Tirocini https://corsi.units.it/sm10/tirocini

← LAU								
IL COR	SO E L'ISCRIZIONE	GLI STUDI E LA LAUREA	LE NORME E LE PRATICHE	CONTATTI E INFORMAZIONI				
Insegnamenti e p	orogrammi							
Scelta del piano di studi		Gli studenti possono svolgere i tirocini curriculari (o stage) all'interno dell'Ateneo o presso Aziende/Enti convenzionati. I tirocini curriculari sono gestiti dai Dipartimenti.						
Appelli d'esame		l laureati da non più di un anno possono effettuare tirocini extracurriculari . Le informazioni sono						
Tirocini		disponibili sul sito dello Sportello lavoro che offre anche un servizio di placement a chi deve entrare nel mondo del lavoro.						
Mobilità internaz	tionale	LAUREA in CHIMIC	Ą					
Riconoscimento	crediti	ll tirocinio formativo	o (o curriculare) è effettuato dura	nte lo svolgimento degli studi e mira ad integrare le				
Tutorato		conoscenze acquisit professionali.	conoscenze acquisite con la frequenza ai corsi universitari, mediante l'acquisizione di esperienze professionali.					
Laurea		Gli studenti della LT	in Chimica potranno scegliere di	attivare il tirocinio formativo anche per il				
Premi di studio		conseguimento dei 3 cfu previsti al II anno per le "altre attività".						
		Si ricorda che n. 1 cl	u equivale a n. 25 ore di attività d	di tirocinio.				
		Enti esterni convenz	ionati per Tirocini formativi e di (orientamento.				

CONVENZIONI STIPULATE dal DIPARTIMENTO DI SCIENZE CHIMICHE E FARMACEUTICHE PER TIROCINI FORMATIVI E DI ORIENTAMENTO (diversi dal Tirocinio professionalizzante previsto per gli studenti di Farmacia e CTF)*							
RAGIONE SOCIALE	AMBITO**	INDIRIZZO	LOCALITA'	DATA CONVENZION			
AEP POLYMERS s.r.l.	chimico	c/o Area Science Park	Trieste	15/06/2017			
ARCO SOLUTIONS Srl	chimico	Via Giorgieri 1	Trieste	06/07/2018			
ARPA FVG	chimico	Via Cairoli 14	Palmanova (UD)	10/06/2019			
BAKEL Srl	farmaceutico	Viale del Ledra 56	Udine	06/11/2014			
BARALDI Srl	chimico	Via Lombardia 21	Castel S.Pietro BO	17/06/2019			
BIOFARMA	farmaceutico	Via Castellliere 2	Mereto di Tomba UD	30/05/2017			
CCIAA TRIESTE	chimico	P.zza della Borsa 14	Trieste	07/12/2015			
CENTRO DI ANALISI CHIMICHE SRL	farmaceutico	Contrada Pucchieta	Marconia di Pisticci M	20/05/2019			
CERAMTEC Gmbh	chimico	Ceramtec Platz 1	Plochingen Germany	28/11/2018			
CIC BiomaGUNE	chimico	Paseo Miramon	S.Sebastian SPAIN	02/05/2019			
CNR - Istituto Scienze Marine ISMAR	chimico	Viale R. Gessi 2	Trieste	17/04/2015			
CNR-IOM	chimico	c/o Area Science Park	Trieste	18/05/2018			
COMPL MONUM. della PILOTTA	chimico	Strada della Pilotta 15	Parma	30/01/2018			
CORDEN PHARMA Spa	farmaceutico	V.le dell'Industria 3	Caponago MB	10/03/2017			
DON srl (libreria Lovat Trieste)	chimico	V.le XX Settembre 20	Trieste	15/02/2016			
EFFEGILAB	farmaceutico	Via di Vittorio 65/10	Lavis (TN)	25/06/2018			
ELECTROLUX ITALIA	chimico	Corso Lino Zanussi 24	Porcia (PN)	19/10/2018			
E-PHARMA Trento	farmaceutico	Via Provina 2	Trento	12/04/2019			
FANTON Spa	chimico	Via Europa Unita 1	Osoppo UD	05/07/2017			
FRIULCHEM Spa	farmaceutico	Via S. Marco 23	Vivaro PN	23/05/2018			
GESTECO Spa	chimico	Via Pramollo 6	Povoletto UD	24/11/2016			
G&Life Spa c/o AREA Science Park	farmaceutico	Padriciano 99	Trieste	19/10/2018			
INSTITUTE QUANTUM RESEARCH CE	l chimico		Julich Germany	02/05/2019			
KALIS Srl	farmaceutico	Via Zanini 5	Cornuda TV	28/03/2018			
LEOCHIMICA SRL	chimico	Via Viatta 1	Zoppola PN	20/07/2018			
L'OREAL (Francia)	chimico	chimico	Parigi Francia	05/03/2018			
MATER-BIOTECH spa	chimico	Via G.Fauser 8	Novara	17/06/2019			
	farmaceutico	Via Cantonale 4	Molinazzo di M. CH	31/03/2015			
MULTIPROJECT	chimico	Via Terza Armata 117/7	Gorizia	29/05/2019			

Enti esterni convenzionati per Tirocini formativi e di orientamento.

-Come attivare un tirocinio curriculare

Procedura tirocinio Chimica

Modulistica

Tirocino - Domanda Ammissione Chimica

Modulo D - Progetto formativo

Modulo E - Effetuazione tirocinio

CHIMICA ANALITICA II CON LABORATORIO

(AA 2020-21) 8 C.F.U. - Laurea triennale in Chimica

Le Spettroscopie di Fluorescenza molecolare

Il fenomeno della fluorescenza molecolare avviene quando una molecola <u>dopo aver assorbito un</u> <u>fotone ad energia hv emette un fotone ad energia hv'</u> con v' < v (cioè λ ' > λ)

III E' una

$$A + hv \rightarrow A^* \rightarrow A + hv'$$

spettroscopia di

emissione !!!

Con l'assorbimento del fotone la molecola:

- raggiunge un livello energetico vibrazionale appartenente ad un certo livello elettronico superiore a quello fondamentale (a),
- poi decade per rilassamento vibrazionale fino al livello elettronico eccitato **(b)**
- ed infine emette un fotone per rilassamento radiativo ritornando allo v' stato fondamentale (c), quindi $\Delta E' < \Delta E$

Spettroscopie atomiche e molecolari: la spettroscopia di fluorescenza molecolare

https://chem.libretexts.org/Textbook_Maps/Analytical_Chemistry_Textbook_Maps/Map%3A_Analytical_Chemistry_2.0_(Harvey)/10_Spectroscopic_Methods

Figure 1 Transitions giving rise to absorption and fluorescence emission spectra

https://www.chem.uci.edu/~dmitryf/manuals/ Fundamentals/Fluorescence%20Spectroscopy. pdf

Spettri di assorbimento e fluorescenza

L'analisi quantitativa in spettroscopia di fluorescenza molecolare

Le misure di emissione non sono misure assolute: le intensità di emissione ottenute su diversi strumenti non sono in genere confrontabili fra di loro. Per effettuare misure quantitative è quindi indispensabile utilizzare una curva di taratura.

Si selezionano lunghezza d'onda di eccitazione e lunghezza d'onda di emissione di fluorescenza.

E' possibile dimostrare che, <u>quando l'assorbanza della</u> <u>soluzione è sufficientemente bassa (A \leq 0,05) esiste una</u> <u>proporzionalità diretta fra l'intensità dell'emissione P_F e la</u> <u>concentrazione</u>:

 $P_F = kP_0c$

dove P_0 è la potenza della radiazione incidente e k è una costante che contiene, fra l'altro, il valore della resa quantica di emissione dell'analita (la resa quantica Φ è il rapporto tra il numero di fotoni emessi e il numero fotoni assorbiti):

Inoltre è possibile aumentare l'intensità del segnale di emissione aumentando la potenza della radiazione di eccitazione.

Spettroscopie atomiche e molecolari: la spettroscopia di fluorescenza molecolare

Slides in parte tratte da corso di Chimica Analitica dell'Eurobachelor in chimica e chimica dei materiali della Facoltà di SMFN dell'Università di Bologna

Spettroscopia di fluorescenza molecolare: la strumentazione

è sufficiente che due facce opposte siano trasparenti)

- La lampada ad arco contenente Xe (ad alta pressione) è una lampada <u>ad alto potere radiante</u> (P_0) che produce radiazione elettromagnetica in un intervallo $\Delta \lambda = 200 - 900$ nm

Fluorescenza primaria (naturale)

Tipica di molte sostanze naturali sia nel mondo vegetale che animale (fisiologicamente presente in molti tessuti).

*Praticamente tutte le clorofille sono fluorescenti.

*Molti pigmenti naturali specialmente quelli di natura lipidica hanno emissioni fluorescenti.
*Alcuni aminoacidi importanti: Triptofano e Tirosina (e quindi le proteine che li contengono).
*Molti enzimi e coenzimi (es.NAD).

*Molte vitamine (soprattutto dei gruppi A e D).

*Molti farmaci e molecole "aromatiche" in generale (es. farmaci antitumorali e antibiotici).

* Idrocarburi Policiclici Aromatici

Fluorescenza secondaria (indotta)

- Fluorocromizzazione (diretta o a più stadi) mediante "marcatori" fluorescenti (fluorocromi). Es. in qRT-PCR. https://www.researchgate.net/profile/P_Williams/publication/14297603_A_novel_metho d_for_Real_time_quantitative_RT-PCR/links/566eefb808ae0e4446b4090b.pdf
- Indotta da trattamenti chimici e/o chimico-fisici atti a modificare sostanze già presenti nel campione che diventano quindi prodotti fluorescenti.

Santos, M.C.D., Monteiro, J.D., Araújo, J.M.G. *et al.* Molecular fluorescence spectroscopy with multi-way analysis techniques detects spectral variations distinguishing uninfected serum versus dengue or chikungunya viral infected samples. *Sci Rep* **10**, 13758 (2020). https://www.nature.com/articles/s41598-020-70811-7

Confronto tra Spettroscopia di assorbimento e di fluorescenza molecolare

	Spettrofotometria	Spettrofluorimetria
Applicabilità	Ampia	Ristretta (relativamente poche sostanze emettono)
Intervallo di linearità	Ampio	Ristretto
Sensibilità (oppure limite di rivelazione)	Media	Elevata (è possibile utilizzare rivelatori più sensibili o aumentare P _o)

Testi di approfondimento per spettroscopie di Fluorescenza molecolare

Fondamenti:

https://www.chem.uci.edu/~dmitryf/manuals/Fundamentals/Fluorescence%20Excitation%20and%20Emission%20Fundamentals. pdf

Applicazioni

https://www.chem.uci.edu/~dmitryf/manuals/Fundamentals/Fluorescence%20Spectroscopy.pdf

Spettroscopie atomiche e molecolari: la spettroscopia di fluorescenza molecolare

Le Spettroscopie di Fluorescenza atomica ai raggi X (XRF)

La X Ray Fluorescence (XRF) è una tecnica che viene utilizzata per l'analisi elementare di solidi o liquidi con un minimo trattamento del campione. Il campione viene irradiato con raggi X, gli atomi del campione vengono eccitati ed emettono raggi X in fase di rilassamento. Le lunghezze d'onda dei raggi X emessi sono caratteristiche della specie atomica.

Nel campo dei raggi X la <u>lunghezza d'onda è usualmente espressa in Ångstrom</u> con 1Å = 0.1 nm e l'energia coinvolta nelle <u>transizioni elettroniche in chilo-elettronVolt (keV)</u>. 1 eV è l'energia acquisita da un elettone quando viene accelerato dalla potenza di 1Volt.

L'XRF di solito utilizza lunghezze d'onda nell"intervallo 0.5-100 Å e quindi energie da 25 a 0.1 keV

I raggi X possono interagire con gli <u>elettroni interni</u> del guscio atomico K, poiché possiedono energia comparabile con l'energia di transizione elettronica da K ai gusci più esterni.

Modello atomico di Bohr

In questa tecnica un fotone con energia nella regione dello spettro dei raggi X è assorbito da un atomo ed un elettrone di un orbitale interno viene espulso lasciando una vacanza.

A questo punto l'atomo è in uno stato ionizzato A⁺ e tende a tornare il più presto possibile in uno stato energetico più basso (configurazione elettronica più stabile) con lo spostamento di un elettrone da un guscio più esterno alla vacanza e quindi emettendo un fotone a $\lambda' > \lambda$ (fluorescenza).

segue \rightarrow

Spettroscopie atomiche e molecolari: la spettroscopia di fluorescenza atomica ai raggi X https://ilblogdellasci.wordpress.com/2017/10/23/la-denominazione-k-l-m-per-i-gusci-elettronici-e-s-p-d-f-per-gli-orbitali/

Transizioni elettroniche possibili in XRF

- Elettrone che va a riempire la vacanza
- Vacanza elettronica (buca)

- righe K_α: transizione di un elettrone del guscio
 L per riempire una vacanza nel guscio K. <u>Sono</u>
 <u>le transizioni più frequenti e quindi i picchi K_α</u>
 <u>sono i più intensi</u>
- righe K_β: transizione di un elettrone del guscio
 M per riempire una vacanza nel guscio K
- righe L_α: transizione di un elettrone del guscio
 M per riempire una vacanza nel guscio L
- righe L_β: transizione di un elettrone del guscio
 N per riempire una vacanza nel guscio L

Rilassamenti non radiativi in XRF (emissione di elettroni di Auger)

L'emissione di elettroni di Auger è <u>un processo competitivo</u> rispetto all'emissione di fluorescenza (cioé l'emissione di fotoni).

L'energia rilasciata durante una transizione K_{α} o K_{β} (cioè un elettrone che passa da L o M al guscio K, rispettivamente) può essere assorbita da un altro elettrone dell'atomo invece di essere emessa come fotone. Questa energia porta all'emissione di un elettrone dall'atomo, il così detto <u>elettrone di Auger</u>.

- Elettrone che va a riempire la vacanza
- Vacanza elettronica (buca)
- Elettrone di Auger

La probabilità che il riempimento di una vacanza elettronica porti ad emissione è detta <u>resa della</u> <u>fluorescenza</u> e si esprime (es. per il guscio K):

 $\omega_{K} = \frac{n^{\circ} \text{ di raggi X emessi dal guscio K}}{n^{\circ} \text{ di vacanze create nel guscio K}}$

 ω_{κ} è molto bassa per elementi con Z< 11 (cioè più leggeri di Na), mentre per elementi con Z molto grande è prossima a 1.

Per questo motivo la tecnica XRF è poco sensibile per elementi leggeri.

Ma: https://www.elettra.trieste.it/lightsources/elettra/elettrabeamlines/twinmic/low-energy-x-ray-fluorescence.html

Spettri XRF

Gli spettri XRF non contengono solo righe ben distinte dovute alle transizioni elettroniche, ma anche <u>numerose</u> <u>righe</u> (a seconda della specie atomica e dello strumento impiegato) <u>dovute a diversi effetti</u>:

Effetto di scattering:

N.B.: in questa spiegazione la "sorgente" è un tubo al Rh (vedasi slides successive)

Una frazione dei raggi X della sorgente colpiscono il campione e sono retrodiffusi ("backscattered") al detector

- i raggi X colpiscono un atomo <u>senza</u> promuovere fluorescenza
- l'energia non è persa nella collisione ($E_2 = E_1$)
- *i picchi appaiono come picchi della sorgente*
- noti anche come <u>scatter elastico</u> (perché l'energia non cambia)
- i raggi X colpiscono un atomo <u>senza</u> promuovere fluorescenza
- energia è persa nella collisione ($E_2 < E_1$)
- i picchi Compton appaiono come picchi della sorgente, ad energia leggermente inferiore ai picchi Rayleigh
- noti anche come <u>scatter anelastico</u>

> Picchi somma:

- 2 fotoni colpiscono il detector simultaneamente
- la fluorescenza è riconosciuta come dovuta ad 1 fotone avente energia doppia
- un picco appare nello spettro a 2x (volte) keV dell'elemento
- Picchi di escape

Brehmstrahlung (radiazione di frenamento)

Rumore che appare negli spettri dovuto alla decelerazione degli elettroni quando colpiscono l'anodo del tubo a raggi X (nella <u>sorgente</u>)

- i raggi X colpiscono il campione e se promuovono una forte fluorescenza,
- Possono eccitare l'elemento che costituisce nel <u>detector</u> (es. Si), che emette fotone; il risultato è un picco che appare a keV dell'Elemento– (meno) keV del Si (1.74 keV)

Spettroscopie atomiche e molecolari: la spettroscopia di fluorescenza atomica ai raggi X <u>https://www-pub.iaea.org/MTCD/Publications/PDF/TCS-51/html/topics/216.html</u>; http://physicsopenlab.org/2017/08/02/radiazione-di-bremsstrahlung/

 \succ

Spettroscopia XRF: la sorgente di raggi X

Spettroscopia XRF: la strumentazione

Spettrometria di fluorescenza X a dispersione di lunghezza d'onda (WDXRF)

- più sofisticati, quindi più costosi;
- minore efficienza della sorgente di raggi X ⇒ costo maggiore;
- risoluzione migliore (5-20 eV);
- radiazioni di fondo minori, quindi minori LOD (Limit of Detection)

Spettrometria di fluorescenza X a dispersione

di energia (EDXRF)

- più semplici, quindi meno costosi;
- niente parti in movimento;
- maggiore efficienza della sorgente di raggi X;
- risoluzione peggiore (150-600 eV), necessità di deconvoluzioni spettrali in caso di sovrapposizione di picchi;
- radiazioni di fondo maggiori, quindi maggiori LOD

Strumenti XRF da banco

- strumenti compatti
- prezzo contenuto
- manipolazione richiesta minima
- possibilità di analisi su scala micro (strumenti più costosi)

Strumenti XRF portatili

- gli strumenti portatili consentono di effettuare analisi senza vincoli geometrici
- prestazioni inferiori rispetto agli strumenti da banco

Strumenti XRF portatili

Apparecchiature portatili per l'analisi non distruttiva "in situ"

limitata ad elementi con numero atomico superiore a 19 (potassio)

molto adatto per individuare i pigmenti edilizi

http://www.elettra.trieste.it/lightsources/elettra/elettra-beamlines/microfluorescence/x-ray-fluorescence.html

www.elettra.trieste.it/lightsources/elettra/elettra-beamlines/microfluorescence/x-ray-fluorescence.html

Analytical capabilities

X-Ray Fluorescence (XRF) is a well-established and versatile analytical technique for studying the elemental composition of different kind of materials with detection limits down to the sub-µg/g concentration level for the best excitation/detection conditions. The analytical capabilities of XRF are considerably improved in terms of elemental sensitivity and spatial resolution by using synchrotron radiation (SR) for excitation. Advanced sample manipulator stages make possible to perform near surface, angular dependent and 2D scanning or transmission measurements. In addition, the high resolving power of the crystal monochomators installed at the XRF beam line allows performing X-ray Absorption Near-Edge Structure (XANES) measurements and to gather valuable information on the speciation of the detected elements.

222764 (2015) DOI:10.1364/OE.23.022753

Limiti di rilevabilità

Differiscono in funzione della matrice, della preparazione del campione, del tipo di strumento. Indicativamente, per materiale siliceo con WDXRF:

> 500-100 ppm per elementi maggiori (Na, Mg, Al, Si, P, S, Cl, K, Ca, Mn, Fe, Ba) 20 -10 ppm per elementi in traccia (V, Cr,Co, Ni, Cu,Zn, As, Rb, Sr, Y, Zr, Nb, Mo, W, Pb, Th, U)

In genere:

- la stumentazione ED ha limiti di rilevabilità più elevati per gli elementi in traccia rispetto allo strumento WD
- i limiti di rilevabilità sono di un ordine di grandezza maggiore con strumentazioni portatili

Caratteristiche della tecnica XRF

- *multielementare*
- non distruttiva (...)
- analisi limitata ad elementi con n.a. > 10
- *"necessità" di utilizzare il vuoto (10 Pa)*
- possibili alterazione del colore (...)
- possibili modificazioni delle proprietà meccaniche
- *"ampia" area d'analisi*
- marcato effetto matrice nell'analisi quantitativa
- in campioni stratificati, possibilità di eccitazione di più strati

Applicazioni

Monete ed altri oggetti di metallo

individuazione di alterazioni o trattamenti superficiali quali impoverimento o arricchimento analisi di bulk per indagini sulla tecnologia, informazioni storiche, autenticazioni

Ceramica e ossidiana

studi di provenienza

<u>Avorio</u>

riconoscimento di avorio di mammut

<u>Vetri</u>

individuazione degli elementi coloranti, composizione della matrice

Riconoscimento di pigmenti pittorici ed inchiostri

Additivi nelle vernici

Applicazioni in accoppiamento con altra strumentazione: la microscopia elettronica a scansione

Scanning Electron Microscopy with EDX probe

Il campione è colpito da fascio ad alta energia di elettroni, che trasferisce energia a elettroni interni degli atomi superficiali, che vengono espulsi generando emissione di fluorescenza

Figura 1 Immagine acquisita con il detector SE (Secondary Electrons) Impostazioni: Magn = 200, HT = 15 kV, Spot = 5

Figura 2 Immagine acquisita con il detector BSE (Back Scattered Electrons) Impostazioni: Magn = 200, HT = 15 kV, Spot = 5

Nel caso il fascio ad alta energia sia costituito da protoni, la tecnica è nota come PIXE (Proton Induced X ray Emission) La sorgente di luce di sincrotrone come sorgente di raggi X

Dimensional characterization of selected elements in airborne PM_{10} samples using μ -SRXRF

F. Cozzi,^a*[†] G. Gržinić,^{a‡} S. Cozzutto,^a P. Barbieri,^a M. Bovenzi^b and G. Adami^a

Micro synchrotron radiation X-ray fluorescence (μ -SRXRF) is a powerful spectroscopy technique that uses synchrotron radiation to induce X-ray fluorescence in samples and provides exhaustive information on the micron and submicron scale. Among the major advantages of μ -SRXRF spectroscopy are its nondestructive nature and that samples can usually be analyzed without pretreatment. At the ESRF (Grenoble, France) ID-21 beamline, we examined PM₁₀ samples collected at two sites in the Province of Trieste, Italy, in order to determine possible correlations among some low- to mid-Z elements (S, Cl, K, Ca, Ti, V, Cr, Mn, and Fe), as well as investigated the possibility of using synchrotron radiation imaging techniques as a way to examine the granulometry of PM₁₀ particles containing the various chemical elements. A consistent significant correlation between Ca and S has been found, which, coupled with the data obtained in a related study, indicates that a major part of the sulfate is present as CaSO₄. Granulometry measurement via imaging techniques has shown that some elements such as Fe, Ca, and S are more amenable to this type of analysis than others. Additionally, the spatial homogeneity of a PM₂₅ certified reference material (NIST SRM-2783) has been investigated by analyzing four adjacent areas on the certified sample (total area 1 mm²). The certified reference material has shown a percentage relative standard deviation less than 7% for Al, Si, P, S, Cl, K, Ca, V, Cr, and Fe, and close to 17% for Ti and Mn. Copyright © 2011 John Wiley & Sons, Ltd.

Keywords: X-ray fluorescence; synchrotron radiation; airborne particulate matter; dimensional characterization; imaging techniques

Analisi di Attivazione Neutronica (NAA)

Esponendo i campioni <u>ad una sorgente di neutroni termici</u>, e suscitando così una radioattività indotta, si ottenevano informazioni <u>qualitative e quantitative sugli elementi presenti</u>, tramite la misurazione della radioattività stessa.

E' necessario poter disporre di una sorgente di neutroni:

•Reattori tipo TRIGA (Training Research Isotopes General Atomics) MARK II

- •http://lena.unipv.it/index.php/visite-didattiche/
- •http://www.rcp.ijs.si/ric/index-a.htm

•http://www.rcp.ijs.si/ric/pdf/reactor_utilization.pdf

https://www.researchgate.net/publication/237274676_

L'ANALISI_STRUMENTALE_PER_ATTIVAZIONE_NEUTRONICA_UN_POTENTE_STRUMENTO_ NELLA_DETERMINAZIONE_DELLA_CONTAMINAZIONE_AMBIENTALE_TEORIA_ED_APPLICAZ IONI L'Analisi per Attivazione Neutronica presenta, per un gran numero di elementi, una <u>sensibilità</u> ineguagliabile (fino a 10⁻¹² g ovvero <u>picogrammi</u>).

La sua importanza deriva dalla necessità di analizzare <u>elementi di rilevanza ambientale</u> presenti però in tracce o, addirittura, in ultra-tracce nei campioni.

Una tipica analisi con questa tecnica si svolge in 3 fasi distinte: attivazione, isolamento e determinazione quantitativa.

Si rilevano fotoni gamma, con energie caratteristiche per gli elementi.

Spettroscopie atomiche e molecolari: Analisi di Attivazione Neutronica

LA SPETTROMETRIA DI MASSA

INTRODUZIONE

La Spettrometria di Massa consiste nel "<u>pesare</u>" singole molecole tramite la loro trasformazione in <u>ioni</u> nel <u>vuoto</u>, e la misura della risposta delle loro <u>traiettorie</u> a campi elettrici, magnetici o entrambi

Fenn et al (1989): Science 246(4926):64-71

Uno spettrometro di massa è uno strumento che viene utilizzato per:

- 1) Generare ioni da elementi/composti con un metodo adatto;
- Separare questi ioni (nello spazio o nel tempo) in base al loro rapporto massa su carica (m/z)
- 3) Rivelare gli ioni qualitativamente e quantitativamente in funzione del loro m/z

La spettrometria di massa NON è una spettroscopia (da $\sigma \kappa o \pi \dot{\epsilon} \omega$ osservo, visivamente), perché NON coinvolge assorbimento o emissione di fotoni

Rappresentazione schematica di uno spettrometro di massa

Il cammino libero degli ioni

La condizione di **alto vuoto** è necessaria per consentire agli ioni di raggiungere il detector <u>senza incorrere in</u> <u>collisioni</u> con altre molecole gassose, poiché:

- a) le collisioni produrrebbero <u>una deviazione della traiettoria</u> e lo ione potrebbe perdere la sua carica andando a sbattere contro le pareti dello strumento;
- b) le collisioni con altre molecole potrebbero produrre <u>reazioni non desiderate</u> e quindi aumentare la complessità dello spettro di massa ottenuto.

Secondo la teoria cinetica dei gas il cammino libero medio L (in m) è dato da:

$$L = \frac{kT}{\sqrt{2}p\sigma}$$

dove k è la costante di Boltzmann, T è la temperatura (in K), p è la pressione (in Pa) e σ è l'**area della sezione di collisione** (in m²) con $\sigma = \pi \cdot d^2$, dove d (in m) è la somma dei raggi dello ione collidente e della molecola stazionaria.

$$L = \frac{kT}{\sqrt{2}p\sigma}$$
N.B. la costante di Boltzmann k = $\frac{R}{N_A}$
con R = *costante universale dei gas (espressa in J K⁻¹ mol⁻¹) N_A* = *numero di Avogadro.*

Si può approssimare <u>il cammino libero medio di uno ione a condizioni normali</u> in uno spettrometro di massa sostituendo nell'equazione soprastante: $k = 1.38 \times 10^{-23}$ J K⁻¹, T ~ 300 K, σ ~ 45 × 10⁻²⁰ m² (in cui approssimativamente ad es. $r_1 = 1$ Å e $r_2 = 3$ Å):

$$L = \frac{0.0065}{p} \qquad \qquad L = \frac{5 \cdot 10^{-5}}{p}$$

con L in **m**, e p in **Pa**

con L in **m**, e p in **Torr**

<u>Quindi, ad es. per garantire ad uno ione un cammino libero di 1 metro il vuoto deve essere di almeno 5.10⁻⁵ Torr.</u> Tuttavia, a seconda del tipo di spettrometro di massa, in cui possono variare i diversi dispositivi di generazione di ioni e separazione degli stessi, possono essere necessarie condizioni di vuoto diverse.

I sistemi di generazione del vuoto utilizzano delle pompe meccaniche in accoppiata con pompe turbomolecolari (o a diffusione o criogeniche). Le pompe meccaniche portano il sistema a circa 10⁻³ Torr, poi si attivano gli altri tipi di pompe che possono portare il sistema <u>anche fino a circa 10⁻¹⁰ Torr</u>.

GLI ISOTOPI

<u>Gli isotopi</u> sono elementi che contengono <u>lo stesso numero di protoni</u>, quindi hanno stesso numero atomico Z che determina la loro posizione nella Tavola Periodica, ma <u>differiscono per il</u> <u>numero di neutroni</u> presenti nel nucleo.

Tra gli 83 elementi stabili presenti in natura:

- a) 20 di essi esistono in una unica forma isotopica, cioè sono mono-isotopici;
- b) Molti elementi esistono sotto forma di due isotopi, cioè sono di-isotopici, in particolare possono essere classificati come X+1 o X+2 o, in rari casi, X-1;
- c) La maggior parte degli elementi è definita **poli-isotopica** poiché possiede un numero di isotopi uguale a tre o più.

X = numero di massa (protoni+neutroni) dell'isotopo più abbondante.

Esempi:

- a) mono-isotopici: fluoro (¹⁹F), sodio (²³Na), fosforo (³¹P), iodio(¹²⁷I), berillio (⁹Be), alluminio (²⁷AI), manganese (⁵⁵Mn), cobalto (⁵⁹Co), arsenico (⁷⁵As), cesio (¹³³Cs), and oro (¹⁹⁷Au);(*)
 (*) N.B.: dall'elenco sono esclusi gli isotopi radioattivi (cioè non stabili), ad es. ¹³¹I e ¹³⁷Cs
- b) di-isotopici, con numero di neutroni uguale a:
 - ★ X+1: idrogeno (¹H, ²H ≡ D), carbonio (¹²C, ¹³C), and azoto (¹⁴N, ¹⁵N);
 - ★ X+2: cloro (³⁵Cl, ³⁷Cl), bromo (⁷⁹Br, ⁸¹Br), rame (⁶³Cu, ⁶⁵Cu), argento (¹⁰⁷Ag, ¹⁰⁹Ag);
 - ✤ X-1: litio (⁶Li, ⁷Li), boro (¹⁰B, ¹¹B), and vanadio (⁵⁰V,⁵¹V);
- c) poli-isotopici: ossigeno (¹⁶O, ¹⁷O, ¹⁸O), zolfo (³²S, ³³S, ³⁴S), xenon (9 isotopi).

L'ABBONDANZA ISOTOPICA

Le abbondanze isotopiche per un singolo elemento sono riportate

- o considerando che la somma delle abbondanze di tutti gli isotopi sia = 100%;
- oppure normalizzando rispetto all'isotopo più abbondante che viene posto = 100% quindi gli altri vengono calcolati di conseguenza (vedi tabella)

Le abbondanze isotopiche vengono usualmente rappresentate utilizzando dei grafici a barre che riportano in ascissa le unità di massa atomica (u) e in ordinata l'Abbondanza %.

classifi- cation	Atomic symbol	Atomic number Z	Mass number A	Isotopic composition	Isotopic mass [u]	Relative atomic ma [u]
(X) ^a	Н	1	1 2	100 0.0115	1.007825 2.014101	1.00795
х	F	9	19	100	18.998403	18.998403
х	Na	11	23	100	22.989769	22.989769
х	Р	15	31	100	30.973762	30.973762
х	Ι	53	127	100	126.904468	126.90446
X+1	с	6	12 13	100 1.08	12.000000 ^b 13.003355	12.0108
X+1	Ν	7	14 15	100 0.369	14.003074 15.000109	14.00675
(X+2) ^a	0	8	16 17 18	100 0.038 0.205	15.994915 16.999132 17.999116	15.9994
(X+2) ^a	Si	14	28 29 30	100 5.0778 3.3473	27.976927 28.976495 29.973770	28.0855
(X+2) ^a	S	16	32 33 34 36	100 0.80 4.52 0.02	31.972071 32.971459 33.967867 35.967081	32.067
X+2	Cl	17	35 37	100 31.96	34.968853 36.965903	35.4528
X+2	Br	35	79 81	100 97.28	78.918338 80.916291	79.904
X–1	Li	3	6 7	8.21 100	6.015122 7.016004	6.941
X-1	В	5	10 11	24.8 100	10.012937 11.009306	10.812
poly	Xe	54	124 126 128	0.33 0.33 7.14	123.905896 125.904270 127.903530	131.29
			129 130 131	98.33 15.17 78.77	128.904779 129.903508 130.905082	
			132 134	100 38.82	131.904154 133.905395	

Table 3.1. Isotopic classifications and isotopic compositions of some common elements. A

LE DIVERSE DEFINIZIONI DI MASSA di UN ELEMENTO

Massa nominale di un elemento:

è il numero intero ottenuto per arrotondamento della massa esatta del suo isotopo più abbondante in natura

Massa isotopica:

è la massa esatta di un isotopo. E' molto prossima alla massa nominale di un isotopo, ma non uguale. Unica eccezione è il ¹²C che ha massa isotopica = 12,000000 u.

Massa monoisotopica:

è la massa esatta dell'isotopo più abbondante in natura di un elemento.

Massa atomica relativa:

è calcolata come media pesata di tutti gli isotopi presenti in natura di un elemento:

$$M_r = \frac{\sum_{i=1}^{i} A_i \times m_i}{\sum_{i=1}^{i} A_i}$$

dove A_i è l'abbondanza e m_i la massa isotopica dell'i-esimo isotopo.

Esempio: il cloro.

- Massa nominale del cloro = 35;
- Massa isotopica ad es. del ³⁷Cl = 36.965903 u;
- Massa monoisotopica del cloro = 34.968853 u;
- Massa atomica relativa del cloro = 35.4528 u

Tuttavia <u>non esiste</u> un atomo con questa massa. Invece il cloro è composto da ³⁵Cl (34.968853 u) e ³⁷Cl (36.965903 u) al 75.78% e 24.22% dell'abbondanza totale o, in termini di abbondanza relativa (o normalizzata), 100% e 31.96% rispettivamente.

Quindi è possibile calcolare la massa atomica relativa del cloro come segue:

$$\begin{split} M_r &= (75.78 \times 34.968853 \ u + 24.22 \times 36.965903 \ u) / (75.78 + 24.22) \\ &= 35.4528 \ u. \end{split}$$

oppure

 $M_r = (100 \times 34.968853 u + 31.96 \times 36.965903 u)/(100 + 31.96) = 35.4528 u.$

N.B.: l'unità di massa atomica [u] è definita come 1/12 della massa di un atomo dell'isotopo ¹²C a cui viene assegnata una massa di esattamente 12 u, con 1 u = 1.660538× 10⁻²⁷ kg.

La spettrometria di massa: introduzione

Table 3.1. Isotopic classifications and isotopic compositions of some common elements. A complete table is provided in the Appendix. © IUPAC 2001 [7,8]

Classifi- cation	Atomic symbol	Atomic number	Mass number	Isotopic composition	Isotopic mass [u]	Relative atomic mas
		Z	A			[u]
(X) ^a	н	1	1	100	1.007825	1.00795
			2	0.0115	2.014101	
Х	F	9	19	100	18.998403	18.998403
х	Na	11	23	100	22.989769	22.989769
х	Р	15	31	100	30.973762	30.973762
х	Ι	53	127	100	126.904468	126.904468
X+1	С	6	12	100	12.000000 ^b	12.0108
			13	1.08	13.003355	
X+1	N	7	14	100	14.003074	14.00675
			15	0.369	15.000109	
(X+2) ^a	0	8	16	100	15.994915	15.9994
			17	0.038	16.999132	
			18	0.205	17.999116	
(X+2) ^a	Si	14	28	100	27.976927	28.0855
			29	5.0778	28.976495	
			30	3.3473	29.973770	
(X+2) ^a	S	16	32	100	31.972071	32.067
			33	0.80	32.971459	
			34	4.52	33.967867	
			36	0.02	35.967081	
X+2	Cl	17	35	100	34.968853	35.4528
			37	31.96	36.965903	
X+2	Br	35	79	100	78.918338	79.904
			81	97.28	80.916291	
X-1	Li	3	6	8.21	6.015122	6.941
			7	100	7.016004	
X-1	в	5	10	24.8	10.012937	10.812
			11	100	11.009306	
poly	Xe	54	124	0.33	123.905896	131.29
			126	0.33	125.904270	
			128	7.14	127.903530	
			129	98.33	128.904779	
			130	15.17	129.903508	
			131	78.77	130.905082	
			132	100	131.904154	
			134	38.82	133.905395	
			136	32.99	135.907221	

^a Classification in parentheses = "not in the strict sense". ^b Standard of atomic mass scale.

LE DIVERSE DEFINIZIONI DI MASSA di UNA MOLECOLA

Massa molecolare nominale:

la massa nominale di una molecola è uguale alla somma delle masse nominali degli elementi che la costituiscono. Esempio 1:

Massa nominale $CO_2 = 12 u + 16 u \times 2 = 44 u$

Esempio 2:

Massa nominale $SnCl_2 = 120 u + 35 u \times 2 = 190 u$

N.B:: In questo caso mentre l'isotopo ³⁵Cl è sia l'isotopo più abbondante per il cloro che quello a massa minore, per lo stagno l'isotopo più abbondante è ¹²⁰Sn (e l'isotopo a massa minore è ¹¹²Sn).

> Massa molecolare monoisotopica:

è calcolata come somma di tutte le masse atomiche monoisotopiche degli elementi che sono presenti nella sua formula empirica.

Esempio:

Massa molecolare monoisotopica $CO_2 = 12.000000 u +$ 15.994915 u × 2 = 43.989830 u

Massa molecolare relativa:

è calcolata come somma di tutte le masse atomiche relative degli elementi che sono presenti nella sua formula empirica. E' la massa comunemente utilizzata nei calcoli stechiometrici.

Esempio:

Massa molecolare relativa $CO_2 = 12.0108 u + 15.9994 u \times 2 = 44.0096 u$

La spettrometria di massa: introduzione

LE DIVERSE DEFINIZIONI DI MASSA di UNO IONE

Massa nominale, Massa isotopica, Massa monoisotopica, Massa relativa

= alle definizioni per le molecole

Massa esatta:

per gli ioni POSITIVI che si formano per rimozione di uno o più elettroni da una molecola è uguale a:

Massa Molecolare Monoisotopica – $n_e \times m_e$

dove $n_e = numero$ degli elettroni sottratti e $m_e = massa$ dell'elettrone (0.000548 u)

 per gli ioni NEGATIVI che si formano per acquisizione di uno o più elettroni da parte di una molecola è uguale a:

Massa Molecolare Monoisotopica + $n_e \times m_e$

dove $n_e = numero$ degli elettroni sottratti e $m_e = massa$ dell'elettrone (0.000548 u)

Esempio:

Massa esatta CO_2^{+} (catione radicale) = 12.000000 u + 15.994915 u × 2 - 0.000548 u = 43.989282 u

E' necessario considerare la massa dell'elettrone?

Questa considerazione è stata dibattuta a livello teorico finché non sono stati realizzati strumenti in grado di misurare masse con accuratezza < 0.001 u.

Questi strumenti sono principalmente il FT-ICR (Analizzatore a risonanza ionica ciclotronica a trasformata di Fourier), l'OrbiTrap (un sofisticato Analizzatore a Trappola Ionica) e l'oaTOF (Analizzatore a tempo di volo ad accelerazione ortogonale).

In questo caso non considerando le masse degli elettroni si commettono degli errori sistematici che portano ad ottenere delle misure errate.

Quindi, cosa misuriamo?

Massa accurata:

è la massa di uno ione <u>misurata sperimentalmente</u>, quindi è l'approssimazione sperimentale della massa esatta (che è un concetto teorico). Al progredire della tecnica in campo strumentale si continuano ad aggiungere cifre decimali ai valori ottenuti con strumentazione già in uso.

LA RISOLUZIONE IN SPETTROMETRIA DI MASSA

La **RISOLUZIONE** è la capacità dello strumento di distinguere ioni con rapporto m/z (massa/carica) quasi uguale (o molto prossimo).

In altre parole è la minima differenza $\Delta m/z$ apprezzabile dallo strumento rispetto ad un valore m/z:

$$R = \frac{m/z}{\Delta m/z}$$

è un numero adimensionale, viene detta anche potere risolvente.

Uno **spettro di massa** è un <u>grafico</u> in cui in ascissa è riportato il rapporto m/z e in ordinata l'abbondanza relativa %. Viene visualizzato usualmente come grafico a barre, ma in realtà le barre rappresentano dei picchi molto stretti, tanto più stretti quanto più alta è la risoluzione dello strumento.

Esistono <u>due definizioni</u> per indicare la risoluzione di uno spettrometro di massa, una più datata ed una più recente dovuta al progresso nella realizzazione della strumentazione.

a) R_{10%} o risoluzione di valle al 10% (anche denotata dal solo simbolo R):

Due picchi sono da intendersi risolti se la valle che separa i due massimi di picco ha un valore massimo del 10% rispetto all'intensità dei picchi. Questa condizione è soddisfatta se la larghezza del picco, posto a m/z minore, all'altezza del 5% è uguale alla differenza di massa dei due ioni la cui m/z è rappresentata dai due picchi consecutivi. Il valore di 10% della definizione si ottiene poiché ogni picco contribuisce per il 5% al valore dell'ordinata che corrisponde all'ascissa m/z di intersezione tra i due picchi (5%+5% = 10%).

segue \rightarrow

La spettrometria di massa: introduzione

b) R_{FWHM} o ampiezza di picco a mezza altezza (Full Width Half Maximum):

Il potere risolvente può anche essere determinato su un picco isolato. Il potere risolvente a mezza altezza (cioè al 50%) è uguale a:

Per picchi di forma gaussiana la relazione tra le due definizioni di risoluzione è:

$R_{FWHM} \sim 1.8 \cdot R_{10\%}$

Analyzing Biomolecular Interactions by Mass Spectrometry, 1.Introduction to Mass Spectrometry, a Tutorial W. M.A. Niessen and D. Falck - WILEY J.H. Gross – Mass spectrometry: a textbook - Springer In genere si attribuisce la categoria di "**bassa risoluzione**" (LR – low resolution) a strumenti con R = 500-2000 e "**alta risoluzione**" (HR – high resolution) a strumenti con R > 5000

La spettrometria di massa: introduzione

Analyzing Biomolecular Interactions by Mass Spectrometry, 1.Introduction to Mass Spectrometry, a Tutorial W. M.A. Niessen and D. Falck - WILEY J.H. Gross – Mass spectrometry: a textbook - Springer

La spettrometria di massa inorganica

La spettrometria di massa inorganica consente di effettuare l'analisi elementare qualitativa e quantitativa dei campioni. In questa tecnica non c'è necessità di rilevare ioni più grandi di 300 u (al contrario della spettrometria di massa organica, che verrà discussa in seguito).

Invece è di grande interesse riuscire a rilevare ioni con massa < 10 u.

In questo tipo di tecnica il più diffuso dispositivo di GENERAZIONE DI IONI è il Plasma Induttivamente Accoppiato (ICP). In successione è presente un Analizzatore (separatore di ioni in base a m/z) e un Detector. I diversi tipi di Analizzatori e Detector sono comuni con la spettrometria di massa organica e verranno discussi in seguito.

Ion detector

Caratteristiche tecniche

- tecniche distruttive (1500-8000 °C);
- si determinano elementi;
- si analizzano liquidi, solidi se disciolti;
- analisi totale del campione;
- risultati espressi in concentrazione;
- ottima sensibilità (ng/l)

Confronto tra tecniche

	ICP-MS	ICP-AES	Flame AAS	GFAAS
Detection limits	Excellent for most elements	Very good for most elements	Very good for some elements	Excellent for some elements
Sample throughput	all elements 2-6 min/sample	5-30 elements /min/sample	15 seconds/ element/sample	4 mins/element /sample
Linear dynamic range	10⁵ (10ª with range ext'n)	10⁵)	10 ³	10 ²
Precision Short term Long term (4hrs)	1-3% <5%`	0.3-2% <5%*	0.1-1%	1-5%
	* precision improves	with use of internal sta	ndards	
Interferences Spectral Chemical (matrix) Ionization Mass effects Isotopes	few moderate minimal high on low yes	common almost none minimal NA no	almost none many some NA no	few many minimal NA no
Dissolved solids (maximum tolerable concentration)	0.1-0.4%	2-25%	0.5-3%	>20%
No. of elements	>75	>73	>68	>50
Sample useage	low	high	very high	very low
Semi-quantitative analysis	yes	yes	no	no
Isotope analysis	yes	no	no	no
Routine operation	easy	easy	easy	easy
Method development	skill required	skill required	easy	skill required
Unattended operation	yes	yes	no	yes
Combustible gases	no	no	yes	no
Operating cost	high	high	low	medium
Capital cost	very high	high	low	medium/high

Differenza di sensibilità per le

diverse tecniche:

- mg/l per FAAS e FAES;
- μg/l per GFAAS e ICP-AES;
- ng/l per ICP-MS

Limiti di rilevabilità

Table 3. Detection limit comparison (μ g/L)

Element	ICP-MS	ICP-AES	Flame AAS	GFAAS	
As	<0.050	<20	<500	<1	
Al	< 0.010	<3	<50	<0.5	
Ва	<0.005	<0.2	<50	<1.5	
Be	< 0.050	<0.5	<5	<0.05	
Bi	<0.005	<20	<100	<1	
Cd	<0.010	<3	<5	<0.03	
Ce	<0.005	<15	<200000	ND	
Co	<0.005	<10	<10	<0.5	
Cr	<0.005	<10	<10	<0.15	
Cu	<0.010	<5	<5	<0.5	
Gd	<0.005	<5	<4000	ND	
Ho	<0.005	<1	<80	ND	
In	<0.010	<30	<80	<0.5	
La	<0.005	<0.05	<4000	ND	
Li	<0.020	<1	<5	<0.5	
Mn	<0.005	<0.5	<5	<0.06	
Ni	<0.005	<10	<20	<0.5	
Pb	<0.005	<20	<20	<0.5	
Se	<0.10	<50	<1000	<1.0	
TI	<0.010	<30	<40	<1.5	
U	<0.010	<30	<100000	ND	
Y	<0.005	<0.5	<500	ND	
Zn	<0.02	<1.0	<2	<0.01	
ICP-MS, ICP-AES, Flame AAS:		Detection limits (defined on the basis of 3 standard deviations of the blank)			
ND:		Not determined	osordance) measure	α with 20 μ∟ of sample	

La spettrometria di massa organica

La spettrometria di massa organica consente di identificare e quantificare specie molecolari. Come già anticipato, le molecole vengono ionizzate, quindi con questa tecnica vengono identificati e quantificati i diversi ioni formatisi in base al loro rapporto **m/z**.

Supponiamo che una molecola venga ionizzata con l'ausilio di un fascio di elettroni:

$$M + e^- \rightarrow M^{\bullet +} + 2e^-$$

La ionizzazione porta alla formazione di un catione radicale M⁺ che possiede un certo rapporto m/z, quindi può essere rivelato dal detector. <u>M⁺ è detto anche "ione molecolare"</u>. Questo ione, a seconda del tipo di ionizzatore utilizzato, può essere ulteriormente frammentato in così detti "ioni figli". In particolare, essendo M⁺ un radicale catione a numero dispari di elettroni, la sua frammentazione può portare alla formazione di un catione+un radicale oppure di un catione radicale+molecola neutra:

La spettrometria di massa: organica

Dato che molti elementi che si ritrovano in natura possono essere di- o poli-isotopici, se ne deduce che negli spettri di massa di molecole che contengono questi tipi di atomi si troverà riscontro delle abbondanze isotopiche:

Es. spettro di massa (con ionizzazione a impatto elettronico) del CH₂Cl₂, massa nominale = 84 u Fonte: http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi (free!!!)

Es. spettro di massa (con ionizzazione a impatto elettronico) del trimetilstagno cloruro $(CH_3)_3$ SnCl,

massa nominale = 200 u

Fonte: http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi (free!!!)

La spettrometria di massa: organica

Per un singolo composto => possibile <u>alta complessità</u> dello spettro di massa (anche se si considerano solo i possibili ioni molecolari senza le frammentazioni!)

Possibili assetti strumentali di uno spettrometro di massa

Desorption/Ionization)

I sistemi di ionizzazione possono essere <u>classificati</u> principalmente in <u>due modi</u>:

- a seconda **dello stato in cui deve essere il campione** quando viene introdotto nello strumento (gas, sciolto in un solvente, immerso in una matrice);
- a seconda della quantità di energia di ionizzazione che viene fornita al campione (molta → "hard ionization", poca→ "soft ionization")

Ionizzazione hard: un quantitativo rilevante di energia è trasferito allo ione analita durante il processo di ionizzazione, generando gli ioni molecolari e, per <u>frammentazione</u>, gli ioni figli.

E' possibile che tutti gli ioni molecolari vengano frammentati, quindi <u>si perde l'informazione sulla massa dello ione,</u> ma dai tipi di frammentazione avvenuta si possono <u>ricavare informazioni strutturali</u> sulla molecola.

- Ionizzazione soft: genera una frammentazione limitata fornendo quindi informazione sulla massa molecolare. I diversi metodi di ionizzazione soft generano gli stessi tipi di ioni:
 - molecole "cationizzate", come risultato dell'attacco di uno ione H⁺ o NH₄⁺ nella modalità a ione positivo, o
 - molecole "anionizzate" nella modalità a ione negativo.

Gli ioni più importanti generati sono rispettivamente [M + H]⁺ e [M - H]⁻. Le due modalità (positiva e negativa) possono generare informazioni complementari sulla molecola.

Ionizzazione elettronica (EI)

Un fascio di elettroni viene fatto passare attraverso il campione (allo stato gassoso). Gli elettroni collidono con le molecole neutre di analita producendo gli ioni molecolari M⁺⁺ (cationi radicale) che vengono ulteriormente frammentati in ioni figli. Generalmente vengono utilizzati elettroni con energia di 70 eV.

Questo metodo <u>produce spettri di massa molto riproducibili</u> (a parità di energia fornita dagli elettroni) che forniscono <u>informazioni strutturali sulla molecola</u> (tramite le frammentazioni), poiché lo schema delle frammentazioni è tipico per ogni specie molecolare.

Questo metodo consente di creare dei <u>database</u> di spettri di massa di sostanze che sono utilizzabili per il riconoscimento delle stesse utilizzando un qualsiasi strumento con il medesimo assetto strumentale e a parità di energia degli elettroni utilizzati.

La sorgente consiste in un filamento riscaldato che emette elettroni.

Gli elettroni vengono accelerati verso un anodo e collidono con le molecole di campione (allo stato gassoso) che sono state iniettate nella camera di ionizzazione.

Figure 1.1 Diagram of an electron ionization source.

Ionizzazione chimica (CI)

Gli analiti sono ionizzati da reazioni ione-molecola in fase gassosa.

Per ottenere ciò un <u>gas reagente</u> (di solito metano, iso-butano, ammoniaca o acqua) è inserito nella sorgente di ioni a pressione relativamente alta (1-250 Pa) e gli ioni gassosi reagenti sono prodotti per impatto elettronico.

Le molecole di analita sono ionizzate indirettamente attraverso una serie di reazioni con il gas reagente, attraverso il quale solo un piccolo quantitativo di energia è trasferito alle molecole tramite collisioni.

<u>Questa ionizzazione soft genera una minore frammentazione</u> e quindi un maggior quantitativo di ione molecolare rispetto all'EI, ma anche una minor informazione strutturale.

La dipendenza degli spettri CI dalle condizioni sperimentali (es. pressione della sorgente ionica) rende difficile comparare spettri tratti da strumenti diversi o con database.

La spettrometria di massa: organica

https://www.princeton.edu/chemistry/macmillan/group-meetings/SL-mass%20 spect.pdf

ElectroSpray Ionization (ESI)

Si basa sulla <u>nebulizzazione di un liquido</u> e la successiva generazione di ioni dalle goccioline. La nebulizzazione avviene a <u>pressione atmosferica</u>.

Lo spray viene prodotto applicando un forte campo elettrico, a pressione ambiente, a un liquido che passa attraverso un tubo capillare con un debole flusso (circa 1-10 µl min⁻¹).

Il campo elettrico si ottiene applicando una differenza di potenziale tra il capillare e il contro-elettrodo.

Il campo elettrico induce <u>un accumulo di carica alla superficie del liquido che si trova alla punta del capillare</u>, che consente la separazione del liquido in gocce multi-carica.

Le gocce passano attraverso un flusso laminare di azoto riscaldato per la rimozione delle molecole di solvente.

La formazione delle gocce inizia ad un determinato voltaggio, in dipendenza della tensione superficiale del solvente.

Diagramma della sorgente electrospray, che usa dei restringimenti (*skimmer*) per la focalizzazione degli ioni e un flusso laminare di azoto riscaldato per la desolvatazione.

E. de Hoffmann, V. Stroobant – Mass Spectrometry: Principles and Applications - WILEY J.H. Gross – Mass spectrometry: a textbook - Springer

La teoria della formazione degli ioni dallo spray, che coinvolge diversi principi fisici, è ancora dibattuta al giorno d'oggi. Comunque si ritiene un fatto consolidato che la formazione degli ioni avvenga attraverso i seguenti passaggi:

- *i)* generazione di un spray caricato elettricamente;
- *ii) drastica riduzione della grandezza delle gocce per desolvatazione;*
- *iii) liberazione degli ioni dalla superficie delle gocce.*

<u>Una goccia staccatasi dalla punta del capillare</u>, cioè dal così detto "cono di Taylor", che si forma a causa della presenza del campo elettrico, è detta di "<u>prima generazione</u>" e ha un diametro di circa 1.5 µm e porta circa 50'000 cariche.

A causa della presenza del campo elettrico le cariche all'interno della goccia si spostano deformando la goccia stessa, <u>fino a formare un cono di Taylor</u> <u>sulla goccia, da cui si staccano delle "gocce figlie"</u> di circa 0.1 μ m di diametro e che portano circa 300-400 cariche, con un fattor moltiplicativo di densità di carica di circa 7.

Cono di Taylor

Da qui avviene <u>un processo a cascata di formazione di "gocce figlie"</u> sempre più piccole (e contenenti sempre meno solvente), quindi con sempre maggiore densità di carica finché il campo elettrico alla superficie delle gocce risulta abbastanza elevato da consentire <u>l'espulsione degli ioni molecolari desolvatati dalla superficie</u> delle gocce.

Il tempo che intercorre tra la formazione della prima goccia dal capillare e l'espulsione degli ioni è di meno di un millisecondo!!! segue -> ESI viene utilizzata per identificare e misurare la massa di specie molecolari <u>che possiedono siti ionizzabili (positivi o</u> negativi). I cationi e gli anioni vengono acquisiti dalla molecola sono presenti nel solvente in cui è sciolto il campione.

ESI è in grado di desolvatare ioni molecolari carichi positivamente o negativamente (a seconda della modalità in cui si opera).

Di solito gli ioni prodotti da molecole molto grandi (es. proteine) sono multi-carica poiché esse possiedono molti siti ionizzabili, mentre quelli di molecole relativamente piccole sono monocarica.

1 Thomson = 1 Th = $1 u/e = 1.036426 \times 10^{-8} \text{ kg C}^{-1}$

J.H. Gross - Mass spectrometry: a textbook - Springer

Atmospheric Pressure Chemical Ionization (APCI)

Si basa su principi analoghi a CI (ionizzazone chimica), tuttavia il campione viene iniettato tramite una soluzione e non allo stato gassoso. I dispositivi per EI, se progettati appropriatamente, possono operare anche in modalità CI. Allo stesso modo dispositivi ESI possono operare anche in modalità APCI.

La differenza principale è che ESI ha bisogno di flussi molto bassi di soluzione (circa 1-10 μ l min⁻¹), mentre APCI di flussi molto più elevati (circa 200-1000 μ l min⁻¹).

In APCI il processo di desolvatazione avviene per riscaldamento (500 °C), tuttavia il passaggio nella "cartuccia riscaldata" è veloce, quindi le molecole non riescono a raggiungere l'equilibrio termico, pertanto anche molecole termicamente labili possono essere analizzate con questa tecnica.

APCI è utile perché, al contrario di ESI, <u>è in grado di</u> generare attivamente ioni da molecole neutre.

Tipicamente la scarica elettrica per effetto corona genera ioni N_2 ⁺⁺ o O_2 ⁺⁺. Questi reagiscono con il solvente allo stato gassoso, il quale forma ioni di gas reagente che ionizzano gli analiti presenti.

Diagramma della sorgente APCI. Il flusso di liquido viene spruzzato pneumaticamente in un vaporizzatore riscaldato, dove la ionizzazione viene iniziata per effetto corona a pressione atmosferica.