

Top 10 causes of death: 1900 vs 2010

Data are from the Centres for Disease Control and Prevention

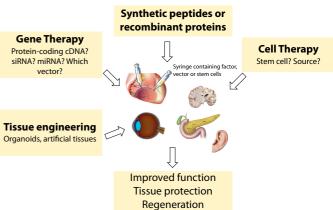
Heart failure Arthritis Diabetes Alzheimers's Disease Parkinson's Disease Hearing impairment Age-related MD Cataract

CHRONIC CONDITIONS INTERFERE WITH LIFE'S ACTIVITIES

MULTIPLE CHRONIC CONDITIONS

A CHALLENGE FOR THE 21ST CENTURY

A costly burden Those with MCC have more prescription, out of pocket and total healthcare $\ensuremath{\mathsf{costs}}^8$


WITH EACH ADDITIONAL CHRONIC CONDITION:

average medical payments more than double,⁹ suggesting chronic condition may interact to increase costs exponentially

annual healthcare costs increase 80-300%, depending on age, sex, and chronic condition profile¹⁰

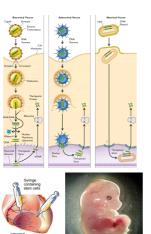
Biotherapeutics for degenerative diseases

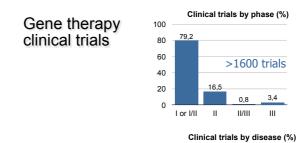
Molecular Medicine

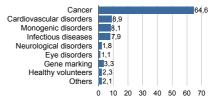
Recombinant proteins for therapy and vaccination

Identification of human disease genes

Molecular diagnosis of viral and genetic disorders


Structural biology for drug design


Functional genomics and proteomics for the study of human disease


Gene therapy

Stem cell therapy and tissue enaineerina

Nanomedicine and molecular imaging

16,5

Ш

>1600 trials

0.8

11/111

3,4

Ш

Giacca, M. 2010. Gene Therapy. Springer

Gene Therapy

Genetic modification of human somatic cells via transfer of nucleic acids

European Guidelines for the Production of Gene Therapeutics, 1994

Therapeutic nucleic acids

Population %

2

3

0.5

10

60

Protein-coding cDNAs

Proteins replacing missing cellular functions

Burden of genetic disease

Disorder type

Single gene

Congenital abnormalities

maternal age >35

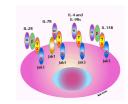
Adult onset multifactorial

Protein-coding cDNAs

Proteins modulating cellular functions Proteins regulating cell survival Proteins activating the immune system

Antibodies and intracellular antibodies

Proteins replacing missing cellular functions


Behavioral & CNS

Chromosomal abnormalities

Gene therapy of monogenic inherited disorders

e.g. Immunodeficiencies (ADA, SCID-X1) Hemophilia Leber's congenital amaurosis Muscular dystrophy Cystic fibrosis Lysosomal storage disease

several others

Therapeutic nucleic acids

Protein-coding cDNAs

Proteins replacing missing cellular functions Proteins modulating cellular functions Proteins regulating cell survival

Gene therapy for neurodegenerative or traumatic disorders

Clinical trials of growth factors for neurological disease
Ref Disease Growth factor
45-47 Amotrophic lateral sciencesis CNTE RDNE CNTE + RDNE

 45-47
 Amyotrophic lateral sciences
 CMTF, EBDNF, CMTF + BDNF, GDNF, IGF-1

 48
 Spinel muscular atrophy 49
 BDNF
 BDNF

 50-33
 Peripheral neuropathy
 NGF, BDNF, NT-3

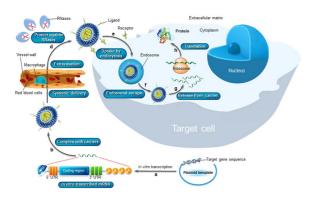
 54
 Stoke
 FGF-2

 CMTF-cibit Refress (BMF-train-deviced neuropathy incidential neuropathy
 NGF, BDNF, NT-3


 54
 Stoke
 FGF-2

 CMTF-cibit Refress (BMF-train-deviced neuropath) incidential neuropathy
 NGF-animotive function (ST-fer-train-deviced neuropath) factor; NT-3-neuropathy.

Therapeutic nucleic acids


Anti-tumor vaccination

metastasis primary tumor

Tumor-Specific Antigens (TSA) Antibody or TCR idiotypes Mutated cellular proteins (eg. p53, p21) Viral poteins (HPV E6 and E7, EBV EBNA-1)

Therapeutic nucleic acids Protein-coding modRNAs

Therapeutic nucleic acids

Protein-coding cDNAs

Proteins replacing missing cellular functions Proteins modulating cellular functions Proteins regulating cell survival Proteins activating the immune system Antibodies and intracellular antibodies

Small, non-coding DNAs and RNAs

Oligonucleotides and modified oligonucleotides Phosphorothioate oligonucleotides Oligonucleotides modified in 2' ribose Locked Nucleic Acids (LNA) and Ethylene Bridged Nucleic Acids (ENA)

Morpholino (PMO) Peptide Nucleic Acids (PNA)

$\begin{array}{|c|c|c|c|} \hline \textbf{a} & Ardisense \\ \hline \textbf{M} & \text{period} for an interval of the second and the sec$

Chemical modifications to modify in vivo pharmacokinetics of oligonucleotides Gleave et al. Nat. Rev. Cancer 2005

Therapeutic nucleic acids

Protein-coding cDNAs

Proteins replacing missing cellular functions Proteins modulating cellular functions Proteins regulating cell survival Proteins activating the immune system Antibodies and intracellular antibodies

Small, non-coding DNAs and RNAs

Oligonucleotides and modified oligonucleotides Phosphorothioate oligonucleotides Oligonucleotides modified in 2' ribose Locked Nucleic Acids (LNA) and Ethylene Bridged Nucleic Acids (ENA) Morpholino (PMO) Peptide Nucleic Acids (PNA)

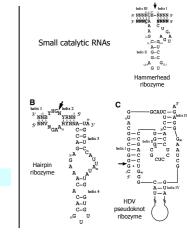
Cancer gene therapy clinical trials using oligonucleotides

ODN	Chemistry	Target gene	Gene function	
G3139 (Oblimersen)	Phosforothioate	Bcl2	Apoptosis inhibitor	
OGX-011	Phosforothioate, 2'- methoxyehtyl	Clusterin	Protein chaperon	
ISIS 3621	Phosforothioate	Protein kinase C alpha	Signal transduction	
LY2181308	Phosforothioate, 2'- methoxyehtyl	Survivin	Apoptosis inhibitor	
LR3001	Phosforothioate, 2'- methoxyehtyl	Myb	Oncogene, transcription factor	
AEG35156	Phosforothioate, 2'- methoxyehtyl	XIAP	Apoptosis inhibitor	
OGX-427	Phosforothioate, 2'- methoxyehtyl	Hsp27	Heat shock protein	
ISIS 345794	Phosforothioate, 2'- methoxyehtyl	STAT-3	Transcriptional activator	

Therapeutic nucleic acids

Therapeutic nucleic acids

Т


Protein-coding cDNAs

Proteins replacing missing cellular functions Proteins modulating cellular functions Proteins regulating cell survival Proteins activating the immune system Antibodies and intracellular antibodies

Small, non-coding DNAs and RNAs

Oligonucleotides and modified oligonucleotides Phosphorothioate oligonucleotides Oligonucleotides modified in 2' ribose Locked Nucleic Acids (LNA) and Ethylene Bridged Nucleic Acids (ENA) Morpholino (PMO) Peptide Nucleic Acids (PNA)

Catalytic RNAs and DNAs (ribozymes and DNAzymes)

Therapeutic nucleic acids

Protein-coding cDNAs

Proteins replacing missing cellular functions Proteins modulating cellular functions Proteins regulating cell survival Proteins activating the immune system Antibodies and intracellular antibodies

Small, non-coding DNAs and RNAs

Oligonucleotides and modified oligonucleotides Phosphorothioate oligonucleotides Oligonucleotides modified in 2' ribos Locked Nucleic Acids (LNA) and Ethylene Bridged Nucleic Acids (ENA) Morpholino (PMO) Peptide Nucleic Acids (PNA) Catalytic RNAs and DNAs (ribozymes and

DNAzymes) Small regulatory RNAs (siRNAs, shRNAs, microRNAs)

Protein-coding cDNAs Proteins replacing missing cellular functions Proteins modulating cellular functions

Proteins regulating cell survival Proteins activating the immune system Antibodies and intracellular antibodies

Small, non-coding DNAs and RNAs

Oligonucleotides and modified oligonucleotides Phosphorothioate oligonucleotides Oligonucleotides modified in 2' ribos Locked Nucleic Acids (LNA) and Ethylene Bridged Nucleic Acids (ENA) Morpholino (PMO) Pentide Nucleic Acids (PNA)

talytic RNAs and DNAs (ribozymes and DNAzymes)

Small regulatory RNAs (siRNAs, shRNAs, microRNAs)

Therapeutic approaches using

siRNAs				
Condition	Disease	Target gene		
Hereditary and multifactorial disorders	Familial hypercholesterolemia (FH)	Apolipoprotein B		
	Age-related macular degeneration (AMD)	VEGF, VEGFR1, RTP801		
	Lateral amyotrophic sclerosis (LAS)	SOD1		
	Spinocerebellar ataxia	Ataxin 1		
	Alzheimer's disease	Tau, APP		
	Parkinson's disease	-sinucleina		
Cancer	Several cancers	Bcl-2		
	Acute myeloid leukemia (AML)	AML1/MTG8		
	Chronic myelogenous leukemia (CML)	BCR-Abl		
	Glioblastoma	MMP-9, uPAR		
	Hepatitis B	HBsAg		
	Hepatitis C	NS3, NS5B, E2		
Infectious disorders	Influenza	Nucleoprotein, polymerase		
	HIV-1	Different viral genes		
	HSV-1	Glicoprotein E		
	RSV	Genes P, N and L		

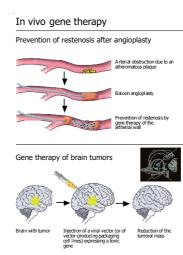
Therapeutic nucleic acids

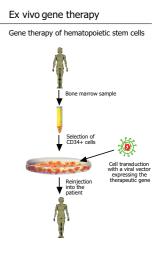
Protein-coding cDNAs

Proteins replacing missing cellular functions Proteins modulating cellular functions Proteins regulating cell survival Proteins activating the immune system Antibodies and intracellular antibodies

Small, non-coding DNAs and RNAs

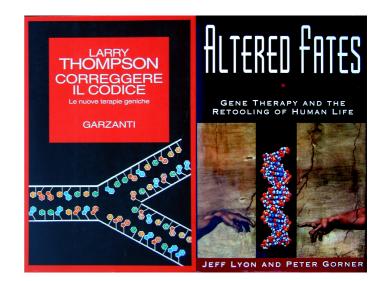
Aptamers

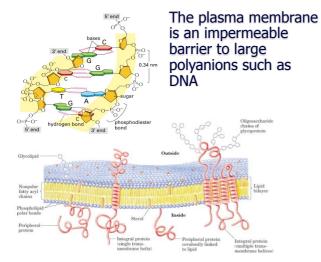

Oligonucleotides and modified oligonucleotides Phosphorothioate oligonucleotides Oligonucleotides modified in 2' ribose Locked Nucleic Acids (LNA) and Ethylene Bridged Nucleic Acids (ENA) Morpholino (PMO) Peptide Nucleic Acids (PNA) Catalytic RNAs and DNAs (ribozymes and DNAzymes) Small regulatory RNAs (siRNAs, shRNAs, microRNAs) DNA and RNA decoys


Age-related macular degeneration (AMD) Most frequent cause of blindness

ure 2. Early Age-Related Macular Degeneration, Character 1 by Large Drusen (Arrows) and Clumps of Pigment (Arrow ds) in the Macula. nal visual acuity but is at risk for late age generation and loss of vision.

Gene therapy of AMD Anti-VEGF antibodies (bevacizumab, ranibizumab) Soluble VEGFR (VEGF Trap-Eye) Anti-VEGF aptamer (pegaptanib) Anti-VEGE siRNA (bevasiranib)





Somatic gene therapy: appropriate candidate genetic diseases

- Single-gene disorder, recessive or X-linked inheritance
- Significant morbidity or mortality
- Current therapy inadequate or unavailable
- Accessible cellular site of genetic defect causing phenotype

Delivery systems for gene therapy

I. Naked DNA or RNA

limited to muscle cells and APCs
 very low efficiency

Uptake of oligonucleotides, siRNAs and other small RNAs

- very low efficiency

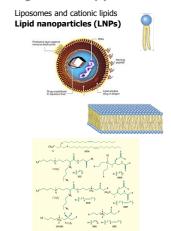
Delivery systems for gene therapy

I. Naked DNA or RNA

II. Physical methods

Electroporation - skeletal muscle and skin mainly

Bombardment with DNAcoated gold microparticles ("gene gun") and jet injection - limited to the skin

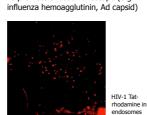

High hydrodynamic pressure - usually very invasive

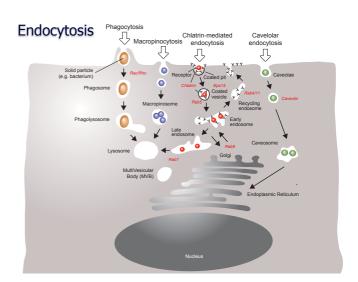
Ultrasound and microbubbleaided ultrasound - difficult to standardize - vascular or perivascular applications

vascular or perivascular application

Delivery systems for gene therapy

- I. Naked DNA or RNA
- II. Physical methods
- III. Chemical methods


Delivery systems for gene therapy


Proteins

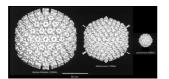
I. Naked DNA or RNA

- II. Physical methods
- III. Chemical methods

To induce passage through membranes (e.g. HIV-1 Tat, Antennapedia, VP22) To confer cell targeting (e.g. asialoglycoproteins, transferrin. RGD peptide, antibodies) To induce DNA condensation (e.g. protamine, histones, poly-L-lysine) To promote endosomal escape (e.g.

Delivery systems for gene therapy

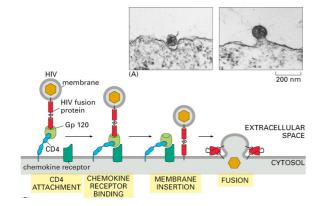
I. Naked DNA or RNA

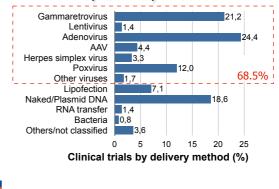

II. Physical methods

III. Chemical methods

IV. Viral vectors

Gammaretroviruses Lentiviruses Adenovirus Adeno-associated virus (AAV) Herpes simplex virus type 1


Vaccinia (for genetic vaccination)


plasma membrane Viruses do it better Targeting to specific receptors Direct fusion of envelope at the cell membrane or escape early endosome 0 from endosomes Transfer of nucleic acids to microtubule the nucleus multivesicular MICROTUBULEbody MEDIATED TRANSPORT Protection of nucleic acids from degradation 3 late Prolonged (permanent) (80 endosome expression of therapeutic 2 *trans* Golgi gene lysosome

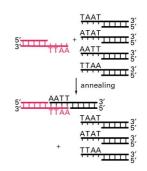
network

Retrovirus internalization by fusion at the plasma membrane

Gene therapy clinical trials by delivery method

Giacca, M. 2010. Gene Therapy. Springer

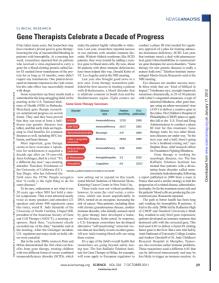
сит
EcoRI
3'-C-T-T-A-AG-5' CUT
HindIII
5' AAGCTT3'
3'-T-T-C-G-AA-5' CUT
5'-C-T-G-C-A-G-3'


3'-GA-C-G-T-C-5' сύт

Pstl

Restriction enzymes

The Nobe	el Prize in Physiology or Medicine	1978
Nobel Pri	ze Award Ceremony	
Werner A	Arber	
	Biographical	Interview
100	Nobel Lecture	Other Resources
Daniel Na	ithans	
	Biographical	Banquet Speech
P	Nobel Lecture	
Hamilton	O. Smith	
100	Biographical	Interview


Recombinant DNA molecules

Virus	Vector	
Murine/avian retroviruses 999 pol env 95 st LTR 25 st LTR	LTR ψ therapeutic gene LTR 30 Sk promoter (?) therapeutic gene (double copy vectors)	
AV polyadamyation site	promoter therapeutic gene TR TR	
HIV-1 999 pol vif toto nef v vpr vpr vpu env l 1 RR REE LTR	LTR promoter therapeutic gene wate LTR SD SA LTR	

L'Unità, 4 novembre 1995

