Progettazione di Materiali e Processi

Università degli Studi di Trieste Modulo 1 – Lezione 8 Corso di Laurea in Ingegneria Chimica e dei Materiali A.A. 2021-2022

Empowerment: Bridging Theory to Practice

The «Empowerment» seminar provides young, motivated, brilliant students to explore their potential to become entrepreneurs

Trieste 13 Dicembre 2017 2PM – 6PM Aula 3B H2bis Relatore dott. <u>Giovanni Loser</u>

"Failure is not going to kill you, but not trying is worse than anything you can imagine." Seth Godin (TED Conference, Monterey California (USA), March 7–10, 2007)

TURNKEY PLANTS

/ LATEST NEWS

2017, 15th November

Top performances

Danieli copper finishing lines in operation at KMD Henan

2017, 18th October Service

Plants refurbi repair improv Synchronizing service and support in the "New Normal"

Visita a Buttrio, 11-12-2017 ore 15.00 (partenza ore 13.00).

Rear Lamp Development and Production Seminar: ROBUST DESIGN - TAGUCHI METHODS

Application on injection molding, simulation and trials

UNIVERSITA' di TRIESTE – Ingegneria Meccanica 29th November 2017 16.00-18.00

Designing new materials

Outline

- Holes in material property space
- History of hole-filling
- Fundamental limits
- Hybrid materials as a way forward

Resources

• "Materials Selection in Mechanical Design", 4th edition by M.F. Ashby, Butterworth Heinemann, Oxford, 2011, Chapters 11 and 12.

Material-property space: E and ρ

Material-property space: E and ρ

Material-property space: α and λ

The evolution of structural materials

21st Century

Boundaries of material property space

Filling holes: hybridization

Hybrids or "multi-materials"

"A hybrid material is a combination of two or more materials in a pre-determined configuration and scale, optimally serving a specific engineering purpose"

Kromm et al, 2002

Design variables:

- Choice of materials
- Volume fractions
- Configuration
- Connectivity
- Scale

The hybrid synthesizer

- Explore configurations, with free material choice
- Explore structured-structures
- A shell: insert models for other configurations

Designing hybrid materials

Three parallel approaches

Materials – relate properties to microstructure: controlled nature, scale through alloy design and processing.

 Mechanics – accept properties as "given", optimise the geometry

 Textile technology – exploit unique strength and blending properties of fibers

Combining textile technology, mechanics and material

Architected Cellular Materials

Minimum architectural size scale

R Schaedler TA, Carter WB. 2016. Annu. Rev. Mater. Res. 46:187–210

Architected Cellular Materials

Cellular architecture	None	Random	Ordered	Ordered and location specific
Properties	Continuous and homogeneous	Homogeneous at scales > cell	Homogeneous and highly anisotropic	Inhomogeneous and highly anisotropic
Design degrees of freedom	Solid constituent	Solid constituent, cell size	Solid constituent, cell size, and orientation	Cell size/shape, node topology, ligament shape, material

Material-property space: E and p

Foams and micro-lattices

Polymer foams

Bending-dominated micro-lattices

Stretch-dominated micro-lattices

Architected Cellular Materials for Enhancing E/p

Foams vs Trusses → Bending-dominated vs Stretch-dominated structures

Architected Cellular Materials for Enhancing E/p

Best performing materials

J. B. Berger, H. N. G. Wadley & R. M. McMeeking, Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness, Nature 543, 533–537 (2017)

The elastic stiffness of the six material geometries, characterized by *E*, *G* and *K*—the Young's, shear and bulk modulus, respectively (data points); results are fitted to third-order polynomials (solid lines). The theoretical Hashin–Shtrikman upper bounds for isotropic stiffness are plotted for each modulus (red dashed line). Only anisotropic materials can have stiffnesses in excess of these upper bounds. Open-cell materials ('×' and '+' symbols) underperform closed-cell materials by a large margin.

Bending and stretch dominated structures

Pin-jointed frame with **b** bars and **j** joints

Condition for stretch dominance

M = b - 2j + 3 = 0	2-dimensions
M = h - 3i + 6 = 0	3-dimensions

 Lock joints in a *mechanism* prevents rotation, deformation by bending • Lock joints in a structure stretching still dominates

Micro-trusses

Functionality Enabled by Architecture

Condenser

- Vapor region - Liquid region

Vapor region

of core

Wire mesh Liquid region

of core

Architected core planar heat pipes

Adiabatic region

L

Facesheet

Facesheet

Vapor flow

iquid flow

Material-property space: α and λ

Configuration: controlling expansion

Segmented structures

Segments

Assemble, compressive boundary conditions

Load – deflection response

Advanced Cellular Design

Optimizing Structural Topology

Finite Element Modeling for Topology Optimization

Annu. Rev. Mater. Res. 2016. 46:211-33

Example of Topology Optimization

Maximum Stiffness vs Minimum Density

Annu. Rev. Mater. Res. 2016. 46:211-33

Additive Manufacturing (AM)

A convenient way to fabricate components with complex structural topologies

Additive Manufacturing (AM)

A convenient way to fabricate components with complex structural topologies

Traditional manufacturing process

Additive Manufacturing

almost no cost increase !

Complex, Light Topologies

Using AM + Thin film deposition techniques

So what?

Multi-dimensional material-property space

- Only part-filled by monolithic materials
- True of mechanical, thermal, electrical, magnetic and optical properties
- Material development strategies
 - **Classical** (classical alloy development, polymer chemistry....)
 - "Nano" (sub-micron) scale (exploiting scale-dependence of properties)
 - Hybridization (exploiting materials, configuration and connectivity)

• The strategy:

- Map out the filled areas
- Explore the ultimate boundaries
- Explore ways of filling the empty space.
- Hybrids, exploiting potential of novel configurations, have potential for this

The Hybrids Synthesizer: a tool for design and

dissemination

Outline

- Holes in material-property space
- Hybrids materials expanding the filled space
- Example1 cellular materials
- Example 2 sandwich structures
- New developments Multi-layers

Resources

- Text: "Materials Selection in Mechanical Design", 4rd edition by M.F. Ashby, Butterworth Heinemann, Oxford, 2011, Chapters 11 - 12.
- White paper "The hybrid synthesizer", available from CES EduPack Help file
- Software: CES EduPack Hybrids synthesizer tool (Grantadesign.com)
- "Hybrid synthesizer Model writer's guide" for CES Selector users (Grantadesign.com)

Modulus and Density

Strength - Density

Hybrid materials

Design variables:

- Choice of materials
- Volume fractions
- Configuration
- Connectivity
- Scale

The hybrid synthesizer

- Explore configurations, with free material choice
- Explore structured-structures
- A shell: insert models for other configurations

Configurations and equivalent properties

Foams and Lattice structures

Equivalent properties =

Material properties of a monolithic material with the same mechanical, thermal and electrical response.

What the synthesizer does

CES retrieves models for

Physical properties

Equivalent density, ρ

Mechanical properties

- Equivalent Young's modulus E, shear modulus G, bulk modulus K, flexural modulus E_{flex}
- Yield strength σ_v , compressive strength σ_c , tensile strength σ_{ts} , flexural strength σ_{flex}
- Fracture toughness K_{ic}

Thermal properties

• Thermal conductivity λ , expansion coefficient α and specific heat C_{p}

Electrical properties

• Resistivity ρ_e , dielectric constant ε_r and dielectric loss tangent D

Plus thermal and electrical properties

Typical record

AI 6061 Foam (0.1)

General properties

Density	110	kg/m^3
Relative density	0.037	

Mechanical properties

Young's modulus	1.3	-	1.4	GPa
Flexural modulus	1.3	-	1.4	GPa
Shear modulus	0.5	-	0.51	GPa
Bulk modulus	1.3	-	1.4	GPa
Poisson's ratio	0.33			
Yield strength (elastic limit)	4.7	-	5.1	MPa
Tensile strength	6.3	-	7	MPa
Compressive strength	4.7	-	5.1	MPa
Flexural strength	6.3	-	7	MPa
Fracture toughness	0.88	-	1.2	MPa.m^0.5

Thermal properties

Thermal conductivity	2.1	-	2.2	W/m.°C
Specific heat capacity	920	-	940	J/kg.°C
Thermal expansion coefficient	15			µstrain/°C

Electrical properties

Electrical resistivity	230	µohm.cm
------------------------	-----	---------

Notes

Source Materials: Bulk material = AI-20%SiC(p), powder product

The Hybrid-material synthesizer

Exploring metal foams - inputs

Aluminum SiC composite foams

The Hybrid-material synthesizer

Aluminum SiC composite foams

Lattices expand material property space

Plus thermal and electrical properties

Sandwich panels - inputs

Stiff sandwich panels

Sandwiches expand material property space

Strong sandwich panels

Lattice cored sandwich panels

Structures expand material property space

So what?

The synthesizer allows

- Display of potential properties of novel material combinations
- Testing and deploying of models for "architectured" materials
- Direct comparison with the standard materials of engineering
- Exploration of structured-structures
- This is a first generation tool models very simple
 Welcome ideas for refining it.

Author

Mike Ashby University of Cambridge, Granta Design Ltd. <u>www.grantadesign.com</u> www.eng.cam.ac.uk

Reproduction

These resources are copyright Mike Ashby. You can reproduce these resources in order to use them with students, provided you have purchased access to Granta's Teaching Resources. Please make sure that Mike Ashby and Granta Design are credited on any reproductions. You cannot use these resources for any commercial purposes.

Accuracy

We try hard to make sure these resources are of a high quality. If you have any suggestions for improvements, please contact us by email at teachingresources@grantadesign.com There are 200+ resources available Including:

- 77 PowerPoint lecture units
- Exercises with worked solutions
- Recorded webinars
- Posters
- White Papers
- Solution Manuals
- Interactive Case Studies

GRANTA

© M. F. Ashby, 2012

Granta's Teaching Resources website aims to support teaching of materials-related courses in Engineering, Science and Design.

The resources come in various formats and are aimed at different levels of student.

This resource is part of a set created by Mike Ashby to help introduce materials and materials selection to students.

The website also contains other resources contributed by faculty at the 800+ universities and colleges worldwide using Granta's CES EduPack.

The teaching resource website contains both resources that require the use of CES EduPack and those that don't.

www.grantadesign.com/education/resources

