Progettazione di Materiali e Processi

Modulo 1 – Lezione 7 Progettazione e selezione di materiali e processi A.A. 2021 – 2022 Vanni Lughi <u>vlughi@units.it</u>

Selection of materials and processes according to sustainability criteria

Sustainability

"Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs"

Report of the Brundtland commission of the UN, 1987

But where do materials fit in?

Sustainability in a Materials context

GHG emissions associated to materials production

Figure 7.1. GHG emissions in GtCO₂e associated with materials production by material (left) and by the first use of materials in subsequent production processes or final consumption (right)

Note: The data excludes emissions from land-use change and credits for carbon storage. *Source:* Based on Hertwich *et al.* (2019).

The product life-cycle

Improving life-cycle sustainability

Time

Life cycle assessment (LCA)

Roll up into an *"eco-indicator"* ?

- Full LCA expensive, and requires great detail and skill and even then is subject to uncertainty
- How can a designer use these data?

Design guidance vs. product assessment

Eco-audit for design

Need: Fast Eco-audit with sufficient precision to guide decision-making

• 1 resource – energy (oil equivalent)

1 emission – CO₂ equivalent

Distinguish life-phases

Eco-aware design: the strategy (1)

Eco-aware design: the strategy (2)

The CES Eco-audit tool

Typical record showing eco-properties

)atabase:	CES EduPack 2010 Levels 1 & 2 Change	😑 Polyethylene terephthalate (PET)						
able:	MaterialUniverse		LA Show/Hide					
Subset:	Edu Level 2 with Eco properties 🔹	Machinability	2	4				
💼 Mate	rialUniverse	Weldability	5	- 4				
_ <u> </u>	eramics and glasses							
	lybrids: composites, foams, natural materials	Geo-economic data for principal component						
	Aetals and allovs	Annual world production	9e6	- 9.2e6	tonne/vr			
	olymers and elastomers	Reserves	* 2.58e8	- 2.6e8	tonne			
	Flastomers							
	Polymers	Primary material production: energy, CO2 and water						
_	Thermonlastics	Embodied energy, primary production	79.6	- 88	MJ/kg			
	Achilopiasies	CO2 footprint, primary production	2.21	- 2.45	kg/kg			
	Cellulose polymers (CA)	Water usage	* 14.7	- 44.2	l/kg			
		Eco-indicator 95	380		millipoints/kg			
	Polyamides (Nylons PA)	Eco-indicator 99	276		millipoints/kg			
	Polycarbonate (PC)	Material processing: energy						
	Polyetheretherketone (PEEK)	Polymer molding energy	* 20.4	- 22.5	MJ/kg			
	Polyethylene (PE)	Polymer extrusion energy	* 7.92	- 8.73	MJ/kg			
	Polyethylene terephthalate (PET)	Polymer machining energy (per unit wt removed)	* 2.03	- 2.24	MJ/kg			
	Polyhydroxyalkanoates (PHA, PHB)							
	Polylactide (PLA)	Material processing: CO2 footprint						
	Polymethyl methacrylate (Acrylic, PMMA)	Polymer molding CO2	* 1.63	- 1.8	kg/kg			
	Polyoxymethylene (Acetal, POM)	Polymer extrusion CO2	* 0.633	- 0.698	kg/kg			
	Polypropylene (PP)	Polymer machining CO2 (per unit wt removed)	* 0.162	- 0.179	kg/kg			
	 Polystyrene (PS) Polytetrafluoroethylene (Teflon, PTFE) 	Material recycling: energy, CO2 and recyc	le fraction					
	Polyurethane (tpPUR)	Recycle						
	Polyvinylchloride (tpPVC)	Embodied energy, recycling	33.4	- 37	MJ/kg			
	Starch-based thermoplastics (TPS)	CO2 footprint, recycling	0.928	- 1.03	kg/kg			
	Thermosets	Recycle fraction in current supply	20	- 22	%			
	_	Downcycle	1					
		Combust for energy recovery	1					
		Heat of combustion (net)	* 23	- 24.2	MJ/kg			
		Combustion CO2	* 2.24	- 2.35	kg/kg			
		Landfill	1					
		Biodegrade	×					
		Toxicity rating	Non-toxic					
		A renewable resource?	×					
		Environmental notes						

The simple Audit tool: Levels 1, 2 and 3

Material and process energy / CO₂

Transport

Use phase – static mode

Example: Bottled water (100 units)

- 1 litre PET bottle with PP cap
- Blow moulded
- Filled in France, transported 550 km to UK
- Refrigerated for 2 days, then drunk

The output: drink container

The audit reveals the most energy and carbon intensive steps...

... and allows rapid "What if..."

"What if...": Change the materials

- I litre glass bottle with aluminum cap
- Glass moulded
- Filled in France, transported 550 km to UK
- Refrigerated for 2 days, then drunk

"What if...": Glass bottle replacing PET

"What if...": Combust for energy instead of recycle

- 1 litre PET bottle with PP cap
- Blow moulded
- Filled in France, transported 550 km to UK
- Refrigerated for 2 days, then drunk

"What if...": Combust instead of recycle

"What if...": Ship by air freight, refrigerate 10 days

Eco-informed selection: the strategy

Use eco-audit to indentify design objective

Back to the initial example: materials phase dominates Eco-selection for a fizzy drink bottle

Modelling the bottle

- R= Bottle radius
- t = Thickness of bottle wall
- p = Internal pressure
- σ_v = Yield strength of material
- ρ = Density of material
- H_m = Embodied energy of material/kg
- $E = Embodied energy/m^2 of wall$
- C_m = Material cost per kg

Cylindrical pressure vessel

- Circumferential stress $\sigma = \frac{pR}{t} < \sigma_y$
- Embodied energy per unit area of wall
 - $E = tH_m \rho = pR H_m \rho$

Embodied energy / kg of material

Find material with lowest energy, seek largest

Find material with lowest cost, seek largest

Selection to minimize embodied energy

First apply constraints, then use index to optimize choice

PLA meets the constraints at lowest embodied energy

Selection to minimize cost

Can't ignore cost

PET meets the constraints at lowest cost

Another example: Jug kettle

2 kW jug kettle

- Made SE Asia
- Air freight to UK
- Life: 3 years

Qty.	Component name	Material	Recycled content	Mass (kg)	Primary process	End of life
1	Kettle body	Polypropylene (PP)	Virgin (0%)	0.86	Polymer molding	Recycle
1	Heating element	Nickel-chromium alloys	Virgin (0%)	0.026	Wire drawing	Recycle
1	Casing, heating element	 Stainless steel 	Virgin (0%)	0.09	Rough rolling, forging	Recycle
1	Internal insulation	😐 Alumina	Virgin (0%)	0.03	Incl. in material value	Landfill
1	Thermostat	😐 Copper alloys	Virgin (0%)	0.02	Rough rolling, forging	Recycle
1	Plug body	Phenolics	Virgin (0%)	0.037	Polymer molding	Landfill
1	Plug pins	😐 Brass	Virgin (0%)	0.03	Extrusion, foil rolling	Recycle
1	Cable sheath, 1 meter	🔛 Natural rubber (NR)	Virgin (0%)	0.06	Polymer molding	Landfill
1	Cable core, 1 meter	😐 Copper	Virgin (0%)	0.015	Wire drawing	Recycle
1	Packaging, foam	🧮 Rigid Polymer Foam (MD)	Virgin (0%)	0.015	Polymer molding	Landfill
1	Packaging, cardboard	 Paper and cardboard 	Virgin (0%)	0.125	Incl. in material value	Recycle
1	Residual components	Polycarbonate (PC)	Virgin (0%)	0.04	Polymer molding	Downcycle

Bill of materials and processes

Transport

- 12,000 km, air freight
- 250 km 14 tonne truck

Use

- 6 minutes per day
- 300 days per year
- 3 years

Eco audit: the jug kettle

What do we learn?

- Little gained by change of material for its own sake
- Much gained by insulation double wall with foam or vacuum
- Or new concept: make hot water on the fly only as much as needed

Eco-audit tool includes pre-stored projects

The advanced Audit tool: EcoSelector

Back to the big picture: the "triple bottom line"

Noble but vague

Where do materials fit in?

View through eyes of economist

Manufactured capital – Industrial capacity, infrastructure, roads, built environment (GDP)

Human capital – Education, health, skills, happiness (UN Human Development Index, HDI)

Natural capital – Atmosphere, fresh water, land, oceans, minerals and fossil energy

Comprehensive capital – the sum of all capital assets. A number, measured (say) in dollars

Material efficiency

