

Rivelatori e Apparati

1

Per cosa li usiamo: rivelare il passaggio

 La particella carica genera coppie di cariche che vengono raccolte ai due capi per *deriva* nel campo elettrico

-V

Per cosa li usiamo: misurare la posizione (1D)

- La superficie del sensore e' segmentata in striscie parallele lungo una direzione: la posizione dei contatti che raccolgono e trasmettono le cariche corrisponde alla coordinata della particella
- La risoluzione spaziale e' data dal passo tra striscie, e puo' essere migliorata misurando l'ampiezza dei segnali

MICROSTRISCE MONOFACCIA

Per cosa li usiamo: misurare la posizione (2D)

 La seconda coordinata puo' essere ricavata dal tempo di deriva delle cariche fino al secondo elettrodo

CAMERA A DERIVA DI SILICIO

28/10/2021

MICROSTRISCE A DOPPIA FACCIA

Per cosa li usiamo: misurare la posizione (2D)

Posso segmentare la superficie del sensore nelle due direzioni formando una matrice di pixel

• L'elettronica deve essere connessa direttamente sopra ogni pixel: serve un secondo chip, accoppiato

Per cosa li usiamo: seguire la traiettoria...

• Disponendo i rivelatori in modo da formare cilindri concentrici attorno alla linea del fascio possiamo "seguire" la traccia mentre si allontana

I rivelatori degli esperimenti di LHC – Ruolo dei rivelatori al silicio e' fondamentale

Esempi di rivelatori al silicio: canali e superficie

Esperimento	Tecnologia usata	Canali [M]	Superficie [m²]	m²/Mch
ATLAS	Pixel ibridi	80	1.7	0.021
	+ Pixel ibridi (Insertable B-Layer)	12	2	0.170
	Micro-strip	6	60	10.000
CMS	Pixel ibridi	66	1	0.015
	Micro-strip	10	200	20.000
ALICE	Pixel ibridi	10	0.3	0.030
	Silicon Drift	0.1	1.3	13.000
	Micro-strip	2.6	5.2	2.000
	ightarrow Rimpiazzati da Pixel Monolitici (ITS)	1260	10	0.008
LHCb	Micro-strip	0.2	0.22	1.100
	→ Rimpiazzate da Pixel Ibridi (VELO Upgrade)	41	0.12	0.003

Rivelatori di tracciamento al silicio a LHC per Run1, Run2, Run3

Notare il rapporto canali/superficie per le diverse tecnologie usate

Tutti i pixel elencati sono ibridi, eccetto per il caso dell'ALICE ITS Upgrade (monolitici)

Interazione di particelle diverse con rivelatori diversi

- Particelle cariche sono visibili nei tracciatori
- Fotoni, elettroni, positroni vengono fermati nel calorimetro elettromagnetico, permettendone la misura di energia
- Gli adroni carichi vengono solo visti dal calorimetro elettromagnetico
- Gli adroni (carichi e neutri) vengono fermati nel calorimetro adronico, permettendone la misura di energia
- Solo i muoni sono visibili in tutti i 4 tipi di rivelatori

Per queste ragione viene rispettato questo ordine nella sequenza dei diversi sistemi di rivelazione

CMS

slice

CMS slice

28/10/202

28/10/2021

CMS

slice

CMS slice

Survey of the second se

ATLAS slice

TERGES

Cmx

Caso esemplare: Sensore a Pixel Monolitici di Silicio

• Nello stesso blocco di silicio:

Volume sensibile per la raccolta del segnale

Logica di trattamento del segnale

- Rivela il passaggio di particelle cariche
- Puo' essere realizzato in uno spessore minimo, dell'ordine di 50 μm
- Sviluppato per soddisfare la necessita' di ridurre la quantita' di materiale attraversata dalla particella:
 - Non perturbare la traiettoria della particella
 - Misurare la traiettoria delle particelle con bassa quantita' di moto
 - Mantenere una quantita' di segnale necessaria per misurare il passaggio
- Inizialmente sviluppato per applicazioni alle alte energie, ora in fase di test per applicazioni in campo medico e spaziale

Apparati del futuro: ALICE-ITS3 @ LHC (2027)

key improvements:

- ► closer to beam pipe: 23→18 mm
- ▶ less material: $0.3 \rightarrow \sim 0.03 \ \% X_0$

main benefit:

- better tracking performance
- especially at low p_T

based on:

- ► wafer-scale (up to ~28x10 cm),
- ► ultra-thin (20-40 µm),
- bent (R=18, 24, 30 mm)
 Si sensors (MAPS)

28/10/2021

Apparati del futuro: ALICE 3 @ LHC (2032)

• tracking

~10 layers (blue, yellow, green) based on MAPS

• particle identification

- time-of-flight layers (orange) in central barrel based on silicon timing sensors
- Pre-Shower Detector (outermost blue) based on dense material and MAPS

28/10/2021 giacomo.contin@ts.infn.it - RAFNeS_1 Interazione rad - mat Marco van Leeuwen (Nikhef), Jochen Klein (CERN) @ALICE Week, July 2020

key requirements

- ultra-low material budget for low p_T tracking
 - X/X₀~ 0.05 % / layer
- fast to sample large luminosity
 - 50 100x Run 3/4

large acceptance

- $\eta / < 4 \Rightarrow \Delta \eta = 8$ (total)
- $\eta/ < \sim 1.4$ (central barrel)
- excellent spatial resolution for tracking and vertexing
 - innermost layers: σ < 3 μ m
 - outer layers: σ ~ 5 μm
- **precise time measurement** for particle identification
 - σ~20 ps

Apparati del futuro: Electron Ion Collider (2030 - 2035)

Hybrid tracker

Requirements for an EIC tracker according to the <u>EIC detector handbook</u>:

- Hermetic
 *(11 < 4, 0 :s ¢ < 2n coverage)
- Compact
- Low-material-budget tracker
 - * (3-5% of X₀)
- Excellent momentum, angular, and vertex resolutions

* (dp/p ~ few %)

• Aid in particle identification (PID).

All-Si tracker

2

SDD DESIGN OPTIMIZATION For X-RAY SPECTROSCOPY AND IMAGING

Detector development activity performed in the framework of the XDXL and ReDSoX R&D INFN programs

Prototypes designed, manufactured and tested in collaboration between INFN, INAF and FBK.

(Rachevski et al., JINST, 2015) SUBSTRATE OPTIMIZATION FOR X-RAY

DETECTION

MATERIAL: NTD \rightarrow FZ GEOMETRIC AREA (filling factor): 5" \rightarrow 6" wafer <100> RESISTIVITY: 4 k Ω cm \rightarrow 9 k Ω cm THICKNESS (QE): 300 μ m \rightarrow 450 μ m

DESIGN OPTIMIZATION FOR X-RAY

DETECTION AND SPACE APP.

VOTLAGE DIVIDER: reduced power SURFACE CURRENT: minimization Si-SiO₂ INTERFACE GAP: minimization FIELD PLATE: optimization for minimal surface current QUANTUM EFFICIENCY: optimization for low E_{ph} ANODE PITCH: opt. for spectral-timing & imaging

28/10/2021

Altre applicazioni delle Silicon Drift Detector

- Spettroscopia + ricostruzione posizione 2D
 - Risoluzione all'anodo di decine di um per X-rays con 2 keV
 - Lunghezza di deriva piu' grossolana: non c'e' rivelazione di tempo zero (6 mm per E > 3.5 keV)
 - \Rightarrow Medical field: Compton camera
 - \Rightarrow Nuclear physics precision spectroscopy
 - \Rightarrow X-ray astronomy/astrophysics
 - \Rightarrow X-ray imaging for Advanced Light Sources (SR and FEL)

Applicazione medica delle Silicon Strip Detector: SYRMEP @ ELETTRA: mammografia digitale

 Struttura che ammetta connessione di tutti i canali in 3D, ma anche eviti una spaccatura al centro del volume sensibile

Orientazione edge-on

28/10/2021

•

Fig. 27.1: Stopping power $(= \langle -dE/dx \rangle)$ for positive muons in copper as a function of $\beta \gamma = p/Mc$ over nine orders of magnitude in momentum (12 orders of magnitude in kinetic energy). Solid curves indicate the total stopping power. Data below the break at $\beta \gamma \approx 0.1$ are taken from ICRU 49 [4], and data at higher energies are from Ref. 5. Vertical bands indicate boundaries between different approximations discussed in the text. The short dotted lines labeled " μ^- " illustrate the "Barkas effect," the dependence of stopping power on projectile charge at very low energies [6].

Figure 27.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for muons and pions, are not included. These become significant for muons in iron for $\beta \gamma \gtrsim 1000$, and at lower momenta for muons in higher-Z absorbers. See Fig. 27.23.

Fig. 1.2. Energy loss for electrons, muons, pions, protons, deuterons and α particles in air [14].

Grafici dE/dx

accor	uny	$\iota \upsilon$	L_{q} .	(1.04)
-------	-----	------------------	-----------	--------

Material	Z	A	$X_0 \mathrm{[g/cm^2]}$	$X_0 [{ m cm}]$	$E_{\rm c}[{\rm MeV}]$
Hydrogen	1	1.01	61.3	731000	350
Helium	2	4.00	94	530000	250
Lithium	3	6.94	83	156	180
Carbon	6	12.01	43	18.8	90
Nitrogen	7	14.01	38	30500	85
Oxygen	8	16.00	34	24000	75
Aluminium	13	26.98	24	8.9	40
Silicon	14	28.09	22	9.4	39
Iron	26	55.85	13.9	1.76	20.7
Copper	29	63.55	12.9	1.43	18.8
Silver	47	109.9	9.3	0.89	11.9
Tungsten	74	183.9	6.8	0.35	8.0
Lead	82	207.2	6.4	0.56	7.40
Air	7.3	14.4	37	30000	84
SiO_2	11.2	21.7	27	12	57
Water	7.5	14.2	36	36	83

Table 1.1. Average energy loss of minimum-ionising particles in various materials [10–12]; gases for standard pressure and temperature

Absorber	$\frac{\mathrm{d}E}{\mathrm{d}x}\Big _{\mathrm{min}} \left[\frac{\mathrm{MeV}}{\mathrm{g/cm^2}}\right]$	$\frac{\mathrm{d}E}{\mathrm{d}x}\Big _{\mathrm{min}}\left[\frac{\mathrm{MeV}}{\mathrm{cm}}\right]$
Hydrogen (H ₂)	4.10	$0.37 \cdot 10^{-3}$
Helium	1.94	$0.35 \cdot 10^{-3}$
Lithium	1.64	0.87
Beryllium	1.59	2.94
Carbon (Graphite)	1.75	3.96
Nitrogen	1.82	$2.28 \cdot 10^{-3}$
Oxygen	1.80	$2.57 \cdot 10^{-3}$
Air	1.82	$2.35 \cdot 10^{-3}$
Carbon dioxide	1.82	$3.60 \cdot 10^{-3}$
Neon	1.73	$1.56 \cdot 10^{-3}$
Aluminium	1.62	4.37
Silicon	1.66	3.87
Argon	1.52	$2.71 \cdot 10^{-3}$
Titanium	1.48	6.72
Iron	1.45	11.41
Copper	1.40	12.54
Germanium	1.37	7.29
Tin	1.26	9.21
Xenon	1.25	$7.32 \cdot 10^{-3}$
Tungsten	1.15	22.20
Platinum	1.13	24.24
Lead	1.13	12.83
Uranium	1.09	20.66
Water	1.99	1.99
Lucite	1.95	2.30
Shielding concrete	1.70	4.25
Quartz (SiO_2)	1.70	3.74

Table 2.1	Values of Z, Z/A, I, ρ , $h\nu_p$ and density-effect parameters S_0 , S_1 , a , md	, and
δ_0 for sor	elemental substances.	

El.	Z	Z/A	I	ρ	$h\nu_p$	S_0	S_1	a	md	δ_0
			eV	g/cm^3	eV					
He	2	0.500	41.8	1.66	0.26	2.202	3.612	0.134	5.835	0.00
				$\times 10^{-4}$						
Li	3	0.432	40.0	0.53	13.84	0.130	1.640	0.951	2.500	0.14
0	8	0.500	95.0	1.33	0.74	1.754	4.321	0.118	3.291	0.00
				$\times 10^{-3}$						
Ne	10	0.496	137.0	8.36	0.59	2.074	4.642	0.081	3.577	0.00
				$\times 10^{-4}$						
Al	13	0.482	166.0	2.70	32.86	0.171	3.013	0.080	3.635	0.12
Si	14	0.498	173.0	2.33	31.06	0.201	2.872	0.149	3.255	0.14
Ar	18	0.451	188.0	1.66	0.79	1.764	4.486	0.197	2.962	0.00
				$\times 10^{-3}$						
Fe	26	0.466	286.0	7.87	55.17	-0.001	3.153	0.147	2.963	0.12
Cu	29	0.456	322.0	8.96	58.27	-0.025	3.279	0.143	2.904	0.08
Ge	32	0.441	350.0	5.32	44.14	0.338	3.610	0.072	3.331	0.14
Kr	36	0.430	352.0	3.48	1.11	1.716	5.075	0.074	3.405	0.00
				$\times 10^{-3}$						
Ag	47	0.436	470.0	10.50	61.64	0.066	3.107	0.246	2.690	0.14
Xe	54	0.411	482.0	5.49	1.37	1.563	4.737	0.233	2.741	0.0
				$\times 10^{-3}$						
Ta	73	0.403	718.0	16.65	74.69	0.212	3.481	0.178	2.762	0.14
W	74	0.403	727.0	19.30	80.32	0.217	3.496	0.155	2.845	0.14
Au	79	0.401	790.0	19.32	80.22	0.202	3.698	0.098	3.110	0.14
Pb	82	0.396	823.0	11.35	61.07	0.378	3.807	0.094	3.161	0.14
U	92	0.387	890.0	18.95	77.99	0.226	3.372	0.197	2.817	0.14

Data are from [Sternheimer, Berger and Seltzer (1984)]

Table 2.2	Values of Z/A , I , ρ , $h\nu_p$ and density-effect parameters S_0 , S_1 , a , and md for	ſ
some com	ounds and mixtures.	

Material	Z/A	Ι	ρ	$h\nu_p$	S_0	S_1	a	md
		eV	g/cm^3	eV				
(dry) Air	0.499	85.7	1.21	0.71	1.742	4.276	0.109	3.399
at sea level			$\times 10^{-3}$					
Anthracene	0.527	69.5	1.28	23.70	0.115	2.521	0.147	3.283
Ethane	0.599	45.4	1.25	0.79	1.511	3.874	0.096	3.610
			$\times 10^{-3}$					
Ethyl Alcohol	0.564	62.9	0.79	19.23	0.222	2.705	0.099	3.483
Freon-12	0.480	143.0	1.12	21.12	0.304	3.266	0.080	3.463
(lead) Glass	0.421	526.4	6.22	46.63	0.061	3.815	0.095	3.074
Kapton,								
polyimide film	0.513	79.6	1.42	24.59	0.151	2.563	0.160	3.192
Lithium								
carbonate	0.487	87.9	2.11	29.22	0.055	2.660	0.099	3.542
Methane	0.623	41.7	6.67	0.59	1.626	3.972	0.093	3.626
			$\times 10^{-4}$					
Methanol	0.562	67.6	0.79	19.21	0.253	2.764	0.090	3.548
Plastic scint.,								
vinyltoluene	0.541	64.7	1.03	21.54	0.146	2.486	0.161	3.239
Polyethylene	0.570	57.4	0.94	21.10	0.137	2.518	0.121	3.429
Propane	0.590	47.1	1.88	0.96	1.433	3.800	0.099	3.592
			$\times 10^{-3}$					
Lucite	0.539	74.0	1.19	23.09	0.182	2.668	0.114	3.384
Silicon								
dioxide	0.499	139.2	2.32	31.01	0.139	3.003	0.084	3.506
Tissue,								
soft (ICRP)	0.551	72.3	1.00	21.39	0.221	2.780	0.089	3.511
Tissue,								
soft (ICRP								
four-comp.)	0.550	74.9	1.00	21.37	0.238	2.791	0.096	3.437
Tissue-equiv.,	0.550	61.2	1.06	0.70	1.644	4.140	0.099	3.471
gas (methane			2					
base)			×10 ⁻³					
Tissue-equiv.,	0.550	59.5	1.83	0.91	1.514	3.992	0.098	3.516
gas (propane								
base)			$\times 10^{-3}$					

Data are from [Sternheimer, Berger and Seltzer (1984)]

giacomo.contin@ts.infn.it - RAFNeS_1 Interazione rad - mat

Silicon Pixel Detector – ALICE (2008 – 2019)

		IS STL
SPD Element	Thickness µm	% X ₀
Al Bus		RGES rvm rxXII
Kapton	60	0.021
Al power	100	0.112
Al signals [50% of total surface]	17.5	0.020
Glue Epoxy	70	0.016
SMD components	16.4	0.173
Total bus		0.341
Other Components		
Pixel chip	150	0.160
Sensor	200	0.214
Bump bonds Sn 60%+Pb 40%	0.18 ± 0.12	0.004
Grounding Foil-Kapton/Al	50+10	0.029
Glue Epoxy/thermal grease	200	0.049
Carbon fiber	200	0.106
Total components		0.561
Total bus and components		0.903
MATERIAL BUDGET OF ONE SPD LAYER		

HFT Pixel detector – STAR (BNL) – 2014-2016

PXL Material Budget

Man and a sound of the second

Curved sensor

installation

40-60% yield after thinning,

dicing and probe testing

Fully characterized before

Power and signal lines

Wire bond encapsulant

Acrylic adhesive to deal

largest contribution

with different CTE

- Thinned Sensor
 - 50 µm
 - 0.068% X₀
- Flex Cable
 - Aluminum-Kapton
 - two 32 μm-thick Al layers
 - 0.128% X₀
 - Copper version \rightarrow 0.23
- Carbon fiber supports
 - 125 μ m stiffener
 - 250 µm sector tube
 - 0.193% X₀
- Cooling

- Air cooling: negligible contribution
- Total material budget on inner layer: 0.388% X₀ (0.492% X₀ for the Cu conductor version)

Material budget comparison HFT SPD Si 50um (0.0529%) SPD Element Thickness um $% X_0$ 0.0677% acrylic 50um (0.0148%) Al Bus 60 0.021 Kapton 100 0.112 Al power Encapsulant + bond wires (0.070%) Capacitors + solder (0.0035%) Al signals [50% of total surface] 17.5 0.020 0.128% Coverlay (0.0075%) Glue Epoxy 70 0.016 Al 30um – both sides (0.0248%) kapton 50um (0.0148%) 0.173 SMD components 16.4 Coverlay (0.0075%) **Total bus** 0.341 **Other Components** acrylic 50um (0.0148%) Pixel chip 150 0.160 0.0441% Sensor 200 0.214 Carbon composite 125um (0.0293%) Bump bonds Sn 60%+Pb 40% 0.18 ± 0.12 0.004 Grounding Foil-Kapton/Al 50 + 100.029 Glue Epoxy/thermal grease 200 0.049 Si adhesive 100 um (0.0469%) Carbon fiber 0.106 2000.1486% **Total components** 0.561 Carbon composite 250um (0.1017%) 0.903 **Total bus and components** MATERIAL BUDGET OF ONE SPD LAYER Total = 0.388%

Figura reticolo e bande

SOLID

FIG. 2.7. An incident particle can break a bond, promoting an electron into the conduction band, so it can move freely. The vacant bond with positive net charge can also move by successively "borrowing" electrons from neighboring bonds. (Following Shockley 1950.)

ISOLATED ATOMS

Giunzione pn

Corrente della giunzione pn

Capacita' Vs V_R

Fig. 6.3 Capacitance (in pF) curves as a function of applied voltage (in V) for two detectors of 1 cm^2 area [Leroy (1998)]: (a) resistivity of $\rho = 8 \text{ k}\Omega \text{ cm}$ and thickness $w = 247 \,\mu\text{m}$; (b) resistivity of $\rho = 6 \text{ k}\Omega \text{ cm}$ and thickness $w = 300 \,\mu\text{m}$. The curve represents a fit of Eq. (6.34) to the data points.

Carica raccolta Vs V

Fig. 6.4 Charge collected with a silicon detector $300 \,\mu\text{m}$ thick, area $1 \,\text{cm}^2$, exposed to incoming electrons of energy larger than 2 MeV, as a function of the applied bias (a) and as a function of the square root of the applied voltage (b). The value of the full depletion voltage is 60 volts which corresponds to a collected charge of 3.5 fC, as expected from the most probable energy deposited by relativistic electrons in this detector [Leroy (1998)].

Segnale raccolto in funzione del tempo

Esempi: giunzione p⁺n d=300 μ m A=1 cm² ρ =23 k Ω cm N_{eff} = 2.1 x 10¹¹ cm⁻³

Nota:

 α totalmente assorbita in qualche decina di µm: la carica generata e' localizzata da una o dall'altra parte della giunzione → contributi alla carica di e⁻ e h⁺ differiscono a seconda della distanza dall'elettrodo:

-
$$Q_e = \frac{q}{w} * (w - x_0)$$
 $Q_h = \frac{q}{w} * x_0$

- e⁻ MIP rilascia cariche lungo lo spessore
- picco delle lacune piu' esteso della distribuzione degli e⁻ perche' mobilita' minore

Campo Peso in sensore a microstrisce

Sezione trasversa del p. e c. peso in strip detector

Strip letta Potenziale a 1

Strip vicina Potenziale a 0

E_F scende fino a diventare negativo intorno a 40 um dall'elettrodo. Il segnale prima aumenta poi si inverte: l'integrale e' nullo