Università degli Studi di Trieste Dipartimento di Ingegneria e Architettura A.A. 2021-2022

### Scienza e Tecnologia dei Materiali Ceramici

### Modulo 2: Materiali Nanostrutturati

- Lezione 3 -

#### Vanni Lughi

#### vlughi@units.it

040 558 3769 Dipartimento di Ingegneria e Architettura Università degli Studi di Trieste

# Previous lecture: Review

- Mechanisms of minimization of the surface energy
  - Surface mechanisms
  - Mechanisms at the level of the individual nanostructure
  - Mechanisms at the scale of the ensamble of nanoobjects: aggregation, sintering, Ostwald ripening
    → Gibbs-Thompson

# This lecture: Content

- Nanoparticles
  - Approaches to the stabilization of nanostructures (the example of nanoparticles)

# Where are we?

### 3. Fabbricazione

- Approcci "bottom-up":
  - Building blocks (nanocristalli: wells and films, wires, dots; carbon based nanostructures: fullerenes, graphenes, etc.)
  - Proprietà dei building blocks
  - Metodi di fabbricazione (deposizione di film, aerosol, sospensioni colloidali, epitassia controllata, etc.)
  - Assemblaggio (self assembly bioassistito, self assembly via polimeri, eterostrutture, Marangoni, ...)
- Approcci "top-down"
  - Litografia, ball milling, ion implantation, thin film layers + thermal treatment, etc.

# Approaches to nanoparticle synthesis

 Self-assembled nanocrystals











# Stabilization of nanostructures



#### **1**. Formation of charges on the surface of a solid particle in a polar solvent:

- Preferential ion adsorption
- Dissociation of surface charged species
- Substitution of surface ions
- Accumulation or loss of electrons at the surface (next slide)
- Adsorption of charged species (figures below)





Sulphur-capped metal chalcogenide nanoparticle

Accumulation or loss of electrons at the surface: e.g. hydrated oxides in water

 $\begin{array}{ll} \text{M-OH} + \text{H}^{+} \rightarrow \text{M-OH}_{2}^{+} & (\text{acid pH}) \\ \\ \text{M-OH} + \text{OH}^{-} \rightarrow \text{M-O}^{-} + \text{H}_{2}\text{O} & (\text{basic pH}) \end{array}$ 



| Mineral                                | pzc  |
|----------------------------------------|------|
| Fe <sub>2</sub> O <sub>3</sub> , FeOOH | 6-8  |
| TiO <sub>2</sub>                       | 4-6  |
| SiO <sub>2</sub>                       | 2-3  |
| MnO2                                   | 2-4  |
| Al <sub>2</sub> O <sub>3</sub> , AlOOH | 8-10 |
| PbS, CdS                               | 2-3  |
| proteins                               | 6-8  |
| Latex particles (COOH)                 | 4-6  |

«Point of Zero Charge»

sensitive to adsorbed ions and molecules, cristallinity of the particles and ionic strength

Stern

Diffuse double layer

(Gouy Layer)

#### 2. Double layer

#### Driving forces for order:

- Charge at the surface
- $\rightarrow$  Electrostatic interaction with charged species in solution

#### Driving forces for disorder (homogenization):

- Entropy



#### 3. DLVO Theory

Interaction between charged particles in a liquid: balance between

- Electrostatic repulsion (depends on zeta potential)
- Van der Waals (dipole) attraction

### Strong electrostatic repulsion (high zeta potential) $\rightarrow$ No aggregation



Particle Separation

| Zeta potential [mV] | Stability behavior of the colloid |
|---------------------|-----------------------------------|
| from 0 to ±5,       | Rapid coagulation or flocculation |
| from ±10 to ±30     | Incipient instability             |
| from ±30 to ±40     | Moderate stability                |
| from ±40 to ±60     | Good stability                    |
| more than ±61       | Excellent stability               |





LOOK AT RECENT (2015) WORK BY Nick Kotov, showing that DLVO approximations are actually not valid for nanoparticles. Granularity at the atomic-molecular level make the forces at play «non-additive»



Addition of molecules («capping agents», «ligands», «surfactants») on the surface of the nanoparticle

In most cases organic molecules:



#### Affinity between solvent and polymer capping agents:

- «Good solvent»: chain expands (e.g. oleic acid in octadecene)
- «Bad solvent»: chain contracts

| Solvent              | Formula                                       | Dielectric constant | Туре    |
|----------------------|-----------------------------------------------|---------------------|---------|
| Acetone              | C <sub>3</sub> H <sub>6</sub> O               | 20.7                | Aprotic |
| Acetic acid          | $C_2H_4O_2$                                   | 6.2                 | Protic  |
| Ammonia              | NH <sub>3</sub>                               | 16.9                | Protic  |
| Benzene              | $C_6H_6$                                      | 2.3                 | Aprotic |
| Chloroform           | CHCl <sub>3</sub>                             | 4.8                 | Aprotic |
| Dimethylsulfoxide    | $(CH_3)_2SO$                                  | 45.0                | Aprotic |
| Dioxanne             | $C_4H_8O_2$                                   | 2.2                 | Aprotic |
| Water                | H <sub>2</sub> O                              | 78.5                | Protic  |
| Methanol             | CH <sub>3</sub> OH                            | 32.6                | Protic  |
| Ethanol              | C <sub>2</sub> H <sub>5</sub> OH              | 24.3                | Protic  |
| Formamide            | CH <sub>3</sub> ON                            | 110.0               | Protic  |
| Dimethylformamide    | C <sub>3</sub> H <sub>7</sub> NO              | 36.7                | Aprotic |
| Nitrobenzene         | C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub> | 34.8                | Aprotic |
| Tetrahydrofuran      | $C_4H_8O$                                     | 7.3                 | Aprotic |
| Carbon tetrachloride | CCl <sub>4</sub>                              | 2.2                 | Aprotic |
| Diethyl ether        | $C_4H_{10}O$                                  | 4.3                 | Aprotic |
| Pyridine             | $C_5H_5N$                                     | 14.2                | Aprotic |

Table 2.5. List of some solvents with their dielectric constants.

Types of interaction between polymer capping and particle surface



 $\Delta G = \Delta H - T \Delta S$ 

#### **GOOD SOLVENT**



Low coverage: for H < 2L there is interpenetration of the polymers  $\rightarrow \Delta S < 0$ High coverage: for H < 2L compression of the polymers  $\Delta G > 0$ 

 $\Delta G = \Delta H - T \Delta S$ 

#### **BAD SOLVENT**



Low coverage

- For L < H < 2L there is interpenetration of the polymers  $\rightarrow$  more entanglement is promoted  $\rightarrow \Delta S > 0$  and  $\Delta G < 0$
- For H < L: compressive forces  $\rightarrow \Delta G > 0$

High coverage: for H <2L there are compressive forces  $\rightarrow \Delta G > 0$ 

## Stabilizzazione sterica

### **CATTIVO** solvente $\Lambda G = \Lambda H - T \Lambda S$ $\Delta G$ Low coverage High coverage 2LΗ L (b) (a)

Fig. 2.21. Schematic of interactions between polymer layers: (a) the schematic of two approaching polymer layers and (b) the Gibbs free energy as a function of the distance between two particles.

Scarso ricoprimento: per L<H<2L interpenetrazione dei polimeri che promuove ulteriore attorcigliamento  $\Delta$ S>0, per H<L forze repulsive  $\Delta$ G>0 Buon ricoprimento: per H<2L compressione dei polimeri  $\Delta$ G>0

## Advantages/disadvantages

#### **Electrostatic**

- Does not need special surface chemistry
- Electrostatically stabilized particles cannot be redispersed if they aggregate
- Can be used for only diluted suspensions
- Difficult to apply to multiple phase systems
- Cannot be applied to electrolyte sensitive systems

#### <u>Steric</u>

- Sterically stabilized particles can be redispersed if they aggregate
- Can be used even for very concentrated suspensions
- Can be applied to multiple phase systems
- Can be applied to electrolyte sensitive systems
- Can be used as an aid to control the synthesis
- Needs addition of chemical species at the surface





Fig. 2.22. Schematic representation of electrosteric stabilization: (a) charged particles with nonionic polymers and (b) polyelectrolytes attached to uncharged particles.