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Abstract
As a momentous post-transcriptional regulator, microRNAs (miRNAs) are attracting more and more attention. The classi-
cal miRNAs regulated mechanism shows it binds to the targets’ 3′UTR thus play the role in post-transcription. Meanwhile, 
single miRNA can target multiple genes, so those should compete to bind that miRNA. Vice versa, single gene can sponge 
mass of miRNAs as well. Thus the competitive endogenous RNAs (ceRNAs) hypothesis was put forward in 2011. The 
ceRNA hypothesis has made huge achievements, in particular in non-coding genes, which including long non-coding RNAs 
(lncRNAs), circle RNAs (circRNAs) and pseudogenes, even viral transcripts. It also contributed greatly to epigenetics 
development. However, an increasing number of controversies have occurred with applause. Based on this situation, this 
review introduces something in detail about the ceRNAs hypothesis achieved in lncRNAs, circRNAs, pseudogenes and viral 
transcripts, respectively. Meanwhile, it also covers controversy of the ceRNAs hypothesis.
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The classical miRNA biogenesis pathway

The first microRNA, lin-4, was found in nematode Cae-
norhabditis elegans before nearly four decades. Originally 
believed the lin-4 was a protein coding gene; however, the 
product of lin-4 unexpectedly was a 22-nucleotides regula-
tory RNA [1–3]. Since then, thousands of miRNAs have 
been found among kinds of species, including animals, 
plants, etc. Animal microRNAs are highly conserved among 
species. There are a mass of conserved and homologous 
miRNAs even in distinct species, which shows the biologi-
cal functions of the miRNAs are crucial.

The processing of miRNAs contains the following parts: 
the first step is transcription of primary microRNAs, the 
second step is splicing of precursor microRNAs, and finally 
is miRNAs’ maturing, as shown in Fig. 1.

First, RNA polymerase II (a few ones are RNA polymer-
ase III) mediates the miRNA genes or introns produce a pri-
mary microRNA transcripts (pri-microRNA) with stem-loop 

structure, and whose length usually is thousands nucleotides 
[4, 5].

Subsequently, the endonuclease Drosha splices the pri-
microRNA into precursor microRNA (pre-microRNA) 
with small hairpin structure, whose length approximately 
is 65 nucleotides [6–9]. This co-transcriptional mode raises 
widely consensus. It occurred during the primary transcripts 
that have not separated with the genome DNA yet. Then the 
pre-miRNAs are transported from nucleus to cytoplasm in 
Ran-GTPase-dependent manner by the exportin-5 [10–12]. 
Processing step occurred in the cytoplasm is essential for 
pre-miRNAs to become mature miRNAs. Stem-loop region 
is spliced by an endonuclease Dicer [13–15]. Duplex RNAs 
then via above two steps are produced, whose length gen-
erally is 22-nucleotides. Drosha and Dicer have the same 
RNase III splicing character thus lead to a 2 nucleotides 
overhang structure at 3′ end of duplex RNA. This structure is 
conducive to load into the RNA-induced silencing complex 
(RISC) [16]. It is worth to notice during Drosha and Dicer 
splice the precursor miRNAs, abundance of auxilins take 
part in the processing as a complex with above enzymes 
to make sure accurately splicing, take DGCR8 for Drosha 
[17], TRBP and PACT for Dicer [18, 19] for example. Argo-
naute proteins 2 (Ago2) is a key protein that incorporates 
duplex RNAs to become RISC [20]. Finally, one strand of 
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duplex loads into RISC as a mature miRNA, while another 
one named as star strand is typically degraded. However, for 
some miRNAs, both strands would load into RISC as mature 
miRNAs. Here, terms the strand from the 5′ end of the stem-
loop as “5p”, 3′ end as “3p” [21]. In fact, on account of next 
generation sequencing used extensively, what it has vali-
dated was a small fraction of star strand loaded for essen-
tially all of miRNAs family [22]. Meanwhile, according to 
cell type or biological state, several miRNAs have different 
usages, thus lead to the nomenclature further complicated 
[23]. By contrast, the 5p/3p nomenclature is more reliable 
than stochastic mature/star nomenclature.

Development of the ceRNAs hypothesis

With the bioinformatics developed, the prediction targets 
of miRNAs become straightforward. As shown previously, 
mature miRNAs bind to target genes by complementary base 
pairing with nucleotides to play the post-transcriptional reg-
ulation, it locates on 3′UTR of coding gene, thus defines the 
nucleotides as microRNA response elements (MREs). While 
the binding sequence in miRNAs is as seed sequence, whose 
length usually is 6–8 nucleotides, it locates at 2–8 nt in 5′ 
end of miRNAs. Meanwhile, it is the size of MREs as well.

A miRNA can bind to abundant target genes containing 
same MREs, that is, target genes compete to sponge the 
miRNA. Thus, the competitive endogenous RNAs (ceRNAs) 
hypothesis is put forward.

The competitive endogenous RNAs (ceRNAs) hypoth-
esis was firstly proposed by Pandolfi lab in journal CELL 
at 2011 and has received wide attention since then. They 
subsequently published an article to test the hypothesis. In 
the paper, the phosphatase and tensin homolog (PTEN) gene, 
which was known to be specifically abundant expressed dur-
ing cancer developed, was utilized. Kinds of software were 
used to predict target genes which sponged the same miR-
NAs with PTEN (10 miRNAs have verified in published 
articles), and screened out the genes that sponged at least 
6 miRNAs to perform subsequent functional verification. 
Since then, abundant of studies followed this study idea [24, 
25].

In current, the research of ceRNAs effect covers a wide 
range of subjects. It involves not only in coding genes but 
many non-coding genes, including long non-coding RNAs 
(lncRNAs), circle RNAs (circRNAs), pseudogenes and 
viral transcripts. The lncRNAs, circRNAs and pseudogenes 
previously are deemed to the waste or noise of transcrip-
tion. However, now we know those non-coding ones play 
an important post-transcriptional role.

Fig.1   Canonical microRNA 
biogenesis pathway. In nucleus, 
the primary microRNAs are 
transcribed by RNA polymerase 
II, basically. Then, the enzyme 
Drosha splices the primary 
microRNAs to precursor 
microRNAs. The Exportin-5 
transports the pre-microRNAs 
from nucleus to cytoplasm, 
with the offer in Ran-GTPase. 
Subsequently, Dicer finishes the 
last splicing program, which is 
key component to be a mature 
one. The microRNA finally 
loads into Ago2, which binds 
in the 3′UTR of target gene for 
post-transcriptional regulation
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Meanwhile, those non-coding genes also provide abun-
dant research materials of ceRNA hypothesis, because they 
contain kinds of MREs, and usually around coding genes, for 
instance, lncRNAs and circRNAs. Moreover, a few miRNAs 
originates from some lncRNAs and circRNAs.

The lncRNAs as ceRNAs

In general, lncRNAs are regarded as by-products of the gene 
transcription process which lacked protein coding potential, 
and their size usually more than 200 nucleotides, even up to 
1000 nucleotides. A few studies although demonstrated ncR-
NAs may engage ribosomes and produce small polypeptides, 
normally less than 100 amino acids [26]. However, the most 
reports suggested that lncRNAs did not encode proteins [27]. 
An accepted consensus of lncRNAs biological role is lncR-
NAs involves in epigenetic modulation in the nucleus, or as 
the post-transcriptional regulator in the cytoplasm via cis- or 
trans-regulation adjacent genes [28]. In the nucleus, several 
reports suggest lncRNAs directly interact with transcription 
factors as transcriptional co-activators, while others indicate 
lncRNAs may impair the assembly of transcriptional com-
plexes, as the inhibitor of gene expression [29–31]. When 
lncRNAs in cytoplasm, they able to sponge the microRNAs, 
acts as the regulator to affect their target genes post-tran-
scriptionally expressed. Thus, only the lncRNAs locate in 
the cytoplasm can act as ceRNAs, which is one such hypoth-
esis for lncRNAs role to attract notable attention.

Huge studies demonstrate that the most lncRNAs are 
highly conserved in mammalian genomes, whether it is 
human or animals, which usually share a conserved region 
in the same lncRNA [32]. For ncRNAs are transcribed from 
genes, hence, the lncRNAs share the uniform MREs with 
genes, which is the key foothold for ceRNAs hypothesis. 
The lncRNAs are widely distributed in genome, according 
to GENCODE, which summarizes ENCODE project. There 

are 17,960 lncRNAs in human transcriptome and 13,197 
in mouse transcriptome (Newly report of June 24th, 2020, 
shows in Fig. 2). Such abundant lncRNAs data provide the 
important materials to ceRNAs.

Numerous lncRNAs play a crucial regulatory role in 
human diseases occurred, which including Parkinson’s 
disease [33], Cardiovascular Disease [34], Liver diseases 
[35], kinds of Cancer [36, 37], Obesity [38], and Muscular 
Atrophy [39].

Adipose tissue is the most important energy storage tissue 
of the body. Additionally, it also has the potential endocrine 
role, and secretes adipokines including leptin, adiponectin, 
resistin, interleukin, visfatin, etc. Meanwhile, it takes part 
in the immune and metabolic regulation. Adipose divides 
into white and brown adipose. The brown adipose tissue 
(BAT) offers chemical energy to the body by mobilizing 
more lipolysis of white adipose tissue (WAT), because of its 
ample mitochondrial content. The BAT mainly distributes 
in the interscapular area, armpit and back of neck. In par-
ticular, more BAT is contained in newborns and hibernating 
animals. However, some reports corroborate adult humans 
have metabolically active BAT [40, 41]. Recently studies 
demonstrate lncRNAs involve in the development and func-
tion of BAT. The lnc-BATE1 binds two protein heterogene-
ous nuclear ribonucleoprotein U necessary for BAT adipo-
genesis, and its inhibition impairs brown fat while activates 
the white fat-associated gene expression [42].The human 
brown fat lncRNA 1(Blnc1) generates the series of trunca-
tion mutants to identify the functional RNA domains, via 
RNA–protein interaction study to illuminate the molecular 
features of the Blnc1 ribonucleoprotein complex. Results 
show Blnc1 is highly conserved between human and mouse 
at both genomic and functional level, and it can facilitate the 
brown adipocyte-associated gene expression. Adiponectin 
antisense lncRNA can inhibit adipogenesis, including the 
adipogenesis of WAT, BAT and liver triglyceride (TG) by 

Fig2   Annotated transcripts 
in GENCODE. The pie charts 
show the current statistics on 
human and mouse transcripts 
identified in GENCODE. 
(Version34 and version M25, 
respectively, published in June 
24th, 2020)
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transferring it from nucleus to cytoplasm, and attenuate adi-
ponectin mRNA translation at the same time [43].

Besides that, adipocyte differentiation-associated long 
non-coding RNA (ADNCR) is able to be a competitive 
endogenous RNA by sponging miR-204 and therefore inhib-
its the bovine adipocyte differentiation [44]. The lncRNA 
Gm15290 promotes murine PPARγ-induced fat deposition 
by sponging miR-27b, as ceRNA of PPARγ [45]. A new 
lncRNA terms muscle differentiation-associated lncRNA 
(MDNCR) by sponging miR-133a to promote the bovine 
myoblast differentiation and inhibit cell proliferation, as 
ceRNA of GosB [46]. Meanwhile, a myogenesis-associated 
lncRNA (lncMG) acts as ceRNA for IGF2 by sponging miR-
125b to promote myogenesis [47]. The H19 is an important 
lncRNA, its exon1 encodes miR-675-3p and miR-675-5p, 
they target the Smad1, Smad5 and Cdc6 to regulate the skel-
etal muscle differentiation and regeneration. Meanwhile, 
H19 antagonizes the roles of these two miRNAs, acts as 
the ceRNAs of β-catenin, which is those miRNAs target 
gene β-catenin activates the Wnt/β-catenin pathway to pro-
mote the osteogenesis. In the other way, H19 as ceRNA of 
C8orf4a can sponge the miR-30a to modulate the adipo-
genic differentiation [48–50]. LncIRS1 as ceRNA of IRS1 by 
sponging the miR-15a and miR-15b/c-5p to promote chicken 
skeletal muscle myogenesis and control atrophy. LncRNA 
MEG3 as ceRNA of SRF via sponging the miR-423-5p as 
ceRNA of SRF, lncRNA MEG3 inhibit myoblast prolifera-
tion and promote its differentiation [51]. To understand more 
effectively, Table 1 discusses about recent advancements of 
lncRNAs as ceRNAs.

The circRNAs as ceRNAs

The circRNAs are found over decades, while the mecha-
nism of their biosynthesis is distinct. In current, the mostly 
accepted point is they are produced from precursor mes-
senger RNA (pre-mRNA). During the mRNA transcription 
of exons, RNA is partially folded, thus leads exon skipping, 
which allows the region crossing to form circular RNA 
intermediates, and further back-splicing to be a circRNA. 
Another view suggests reverse complementarity leads 
introns complementary pairing, and excision of remaining 
introns and to form circRNA [52]. Since circRNA can derive 
from the gene transcript, different back-splicing modes and 
different back-splicing sites, one gene locus may produce 
multiple circRNAs [53]. According to the diverse character-
istics of alternative back-splicing modes and splicing sites, 
they can be divided into 2 kinds of alternative back-splic-
ing and 4 kinds of alternative splicing landscape. 2 kinds 
of alternative back-splicing (5′ back-splicing and 3′ back-
splicing) and 4 kinds of alternative splicing (5′ splicing, 
alternative 3′ splicing, cassette exon and intron retention), 
respectively [54].

The most circRNAs locate in the cytoplasm, while a few 
circRNAs retaining intron sequences are often restricted to 
the nucleus [52, 55]. CircRNAs expression generally main-
tains at a low level. But there is abundant circRNAs expres-
sion in some tissues or cell types, such as in brain, and it 
is more abundant than linear expression [56, 57]. Besides, 
reports also suggest certain circRNAs are the origin of a 
few pseudogenes, for example, ring finger and WD repeat 
domain 2 circRNA (RFWD2) are the origin of over 30 pseu-
dogenes [58].

The circRNA expression pattern is highly conserved in 
many species, the expression abundance in many tissues 
among individuals, particularly in mammal neuronal tissues. 
A striking example is 4522 out of total 15,849 mouse circR-
NAs are conserved in human brains, even some of them can 
be observed in fly brains [59]. The report corroborates same 
circRNAs are conserved in humans, mice, and flies, possibly 
because these ones have certain neurological functions [59]. 
The reason for the high expression and content in the nerv-
ous system is circRNAs are preferentially spliced. CircRNAs 
also act as the regulator in human-related diseases occurred, 
including various cancers. Research shows circRNAs relate 
to innate immune response, transfection of circRNAs derives 
from vivo into mammalian cells effectively induced immune 
genes expressed, thus enhances the protection against viral 
inflectional mammalian cells [60].

Furthermore, circRNAs are ability to sponge miRNAs 
act as ceRNAs of miRNAs targets and play post-transcrip-
tional role. For example, CDR1 antisense RNA (CDR1as) 
is a cyclic, highly conserved and abundant single exon cir-
cRNA in mammalian brain, there are over 60 binding sites 
of miR-7. Besides, circular RNA sponge for miR-7 (ciRS -7) 
is also abundant in human and mouse brains. CiRS-7 has 
more than 70 miR-7 binding sites [61]. According to stud-
ies, CDR1as is able to regulate osteogenic differentiation 
of periodontal ligament stem cells via miR-7/GDF5/SMAD 
and p38/MAPK signaling pathway and CDR1as acts as 
ceRNA [62]. The mitochondrial fission and apoptosis-
related circRNA (MFACR) mediates myocardial cell death 
by sponging miR-552-3p to upregulate mitochondrial fis-
sion process 1 gene (MTP18) expressed [63]. The itchy E3 
ubiquitin protein ligase circRNA (circ-ITCH) regulates p21 
and PTEN genes’ expression by sponging miR-17 and miR-
224, thereby inhibiting the bladder cancer developed [64]. 
ADP ribosylation factor 3 circRNA (circARF3) inhibits TNF 
receptor-associated factor 3 gene (TRAF3) by sponging miR-
103, thus eases mitophagy-mediated inflammation in vitro 
and in vivo [65]. Homeodomain interacting protein kinase 3 
circRNA (circHIPK3) sponges miR-30a to promote vascular 
endothelial growth factor C (VEGF-C), frizzled class recep-
tor 4 (FZD4), Wnt family member 2 (WNT2) expressed, 
leads to endothelial cell proliferation and increases vascular 
dysfunction, blocks the miR-30 a role in diabetic retinopathy 



113Molecular and Cellular Biochemistry (2021) 476:109–123	

1 3

Ta
bl

e 
1  

C
om

pe
tin

g 
en

do
ge

no
us

 R
N

A
 st

ud
ie

s

Ty
pe

 o
f c

eR
N

A
s

Ex
am

pl
e 

of
 c

eR
N

A
s

K
ey

 m
iR

N
A

A
ffe

ct
ed

 ta
rg

et
s

B
io

lo
gi

ca
l r

ol
e

C
om

pa
rtm

en
ts

 th
at

 c
eR

N
A

 
lo

ca
te

d
Re

fe
re

nc
es

Lo
ng

 n
on

-c
od

in
g 

R
N

A
s

A
D

N
C

R
m

iR
-2

04
SI

RT
1

In
hi

bi
te

d 
ad

ip
oc

yt
e 

di
f-

fe
re

nt
ia

tio
n

B
ov

in
e 

A
di

po
cy

te
-d

er
iv

ed
 

ste
m

 c
el

ls
[4

4]

Ln
cR

N
A

 G
m

15
29

0
m

iR
-2

7b
PP

AR
γ

Pr
om

ot
ed

 P
PA

R
γ-

in
du

ce
d 

fa
t d

ep
os

iti
on

M
ur

in
e 

pr
im

ar
y 

ad
ip

oc
yt

es
[4

5]

M
D

N
C

R
m

iR
-1

33
a

G
os

B
Pr

om
ot

ed
 m

yo
bl

as
t d

if-
fe

re
nt

ia
tio

n 
an

d 
in

hi
bi

te
d 

ce
ll 

pr
ol

ife
ra

tio
n

B
ov

in
e 

m
yo

bl
as

t c
el

ls
[4

6]

Ln
cm

g
m

iR
-1

25
b

IG
F2

Pr
om

ot
e 

m
yo

ge
ne

si
s

M
ur

in
e 

m
us

cl
e 

ste
m

 c
el

ls
[4

7]
H

19
1.

m
iR

-6
75

-3
p

2.
m

iR
-6

75
-5

p
3.

m
iR

-3
0a

1/
2.

Sm
ad

1/
Sm

ad
5/

C
dc

6/
β-

ca
te

ni
n

3.
 C

8o
rf

4 
a

1/
2.

Re
gu

la
te

 th
e 

sk
el

et
al

 
m

us
cl

e 
di

ffe
re

nt
ia

tio
n 

an
d 

re
ge

ne
ra

tio
n

3.
 M

od
ul

at
es

 th
e 

ad
ip

og
en

ic
 

di
ffe

re
nt

ia
tio

n

1/
2.

C
2C

12
 m

yo
bl

as
t c

el
l

3.
 h

um
an

 a
di

po
se

 ti
ss

ue
-

de
riv

ed
 m

es
en

ch
ym

al
 

ste
m

 c
el

ls

[4
6,

 4
7,

 5
0]

M
IA

T
m

iR
-1

8a
-5

p
ES

R1
Re

gu
la

te
d 

ad
ip

oc
yt

e 
di

f-
fe

re
nt

ia
tio

n
H

um
an

 a
di

po
se

-d
er

iv
ed

 
ste

m
 c

el
ls

[1
29

]

LI
N

C
02

20
2

1.
m

iR
-1

36
-5

p
2.

m
iR

-3
81

-3
p

1.
PI

K
3R

1
2.

FO
XO

1
Re

gu
la

te
d 

ad
ip

oc
yt

e 
di

f-
fe

re
nt

ia
tio

n
H

um
an

 a
di

po
se

-d
er

iv
ed

 
ste

m
 c

el
ls

[1
29

]

Ln
cR

N
A

 T
IN

C
R

m
iR

-3
1-

5p
C

/E
BP

α
M

od
ul

at
es

 th
e 

ad
ip

og
en

ic
 

di
ffe

re
nt

ia
tio

n
H

um
an

 a
di

po
se

 ti
ss

ue
-

de
riv

ed
 m

es
en

ch
ym

al
 

ste
m

 c
el

ls

[1
30

]

Ln
c-

23
1

m
iR

-1
25

a-
5p

E2
F3

Pr
om

ot
ed

 m
yo

bl
as

t p
ro

-
lif

er
at

io
n 

an
d 

in
hi

bi
te

d 
di

ffe
re

nt
ia

tio
n

M
ur

in
e 

m
yo

bl
as

t c
el

ls
[1

31
]

Ln
cR

N
A

 M
EG

3
m

iR
-4

23
-5

p
SR

F
in

hi
bi

te
d 

m
yo

bl
as

t p
ro

lif
-

er
at

io
n 

an
d 

pr
om

ot
ed

 it
s 

di
ffe

re
nt

ia
tio

n

Po
rc

in
e 

Sa
te

lli
te

 C
el

ls
[5

1]

Ln
cI

R
S1

m
iR

-1
5a

m
iR

-1
5b

-5
p

m
iR

-1
5c

-5
p

IR
S1

Pr
om

ot
ed

 sk
el

et
al

 m
us

cl
e 

m
yo

ge
ne

si
s a

nd
 c

on
-

tro
lle

d 
at

ro
ph

y

C
hi

ck
en

 p
rim

ar
y 

m
yo

bl
as

ts
[1

32
]

R
P1

1-
14

2A
22

m
iR

-5
87

W
nt

5β
Pr

om
ot

ed
 a

di
po

ge
ne

si
s

H
um

an
 v

is
ce

ra
l a

di
po

se
 

tis
su

e
[1

33
]

Ln
cR

N
A

-A
di

m
iR

-4
49

a
C

D
K

6,
 C

D
C

25
A

Re
gu

la
te

d 
ad

ip
og

en
es

is
M

ou
se

 a
di

po
se

-d
er

iv
ed

 
ste

m
 c

el
ls

[1
34

]



114	 Molecular and Cellular Biochemistry (2021) 476:109–123

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ty
pe

 o
f c

eR
N

A
s

Ex
am

pl
e 

of
 c

eR
N

A
s

K
ey

 m
iR

N
A

A
ffe

ct
ed

 ta
rg

et
s

B
io

lo
gi

ca
l r

ol
e

C
om

pa
rtm

en
ts

 th
at

 c
eR

N
A

 
lo

ca
te

d
Re

fe
re

nc
es

C
irc

le
 R

N
A

s
ci

rc
H

U
W

E1
m

iR
-2

9b
AK

T3
Re

gu
la

te
d 

m
yo

bl
as

t d
ev

el
-

op
m

en
t

B
ov

in
e 

m
yo

bl
as

t c
el

ls
[6

9]

ci
rc

SA
M

D
4A

m
iR

-1
38

-5
p

EZ
H

2
Re

gu
la

te
d 

pr
ea

di
po

cy
te

 
di

ffe
re

nt
ia

tio
n

H
um

an
 a

di
po

se
 ti

ss
ue

[7
0]

ci
rc

Er
bB

4
m

iR
-2

9a
-5

p
AT

2R
In

du
ce

d 
va

sc
ul

ar
 sm

oo
th

 
m

us
cl

e 
ce

ll 
m

ig
ra

tio
n

M
ou

se
 a

or
tic

 sm
oo

th
 m

us
-

cl
e 

ce
lls

[1
35

]

ci
rc

H
IP

K
3

m
iR

-3
26

ST
IM

1
M

od
ul

at
ed

 a
irw

ay
 sm

oo
th

 
m

us
cl

e 
ce

lls
 p

ro
lif

er
at

io
n

H
um

an
 a

irw
ay

 sm
oo

th
 

m
us

cl
e

[1
36

]

ci
rc

IN
SR

m
iR

-3
4a

Bc
l-2

, C
yc

lin
E2

Re
gu

la
te

d 
m

yo
bl

as
t c

el
ls

 
pr

ol
ife

ra
tio

n 
an

d
ap

op
to

si
s

B
ov

in
e 

lo
ng

is
si

m
us

 d
or

si
[6

8]

ci
rc

TT
N

m
iR

-4
32

IG
F2

Fa
ci

lit
at

ed
 m

yo
bl

as
ts

 p
ro

lif
-

er
at

io
n 

an
d 

di
ffe

re
nt

ia
tio

n
B

ov
in

e 
pr

im
ar

y 
m

yo
bl

as
ts

[6
7]

ci
rc

TM
TC

1
m

iR
-1

28
-3

p
M

ST
N

In
hi

bi
te

d 
ch

ic
ke

n 
sk

el
et

al
 

m
us

cl
e

sa
te

lli
te

 c
el

l d
iff

er
en

tia
tio

n

C
hi

ck
en

 sk
el

et
al

 m
us

cl
e

sa
te

lli
te

 c
el

l
[1

37
]

ci
rc

C
D

R
1

m
iR

-7
IG

F1
R

In
du

ce
d 

m
yo

bl
as

t d
iff

er
en

-
tia

tio
n

C
2C

12
 m

yo
bl

as
t c

el
l

[1
38

]

ci
rc

SN
X

29
m

iR
-7

44
W

nt
5α

Fa
ci

lit
at

ed
 m

yo
bl

as
ts

 d
if-

fe
re

nt
ia

tio
n

an
d 

in
hi

bi
te

d 
pr

ol
ife

ra
tio

n

C
2C

12
 m

yo
bl

as
t c

el
l

[1
39

]



115Molecular and Cellular Biochemistry (2021) 476:109–123	

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ty
pe

 o
f c

eR
N

A
s

Ex
am

pl
e 

of
 c

eR
N

A
s

K
ey

 m
iR

N
A

A
ffe

ct
ed

 ta
rg

et
s

B
io

lo
gi

ca
l r

ol
e

C
om

pa
rtm

en
ts

 th
at

 c
eR

N
A

 
lo

ca
te

d
Re

fe
re

nc
es

Ps
eu

do
ge

ne
s

PT
EN

P1
1.

m
iR

-2
1

2.
m

iR
-1

0a
-5

p
3.

 m
iR

-2
14

4.
m

iR
-1

9b

1/
2/

3.
PT

EN
4.

 M
TU

S1
1.

 R
eg

ul
at

ed
 sm

oo
th

 m
us

cl
e 

ce
ll

pr
ol

ife
ra

tio
n 

an
d 

ap
op

to
si

s;
2.

 In
hi

bi
te

d 
th

e 
gl

io
m

a 
ce

ll 
pr

og
re

ss
io

n;
3.

 M
od

ul
at

ed
 o

ste
oc

la
st 

di
f-

fe
re

nt
ia

tio
n 

an
d 

at
te

nu
at

ed
 

os
te

op
or

os
is

4.
 In

hi
bi

te
d 

ce
ll 

pr
ol

ife
ra

-
tio

n
an

d 
in

va
si

on

1.
 H

um
an

 a
or

tic
 sm

oo
th

 
m

us
cl

e 
ce

lls
;

2.
 H

um
an

 m
es

en
ch

ym
al

ste
m

 c
el

ls
;

3.
 R

AW
 2

64
.7

 m
ac

ro
ph

ag
es

4.
 H

um
an

 c
er

vi
ca

l c
an

ce
r 

ce
ll 

lin
es

[1
40

–1
43

]

B
R

A
FP

m
iR

-3
0a

m
iR

-1
82

m
iR

-8
76

m
iR

-5
90

BR
AF

M
od

ul
at

ed
 c

ar
ci

no
ge

ne
si

s
H

C
T1

16
 c

el
ls

 a
nd

 H
eL

a 
ce

lls
[8

4]

C
Y

P4
Z2

P
m

iR
-2

04
m

iR
-2

11
m

iR
-1

25
a-

3p
m

iR
-1

97
m

iR
-1

22
6

C
YP

4Z
1

Pr
om

ot
ed

 b
re

as
t c

an
ce

r 
an

gi
og

en
es

is
H

um
an

 b
re

as
t c

an
ce

r c
el

l 
lin

es
[7

9,
 8

0]

H
M

G
A

1P
6

le
t-7

c-
5p

,
m

iR
10

6a
-5

p 
m

iR
-

10
3a

-3
p

H
M

G
A1

, H
M

G
A2

Pr
om

ot
ed

 o
va

ria
n 

ca
nc

er
 

ce
ll 

m
al

ig
na

nc
y

H
O

-8
91

0 
ov

ar
ia

n 
ca

nc
er

 
ce

ll 
lin

es
[8

1]

PD
IA

3P
1

m
iR

-1
24

-3
p

RE
LA

Pr
om

ot
ed

 h
ig

hl
y-

in
va

si
ve

 
m

es
en

ch
ym

al
 tr

an
si

tio
n 

of
 

gl
io

m
a 

ce
lls

H
um

an
 g

lio
m

a 
ce

ll 
lin

es
[8

2]

D
U

X
A

P8
m

iR
-5

77
RA

B1
4

Pr
om

ot
ed

 c
ol

or
ec

ta
l 

ca
nc

er
 c

el
l p

ro
lif

er
at

io
n,

 
m

ig
ra

tio
n 

an
d 

in
va

si
on

, 
in

hi
bi

te
d 

ap
op

to
si

s

H
um

an
 c

ol
or

ec
ta

l c
an

ce
r 

ce
ll 

lin
es

[8
3]

V
ira

l t
ra

ns
cr

ip
ts

In
flu

en
za

 A
 V

iru
s t

ra
n-

sc
rip

ts
m

iR
-1

01
m

TO
R

A
br

og
at

ed
 V

ira
l L

ife
 C

yc
le

A
54

9 
ce

lls
[1

44
]

he
pa

tit
is

 B
 V

iru
s t

ra
ns

cr
ip

ts
m

iR
-1

5a
/1

6
Bc

l-2
, S

m
ad

7
M

ad
e 

ce
lls

 re
si

st
an

t t
o 

ap
op

to
si

s a
nd

 p
ro

m
ot

ed
 

tu
m

or
ig

en
es

is

H
um

an
 h

ep
at

om
a 

ce
ll 

lin
es

[9
7,

 9
8]

he
pa

tit
is

 C
 V

iru
s t

ra
ns

cr
ip

ts
m

iR
-1

22
ST

AT
3

Re
pr

es
se

d 
th

e 
ce

llu
la

r 
an

tiv
ira

l
H

uh
7 

ce
lls

[9
5]



116	 Molecular and Cellular Biochemistry (2021) 476:109–123

1 3

[66]. In Qinchuan cattle, some circRNAs are identified as the 
ceRNA to regulate the myogenesis, for example, circTTN 
sponges miR-432 to be ceRNA of insulin like growth factor 
2 (IGF2) and facilitates myoblast proliferation and differen-
tiation [67]. CircINSR acts as ceRNA of B cell leukemia/
lymphoma 2 (Bcl-2) and Cyclin E 2 (CyclinE2) to regulate 
myoblast cells proliferation and apoptosis by sponging miR-
34a [68]. The circHUWE1 acts as ceRNA of AKT serine/
threonine kinase 3 (AKT3) to regulate myoblast development 
by sponging miR-29b [69]. Meanwhile, other reports dem-
onstrate circSAMD4A acts as ceRNA of enhancer of zeste 
2 polycomb repressive complex 2 subunit (EZH2) by spong-
ing miR-138-5p to regulate preadipocyte differentiation in 
human adipose tissue [70]. To understand more effectively, 
Table 1 discusses about recent advancements of circRNAs 
as ceRNAs.

Pseudogene transcripts as ceRNAs

Pseudogenes, in the other word, are another type of long 
non-coding RNAs and generally consider as a subclass of 
lncRNAs. Pseudogenes and lncRNAs are very abundant in 
human and mouse genomes. According to the latest data of 
GENCODE, the content of pseudogenes in the published 
annotated information of human and mouse exceeds 24%, as 
shown in Fig. 3. Pseudogenes are very similar to the coding 

genes, because they are produced by modifying and cut-
ting off the coding transcripts in the process of transcription. 
However, pseudogenes lost the ability to translate proteins, 
the reason is early appearance of termination codons in 
the sequence, or the occurrence of insertion or deletion of 
the shift-frames mutations, and usually denoted by ψ [71, 
72]. On account of the high sequence homology between 
the pseudogenes and their parent genes, pseudogenes take 
part in post-transcriptional regulation of their parent genes. 
Mechanisms of regulation includes the formation of endog-
enous interfering RNAs, recruitment of regulatory proteins 
by pseudogene antisense RNAs to complementary sites in 
the parent genes to modulate chromatin remodeling, and 
competition for RNA-binding proteins or the translation 
machinery [73].

Besides, pseudogenes modulate parent genes’ expres-
sion by competitive sponging the miRNAs shared between 
both as the ceRNA. The regulation is very obvious in the 
cancer that caused by cancer-specific pseudogenes abnor-
mal expression [74]. Among them, pseudogene PTENP1 
is the most well known and important one, of which the 
parent gene PTEN is a momentous label gene of carcino-
genesis. Previous reports corroborated as the ceRNA, pseu-
dogene PTENP1 modulated carcinogenesis by adjusting 
the expression of PTEN gene expressed [75, 76]. Pseudo-
gene BRAFP acts as the ceRNA of B-Raf proto-oncogene, 

Fig.3   Mechanism of competi-
tive endogenous RNA hypoth-
esis. The miRNA is ubiquitous 
in cellular cytoplasm. In 
general, mRNA will translate to 
peptide chain, however, miRNA 
will negative regulate the 
translation of mRNA, which via 
binding on MREs. As shown 
in Fig. 1, mass of non-coding 
RNAs (lncRNAs, pseudogene 
transcripts and circRNAs, for 
example) also exist in cyto-
plasm. They have the identical 
MREs or binding sites like 
mRNA, thus those non-coding 
RNAs will sponge the miRNAs 
to relieve the miRNAs nega-
tive regulation to mRNA, and 
promote the expression of 
functional genes
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serine/threonine kinase gene (BRAF) in humans and mouse 
to modulate carcinogenesis [73]. Pseudogene TUSC2P was 
highly homologous with its parent gene transcript 3′UTR, 
and the sequence of them can sponge multiple miRNAs 
(miR-17, miR-93, miR-299-3p, miR-520a, miR-608 and miR-
661). Pseudogene TUSC2P promotes tumor-suppressor 2 
(TUSC2) expressed by competitive sponging those miRNAs 
to inhibit cell proliferation, survival, migration, invasion 
and colony formation, and increase tumor cell death [77]. 
Pseudogene HK2P1 competitive sponges miR-6887-3p to 
regulate hexokinase 2 gene (HK2) expressed, while reduces 
expression of HK2P1, HK2 may contribute to the occurrence 
and development of preeclampsia by suppressing glycolysis 
and impairing decidualization [78]. Pseudogene CYP4Z2P 
by sponging miR-204, miR-211, miR-125a-3p, miR-197 
and miR-1226 acts as ceRNA of CYP4Z1 to promote breast 
cancer angiogenesis [79, 80]. Pseudogene HMGA1P6 acts 
as ceRNA of HMGA1and HMGA2 by sponging let-7c-5p, 
miR-103a-3p and miR106a-5p to promote ovarian cancer 
cell malignancy [81]. Besides, pseudogene PDIA3P1 and 
DUXAP8 also, respectively, acts as ceRNA of RELA and 
RAB14 to regulate glioma and colorectal cancer occurred 
[82, 83]. To understand more effectively, Table 1 discusses 
about recent advancements of pseudogenes as ceRNAs.

The viral transcripts acted as ceRNAs

The viruses infect host cells cause kinds of diseases, 
among which cancer and hepatitis are prominent ones. The 
mostly accepted points of pathogenesis are genomic mes-
sage interaction existed between viruses and host cell, and 
the miRNAs is the key component of interaction [84–86]. 
Besides the cellular miRNAs involve in interaction of host-
viral, the viruses that encode their own miRNAs are cor-
roborated to cause the host cell silencing machinery [87, 
88], thus leads to diseases. The first reported viral miRNAs 
originated from Epstein Barr virus (EBV) [89], followed 
by Kaposi’s sarcoma-associated herpesvirus (KSHV) [90], 
β-herpesvirus human cytomegalovirus (HCMV) [91], human 
α-herpesvirus herpes simplex virus-1 (HSV-1) [88], and 
heliothis virescens ascovirus (HvAV) [92]. As shown pre-
viously, miRNAs originated from viruses and cells involve 
in diseases. Among them, miR-122 is prominent who exten-
sively exists in liver. Kinds of hepatitis virus exhibit special 
tropism to the liver, so the miRNA-122 is the indispensable 
factor of them to cause the diseases [93, 94]. For example, 
hepatitis C Virus (HCV) transcripts act as ceRNA of signal 
transducer and activator of transcription 3 (STAT3) gene to 
repress cellular antiviral in liver [95].

Currently, viral transcripts have demonstrated that 
acted as the ceRNAs to play the prominent role in diseases 
occurred. A viral transcript derives from herpesvirus saimiri 
named as U-rich non-coding RNAs of unknown function 

(HSURs) sponges three host cell miRNAs, take miR-27 for 
example, one of them, binds to HSURs as ceRNAs of its 
target gene and leads to decrease its availability [96]. Mean-
while, Hepatitis B virus (HBC), its mRNA sponges miR-15a 
as the ceRNA of Smad7 gene to involve in the TGF-β path-
way; Smad7 is the key regulator of TGF-β, and it inhibits 
the TGF-β-induced apoptosis while facilitates tumorigenesis 
[97, 98]. However, it is still limited to the achievement on 
viral transcripts acting as ceNRAs.

The controversy of ceRNAs hypothesis

The proposal of the competitive endogenous RNA hypoth-
esis provides a new perspective for the study of post-tran-
scriptional regulation of genes, which was verified by a large 
number of researches. However, with the hypothesis devel-
oped, correspondingly emerges some new views challenge 
the ceRNAs hypothesis developed. The main of controversy 
focus on the following:

First, according to ceRNAs hypothesis, the abundance 
of individual target gene can modulate the activity of miR-
NAs. However, the expression alteration of an individual 
gene can constitute only a tiny fraction of miRNAs’ target 
gene abundance. Thus some believe there should be a sen-
sitive threshold for miRNA function, which leads miRNA 
to cause the ceRNAs effect [99–101]. When it is below the 
sensitive threshold, the influence of ceRNAs effect is dif-
ficult to be observed. Meanwhile, for mRNAs, it requires 
extra high expression above the normal physiological level 
to compare with those of artificial miRNA sponges [102]. 
In general, a typical mRNA contains 1 or 2 binding sites of 
single miRNA, may express 10–100 copies per cell, while 
the level of miRNAs for various types of cells are estimated 
in ten to more than ten thousand copies per cell; thus it is 
impossible to decrease miRNA expressed significantly and 
make an effect on other mRNAs [103–106].

On the other hand, the binding energy is another point 
of ceRNAs hypothesis controversy. The binding site or 
MERs of miRNAs contains three kinds of size, ~ 6nt, ~ 7nt 
and ~ 8nt, respectively. The binding energy of miRNAs 
whether correlates with the length of binding site still is 
controversial. There is hierarchy for miRNAs bind to MERs 
or binding sites. In general, miRNAs preferentially bind 
to high affinity ~ 8nt and ~ 7nt, and then to ~ 6nt [101, 103, 
107]. However, higher abundance of size is ~ 6nt, while 
lower abundance is ~ 7nt and ~ 8nt in  vivo [108, 109]. 
Besides the miRNAs seed sequence complementary pair-
ing with MERs of target genes, series of miRNAs contain 
supplementary base region that complementary pairing with 
sequence of target genes, which near to seed sequence. The 
seed sequence usually locates at 2–8 nucleotides of 5′ end of 
miRNAs while the supplementary region generally locates 
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at 12–16 nucleotides. There is a view that the supplemen-
tary region can elevate seed-match target genes recognized 
[110–112].

The canonical regulation of miRNAs in vivo as shown 
previously is loaded into argonaute protein (Ago2 in general) 
as a complex, thus the abundance of argonaute is another 
limit factor for ceRNAs cross-talk. The report demonstrates 
gene expression is altered by the competition of small 
RNAs, including miRNAs, the intermediate range level of 
argonaute promotes the competition, and the lower level of 
argonaute facilitates the stronger competition [113]. Besides, 
another report demonstrates Ago2 mRNA m6A methylation 
can modulate miRNA abundance thus to affect the ceRNA 
effect [114]. Here, whose involves m6A methylation, thus 
with various regulatory modes intervened, leads miRNA to 
play ceRNA effect in vivo became more complex.

The ceRNAs hypothesis bases on the canonical model of 
miRNAs binding to target genes, but many researches vali-
date 60% of miRNA binding activity is non-canonical. To be 
specific, other parts of miRNAs escape the binding of seed 
sequence or with seed-like motifs, including mismatches or 
bulges take part in binding [115, 116]. Moreover, the RNA 
editing able to create or destroy the miRNA binding sites 
in 3′UTR of targets, which influences the miRNA binding 
activity, thus leads to modulate the ceRNA effect. Among 
them, Adenosine-to-inosine (A-to-I) editing is the most 
abundant modes in mammal, which modulates the miRNA 
binding sites in 3′UTR of targets [117]. This undoubtedly 
is another important factor affects the abundance of MREs.

Furthermore, series of non-coding genes are brought into 
focus. In general, even the abundance of lncRNAs is iden-
tified in particular tissues or organ, take skeletal muscle, 
fat, and brain for example. However the mostly individual 
lncRNA, circRNA and pseudogene expressed are far from 
the expression level of their corresponding ceRNAs (those 
ones usually are coding genes). In vitro experiments, how-
ever, artificially boost the expression of non-coding genes 
in excess. For example, the steady-state expression level 
of pseudogenes rarely reached that of their parent genes. 
In experimental models, parent genes and pseudogenes 
expression levels generally are comparable to demonstrate 
competitiveness, which differs from the real in vivo [118]. 
Meanwhile, the controversy over the hypothesis is further 
tanglesome by asserting that ceRNAs activity is a general 
phenomenon, thus ceRNAs are easy to define as a mecha-
nism regulatory function class, in which linRNAs, circRNAs 
and pseudogenes totally contained [118, 119].

Second, the single source of non-coding genes. In the 
experimental model, the non-coding genes are usually 
focused on, which by the virtue of their derivation from 
reverse transcription of the same mRNA. Here, the non-
coding genes originate very onefold, far less abundant than 
the non-coding genes produced in vivo. The experimental 

model studies the role of single non-coding gene only, while 
ignores the interaction among different non-coding genes. 
However, there is no reasonable method to solve that at 
present.

Third, point of controversy is the false-positive predic-
tion of software. Currently, via online prediction websites or 
software to predict: for example, TargetScan [120], miRanda 
[121], RNA22 [122], PicTar [123], and PITA [124]. None-
theless, target genes predict miRNAs or on the contrary, the 
false positive is inescapable. No matter which database is 
used, the principle is basically within uniform way, which is 
to estimate whether has miRNAs “seed sequence” (nucleo-
tides 2–8 nt at the 5′ end) complimentary to MREs. How-
ever, the structure of numerous genes has not verified in 
practice yet, and there are practical physiological constraints 
and the interaction in vivo. Thus, many false-positive results 
will inevitably occur in the predicted results. To avoid false 
positive, the comprehensive utilization of multiple predic-
tion software is helpful to obtain the intersection target 
genes. In addition, the interference of false positive can also 
be reduced using multiple miRNAs that has verified. Nev-
ertheless, these methods are time-consuming and laborious, 
and still unable to completely avoid false positive.

Besides that, another key component is the balance of 
transcription and degradation between miRNAs and targets, 
in general, miRNAs-Ago2 complex binds and unbinds to 
targets is much faster than RNA transcription and degrada-
tion. Note that, transcription and degradation times of aver-
age length mRNA (miRNAs targets) have illustrated more 
10 times than miRNA-Ago2 complex binds and unbinds 
to targets. The transcription and degradation are about 
100 min, while the binding after 10 min expected to unbind 
[125, 126]. In the other words, if the complex unbinds from 
targets, and it is free and recycle binds to targets, so the 
abundance of miRNAs is the key regulator during ceR-
NAs effect. However, if complex unable to free and recy-
cle, the ceRNAs effect will suffer huge controversy. Lots 
of researches have noticed the phenomenon that half-life 
difference between miRNAs and miRNA-depend targets. 
Among them, numerous miRNAs ceRNAs interaction net 
is another influence factor. General speaking, co-regulation 
between miRNAs and miRNA-depend targets is a dynamic 
course. To fuse the interaction among them, kinetics model 
maybe is worthy of consideration. In this model, common 
enzyme kinetics parameters Kon, Koff, Kcat, and Km can build 
the kinetics model after mathematical derivation. Though 
the actual interaction in vivo can not be detected by experi-
mental methods, however, the model can help us understand 
this dynamic course, thereby to explore ceRNAs effect in 
interaction of multiple miRNAs and miRNA-depend targets 
in vivo.

All the same, the ceRNA hypothesis still provides a new 
perspective for epigenetics development, and competitive 



119Molecular and Cellular Biochemistry (2021) 476:109–123	

1 3

regulation has a significant influence. To intuitively under-
stand, Fig. 3 discusses about ceRNAs effect in vivo.

After all, there are many competitive regulations in bio-
logical processes. New examples of RNA competition are 
found, including the inhibition of miRNAs in the process 
of transposition from replacement of RNA-binding protein 
s145 to RNA competition [127, 128]. It will further promote 
epigenetics development.
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