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BAYESIAN NETWORKS



WHAT ARE THEM

BAYESIAN NETWORKS

• Also called Bayesian belief networks, decision network, etc.


• A graphical model is a statistical model using a graph to 
represent the conditional dependency between random variables.


• BN are a kind graphical model using a directed acyclic graph.


• Intuitively they are useful because when we need to compute 
 we actually need to compute only  with 

 the parent nodes of .


• An example should clarify this.

P(y |x1, x2, …, xk) p(y |Pa(y))
Pa(y) y



A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN

WET 
GRASS

There are four random variables: 
CLOUDY, SPRINKLERS, RAIN, 
and WET GRASS.

The edges represents the 
conditional dependencies

If we want to compute 
 we only 

compute , 
and we will have to “rewrite” it.

P(CLOUDY |SPRINKLES)
P(SPRINKLES |CLOUDY)

If we want to compute 
  we can find 

it directly in our table
P(RAIN |CLOUDY)



A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN

WET 
GRASS

S = 0 S =1
C = 0 0,5 0,5
C = 1 0,9 0,1

R = 0 R =1
C = 0 0,8 0,2
C = 1 0,2 0,8

W = 0 W =1
S = 0 R = 0 1 0
S = 1 R = 0 0,1 0,9
S = 0 R = 1 0,1 0,9
S = 1 R = 1 0,01 0,99

C = 0 C =1
0,5 0,5
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A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN
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GRASS

S = 0 S =1
C = 0 0,5 0,5
C = 1 0,9 0,1

R = 0 R =1
C = 0 0,8 0,2
C = 1 0,2 0,8
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S = 0 R = 0 1 0
S = 1 R = 0 0,1 0,9
S = 0 R = 1 0,1 0,9
S = 1 R = 1 0,01 0,99

C = 0 C =1
0,5 0,5 How to find 

?P(𝖶 = 1 |𝖢 = 1,𝖱 = 0)

P(𝖶 = 1 |𝖢 = 1,𝖱 = 0)

= P(𝖶 = 1 |𝖱 = 0,𝖲 = 1) ⋅ P(𝖲 = 1 |𝖢 = 1)
+P(𝖶 = 1 |𝖱 = 0,𝖲 = 0) ⋅ P(𝖲 = 0 |𝖢 = 1)

= 0.9 ⋅ 0.1 + 0 ⋅ 0.9

= 0.09



A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN

WET 
GRASS

S = 0 S =1
C = 0 0,5 0,5
C = 1 0,9 0,1

R = 0 R =1
C = 0 0,8 0,2
C = 1 0,2 0,8

W = 0 W =1
S = 0 R = 0 1 0
S = 1 R = 0 0,1 0,9
S = 0 R = 1 0,1 0,9
S = 1 R = 1 0,01 0,99
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0,5 0,5 How to find 

?P(𝖲 = 1 |𝖢 = 1,𝖶 = 1)

P(𝖲 = 1 |𝖢 = 1,𝖶 = 1)

=
P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)

P(𝖶 = 1 |𝖢 = 1)
⋅ P(𝖲 = 𝟣 |𝖢 = 𝟣)

=
P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)

P(𝖶 = 1 |𝖢 = 1)
⋅ 0.1

P(𝖶 = 1 |𝖢 = 1,𝖲 = 1) P(𝖶 = 1 |𝖢 = 1)



A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN

WET 
GRASS

S = 0 S =1
C = 0 0,5 0,5
C = 1 0,9 0,1

R = 0 R =1
C = 0 0,8 0,2
C = 1 0,2 0,8

W = 0 W =1
S = 0 R = 0 1 0
S = 1 R = 0 0,1 0,9
S = 0 R = 1 0,1 0,9
S = 1 R = 1 0,01 0,99

C = 0 C =1
0,5 0,5

P(𝖶 = 1 |𝖢 = 1)

P(𝖶 = 1 |𝖲 = 0,𝖱 = 0) ⋅ P(𝖲 = 0 |𝖢 = 1) ⋅ P(𝖱 = 0 |𝖢 = 1)+
P(𝖶 = 1 |𝖲 = 0,𝖱 = 1) ⋅ P(𝖲 = 0 |𝖢 = 1) ⋅ P(𝖱 = 1 |𝖢 = 1)+
P(𝖶 = 1 |𝖲 = 1,𝖱 = 0) ⋅ P(𝖲 = 1 |𝖢 = 1) ⋅ P(𝖱 = 0 |𝖢 = 1)+
P(𝖶 = 1 |𝖲 = 1,𝖱 = 1) ⋅ P(𝖲 = 1 |𝖢 = 1) ⋅ P(𝖱 = 1 |𝖢 = 1)

0 ⋅ 0.9 ⋅ 0.2 + 0.9 ⋅ 0.9 ⋅ 0.8 + 0.9 ⋅ 0.1 ⋅ 0.2 + 0.99 ⋅ 0.1 ⋅ 0.8
= 0.7452

P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)
= 0.0972



A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN
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GRASS

S = 0 S =1
C = 0 0,5 0,5
C = 1 0,9 0,1

R = 0 R =1
C = 0 0,8 0,2
C = 1 0,2 0,8

W = 0 W =1
S = 0 R = 0 1 0
S = 1 R = 0 0,1 0,9
S = 0 R = 1 0,1 0,9
S = 1 R = 1 0,01 0,99

C = 0 C =1
0,5 0,5 How to find 

?P(𝖲 = 1 |𝖢 = 1,𝖶 = 1)

P(𝖲 = 1 |𝖢 = 1,𝖶 = 1)

=
P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)

P(𝖶 = 1 |𝖢 = 1)
⋅ P(𝖲 = 𝟣 |𝖢 = 𝟣)

=
P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)

P(𝖶 = 1 |𝖢 = 1)
⋅ 0.1

=
0.0972
0.7452

⋅ 0.1 ≈ 0.013



INFERENCE

BAYESIAN NETWORKS

• To find the probability of an event we can use the tables of 
conditional probabilities of the network.


• We can have more than binary variables by making larger tables.


• The size of the table depends on the number of edges entering 
the node. For binary variables it is  with  the in-degree of the 
node.


• Inference in Bayesian networks is, in the general case, intractable 
from a computational point of view…


• …but for specific cases it can still be performed efficiently.

2k k



USE OF BN FOR INFORMATION RETRIEVAL



MAIN IDEAS

BAYESIAN NETWORKS IN IR

• Bayesian Networks can model dependencies between terms or 
documents (contrarily to the assumption of the BIM).


• However, we must always keep an eye to complexity!


• Here we see only one possible model. Other model with different 
topologies exist.



A SIMPLE STRUCTURE

BN STRUCTURE

t1 t2 t3 tM… Nodes for the terms

d1 d2
dN

Nodes for the documents

Each edge connect a term with a document containing the term.


Both the  and  are binary random variables with meanings:


•  means “the term  is relevant”


•  means “the document  is relevant”

ti dj

ti ti

dj dj



FOR TERMS AND DOCUMENTS

SETTING THE PROBABILITIES

ti
ti not t i 

1/M 1-1/M

dj

The size of the table depends exponentially by 
the number of terms in the document: 
with 50 terms we need a table of  entries.250

A different approach is needed to store 
the conditional probabilities



FOR TERMS AND DOCUMENTS

SETTING THE PROBABILITIES

We assign weights to each edget1 t2 t3

d1

w1,1 w1,2 w1,3

The value  is now computed as:P(dj |Pa(dj))

P(dj |Pa(dj)) = ∑
i:ti∈Pa(dj), ti=1

wi.j

i.e., sum all  for all the parent nodes with state  (relevant)wi, j 1



ONE METHOD OF WEIGHTING

SETTING THE WEIGHTS

Multiple weighting methods are possible. 
Two conditions to be respected are:


•  for all  and .


•
 for all documents .

wi, j ≥ 0 i j

∑
ti∈dj

wi, j ≤ 1 dj

One possible weighting scheme is wi, j = α−1
tf-idf2

i, j

∑ tk ∈ dj (tf-idfk, j)
2

With  a normalising constantα

MADE TO “RESEMBLE” 
THE COSINE MEASURE



HOW THE QUERY SETS THE STATE OF TERMS

USING A QUERY

Given a query  we assume that all terms in  are relevant (i.e.,  if ). 
We use the notations  and 

q q ti = 1 ti ∈ q
P(ti |q) P(dj |q)

t1 t2 t3

d1

w1,1 w1,2 w1,3

P(d1 |q) = w1,1 + w1,2 ⋅
1
M

+ w1,3

Suppose , then  is:q = t1 t3 P(d1 |q)

P(dj |q) = ∑
i:ti∈Pa(dj)

wi,jP(ti |q)

In general:



AT LEAST AMONG TERMS

ADDING DEPENDENCIES

Until now we have considered the term independent from one another. 
We can now add some form of dependency between terms while keeping 
the graph acyclic.

t1

t2

t3

d1

w1,1

w1,2

w1,3

Now we need a way to set the 
probabilities for root nodes (without 
any parent) and for nodes with parents.

ti not t i 

1/M 1-1/M

For root nodes we already have:



SETTING THE WEIGHTS

ADDING DEPENDENCIES

We can use the idea for the Jaccard coefficient of “similarity” among terms

t1

t2

t3

d1

w1,1

w1,2

w1,3

Given a “configuration”  of the parent terms 
(i.e., which terms are present and which are not) 
let  be the set of documents not containing  
and containing the exact “configuration”  of the 
parent node. Similarly, define  and . Then:

x

At̄i,x ti
x

At̄i
Ax

P(ti = 0 |Pa(ti) = x) =
|At̄i,x|

|At̄i
| + |Ax| − |At̄i,x|

P(ti = 1 |Pa(ti) = x) = 1 − P(ti = 0 |Pa(ti) = x)



FINAL REMARKS

BAYESIAN NETWORKS

• We have seen only one model of IR using Bayesian networks.


• We can actually also add some dependencies between 
documents.


• In any case we must find a way to design or learn the 
dependencies. E.g., by estimating  and linking the “top 
documents”


• Other models are possible, including ones with completely 
different topologies, like mapping document to terms and then to 
“general concepts”.

P(di |dj)



INTEGRATING EVERYTHING  



GENERALISATION OF CHAMPION LISTS

TIERED INDEXES

Index for documents with  over 20tf

Index for documents with  between 10 and 20tf

Index for documents with  below 10tf

Rank 1

Rank 2

Rank 3

We search for K documents in the rank 1 index, 
if we have less than K we continue in the rank 2 index, and so on



TOWARDS A “SOFT CONJUNCTIVE” SEMANTICS

QUERY TERM PROXIMITY

• If we have a query  we might want to give a higher 
score to documents in which the three terms appears close to 
each other.


• This is not a phrase query, but if the terms appears in close 
proximity the documents might be an indication that the 
document is more relevant.


• Let  the length of the window (in term of number of words) in 
which  all appear.

q = t1 t2 …, tk

ω
t1, t2, …, tk



TOWARDS A “SOFT CONJUNCTIVE” SEMANTICS

QUERY TERM PROXIMITY

Query: CAT XYLOPHONE

Document 1:

Document 2:

THE CAT JUMPED ON THE XYLOPHONE

CAT: NOUN, A FELINE […] XYLOPHONE: NOUN, AN […]

ω = 5

ω = a lot more than 5

How can we use  in out scoring function?


• Hand-coding a scoring function using 


• As an additional linear term whose weight we can learn 
from training samples

ω

ω



HOW TO PERFORM IT IN THE VECTOR SPACE MODEL

BOOLEAN RETRIEVAL

• We can use the vector space representation to perform Boolean 
retrieval:


• A document  is inside the set of documents denoted by  iff 
 (i.e., if the entry  of the vector of  is positive).


• The reverse is not true: the Boolean model does not keep trace of 
frequencies.


• The two models are different in a more fundamental way: in the 
Boolean model the queries are written to select documents, in the 
vector space model queries are a form of evidence accumulation.

d t
⃗v (d)t > 0 t d



CAN WE IMPLEMENT IT IN THE VECTOR SPACE MODEL?

WILDCARD QUERIES

• In most cases wildcard queries need an additional (and separate) 
index.


• We can return, from that index, the set of terms that satisfy the 
wildcards present in the query.


• Suppose that we have CAT* as a query. We obtain the terms “CAT”, 
“CATASTROPHE”, and “CATERPILLAR”.


• How can we score a document?


• We simply consider the three terms as “normal” query terms: if a 
document contains all three of them then it will probably be more 
relevant.



PHRASES IN A “BAG OF WORDS” MODEL

PHRASE QUERIES

• In the vector space model our documents are “bags of words”, 
without any ordering, while in phrase queries the ordering is 
important.


• The two models are, in some sense, incompatible: a bag of words 
model cannot be directly used for phrase queries.


• They can still be combined in some meaningful way:


• Perform the phrase query and rank only the documents returned by 
the query.


• If less than K documents are present then “reduce” the share query 
and start again.



EVALUATION OF IR SYSTEMS



STANDARD BENCHMARKS

STANDARD TEST COLLECTIONS

CRANFIELD COLLECTION 

ONE OF THE OLDEST, NOW TOO SMALL. 
1398 ABSTRACTS OF AERODYNAMICS 

JOURNAL ARTICLES AND 225 QUERIES.

Also see: http://ir.dcs.gla.ac.uk/resources/test_collections/

TREC

(TEXT RETRIEVAL CONFERENCE)


NOT A SINGLE COLLECTION. THERE IS A 
RANGE OF TEXT COLLECTIONS ON 

DIFFERENT TOPICS. 
SEE : HTTPS://TREC.NIST.GOV

REUTERS


REUTERS-21578 (21578 DOCUMENTS) AND 
REUTERS-RCV1 (806791 DOCUMENTS) 

COLLECT A LARGE NUMBER OF NEWSWIRE 
ARTICLES

http://ir.dcs.gla.ac.uk/resources/test_collections/
https://trec.nist.gov


HOW TO COMPUTE PRECISION AND RECALL?

RANKED RETRIEVAL

• We usually evaluate the effectiveness of a IR system with precision 
and recall (other measures are also possible)…


• …and this works well with unranked results.


• How can we extend it to ranked results, where position is important?


• Precision-recall curve and interpolated precision


• Eleven-point interpolated average precision


• Mean average precision (MAP)


• Precision at  and -precisionk R



PRECISION-RECALL CURVE

We compute precision and recall for the first 1, 2, 3, 4, etc. retrieved 
documents:

1
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PRECISION-RECALL CURVE

We compute precision and recall for the first 1, 2, 3, 4, etc. retrieved 
documents:
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PRECISION-RECALL CURVE

We compute precision and recall for the first 1, 2, 3, 4, etc. retrieved 
documents:

1
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PRECISION-RECALL CURVE

We compute precision and recall for the first 1, 2, 3, 4, etc. retrieved 
documents:

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.80.6 1

Recall

Pr
ec

isi
on

The first document is relevant
The second document is not relevant
The third document is relevant
The fourth document is relevant
The fifth document is not relevant
…and so on

The curve has a sawtooth shape, so 
interpolated precision is also used 



PRECISION-RECALL CURVE

We compute precision and recall for the first 1, 2, 3, 4, etc. retrieved 
documents:

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.80.6 1

Recall

Pr
ec

isi
on

For a recall level  the 
interpolated precision 
is the maximum precision 
found for all recall levels 

r

r′￼≥ r



PRECISION AT ELEVEN RECALL LEVELS

ELEVEN POINT INTERPOLATED PRECISION

Recall Precision

0,0 1,0

0,1 0,73

0,2 0,64

0,3 0,58

0,4 0,51

0,5 0,45

0,6 0,38

0,7 0,27

0,8 0,21

0,9 0,13

1,0 0,09

The recall levels are fixed 
and for each recall level the 
corresponding precision is 
recorded.



A SINGLE FIGURE

MEAN AVERAGE PRECISION

For each  we know the set of documents  that are relevantqj {d1, …, dmj
}

We have a set of queries Q = {q1, …, qn}

Let  the set of ranked documents retrieved for the  query that we 
get to obtain  relevant documents

Rjk jth

k

1
n

n

∑
j=1 ( 1

mj

mj

∑
k=1

Precision(Rjk))

Then the mean average precision  is:MAP(Q)

Average precision of the  queryjth



OTHER SINGLE FIGURES

PRECISION AT K AND R-PRECISION

• Precision at  simply means that we record the precision of the 
first  retrieved documents. Like “precision at 10”.


• If there are less than  relevant documents then the value cannot 
be one. Its value is highly dependant on the number of relevant 
documents that exists.


• A solution to this is the -precision. If there are  relevant 
documents for a query, the -precision is the precision of the top 

 ranked documents returned by the query.


• -precision can be averaged across queries.

k
k

k

R R
R

R

R


