doi: PMID: 31610150 Similar articles LINC01559 accelerates pancrea pathway. Lou C, Zhao J, Gu Y, Li Q, Tang	es Alter Significantly After In eis C, Ruan W, Yan F, Cher 10.1016/j.brainres.2019.146490 atic cancer cell proliferation S, Wu Y, Tang J, Zhang C,	n G.). [Epub ahead of print] and migration through YAP-medi , Li Z, Zhang Y.					
Clear all Show additional filters	3. 3. 4.	cancer progression through regulation of ZIC5. Wang ZY, Duan Y, Wang P. J Cell Physiol. 2019 Oct 14. doi: 10.1002/jcp.29285. [Epub ahead of PMID: 31608997 Similar articles The Construction and Comprehensive Analysis of ceRNA Cells in Bone Metastatic Melanoma. Huang R, Zeng Z, Li G, Song D, Yan P, Yin H, Hu P, Zhu X Huang Z.	NIH National Cell National Cell		ceRNA Advanced Create alert Cre Save Email Ser	ate RSS id to	Sorted by: Most recent ↓Ξ	Log i X Search User C Display option	
		Front Genet. 2019 Sep 25;10:828. dc PMID: 31608101 Similar articles	i: 10.3389/fgene.2019.00828.	MY NCBI FILTERS RESULTS BY YEAR	2022	Circular RNA NE cancer by comp cite at post-transcrip Cao F, Wu X, Shan Y BMC Pulm Med. 202 PMID: 34663267 CONCLUSIONS: Circ	2021 K6 contributes to the de etitively binding with mil ptional level. ; Zhang B, Wang H, Liu H, Yu I (1 Oct 18;21(1):325. doi: 10.118 5_NEK6 served as a competing 5p, which may be treated as a	R-382-5p to elevate B(H. 36/s12890-021-01617-0. g endogenous RNA (ceRNA)	of BCAS2 by
				 Abstract Free full text Full text Article Attribute Associated data Article TYPE 		2 Reveals a Progn Cite Zhou S, Sun Y, Chen Front Cell Dev Biol. 2 PMID: 34660598 Subsequently, we ar endogenous RNA (c	of the Tumor Microenvir ostic and Immunotherap T, Wang J, He J, Lyu J, Shen 2021 Oct 1;9:739594. doi: 10.3 Free PMC article. halyzed genetic variations of the eRNA) regulatory network. LA ignature and risk score of SK0	Y, Chen X, Yang R. 3389/fcell.2021.739594. eCo he two signatures and constr SSO Cox regression was use	e Signature. llection 2021. ucted a competing

original discovery paper

Log in

Search User Guide

		Save	Email Send to Sorted by: Most recent J- Display options
ilters 🖸		4,881 re	esults 2021
BY YEAR	2022	1 Cite Share	Circular RNA NEK6 contributes to the development of non-small-cell lung cancer by competitively binding with miR-382-5p to elevate BCAS2 expression at post-transcriptional level. Cao F, Wu X, Shan Y, Zhang B, Wang H, Liu H, Yu H. BMC Pulm Med. 2021 Oct 18;21(1):325. doi: 10.1186/s12890-021-01617-0. PMID: 34663267 CONCLUSIONS: Circ_NEK6 served as a competing endogenous RNA (ceRNA) of BCAS2 by absorbing miR-382-5p, which may be treated as a novel promising target for the treatment of NSCLC
ract full text		2	The Landscape of the Tumor Microenvironment in Skin Cutaneous Melanoma Reveals a Prognostic and Immunotherapeutically Relevant Gene Signature.
text		Cite	Zhou S, Sun Y, Chen T, Wang J, He J, Lyu J, Shen Y, Chen X, Yang R. Front Cell Dev Biol. 2021 Oct 1;9:739594. doi: 10.3389/fcell.2021.739594. eCollection 2021.
TTRIBUTE		Share	PMID: 34660598 Free PMC article. Subsequently, we analyzed genetic variations of the two signatures and constructed a competing