
Laboratory Exercise 3
Latches, Flip-flops, and Registers

The purpose of this exercise is to investigate latches, flip-flops, and registers.

Part I
Intel R© FPGAs include flip-flops that are available for implementing a user’s circuit. We will show how to make
use of these flip-flops in Part IV of this exercise. But first we will show how storage elements can be created in an
FPGA without using its dedicated flip-flops.
Figure 1 depicts a gated RS latch circuit. A style of VHDL code that uses logic expressions to describe this circuit
is given in Figure 2. If this latch is implemented in an FPGA that has 4-input lookup tables (LUTs), then only one
lookup table is needed, as shown in Figure 3a.

R

S

Clk

S_g

Qa (Q)
R_g

Qb

Figure 1: A gated RS latch circuit.

- - A gated RS latch desribed the hard way
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY part1 IS
PORT (Clk, R, S : IN STD_LOGIC;

Q : OUT STD_LOGIC);
END part1;

ARCHITECTURE Structural OF part1 IS
SIGNAL R_g, S_g, Qa, Qb : STD_LOGIC ;
ATTRIBUTE KEEP : BOOLEAN;
ATTRIBUTE KEEP OF R_g, S_g, Qa, Qb : SIGNAL IS TRUE;

BEGIN
R_g <= R AND Clk;
S_g <= S AND Clk;
Qa <= NOT (R_g OR Qb);
Qb <= NOT (S_g OR Qa);

Q <= Qa;

END Structural;

Figure 2: Specifying the RS latch by using logic expressions.

1

Although the latch can be correctly realized in one 4-input LUT, this implementation does not allow its internal
signals, such as R_g and S_g, to be observed, because they are not provided as outputs from the LUT. To preserve
these internal signals in the implemented circuit, it is necessary to include a compiler directive in the code. In
Figure 2 the directive KEEP is included by using a VHDL ATTRIBUTE statement to instruct the Quartus R©

compiler to use separate logic elements for each of the signals R_g, S_g,Qa, and Qb. Compiling the code
produces the circuit with four 4-LUTs depicted in Figure 3b.

R

S

Clk

S_g

Qa (Q)R_g

Qb

(a) Using one 4-input lookup table for the RS latch.

(b) Using four 4-input lookup tables for the RS latch.

Qa (Q)R

S
Clk 4-LUT

4-LUT

4-LUT

4-LUT

4-LUT

Figure 3: Implementation of the RS latch from Figure 1.

Create a Quartus project for the RS latch circuit as follows:

1. Create a new Quartus project for your DE-series board.

2. Generate a VHDL file with the code in Figure 2 and include it in the project.

3. Compile the code. Use the Quartus RTL Viewer tool to examine the gate-level circuit produced from the
code, and use the Technology Map Viewer tool to verify that the latch is implemented as shown in Figure 3b.

4. Simulate the behavior of your VHDL code by using the simulation feature provided in the Modelsim soft-
ware. Use the testbench provided in the laboratory materials to drive the signals for your simulation. The
procedure for using Modelsim for simulation is described in the tutorial Introduction to Simulation of VHDL
Designs Using ModelSim Graphical Waveform Editor. An example of a vector waveform file is displayed
in Figure 4. The waveforms in the figure begin by setting Clk = 1 and R = 1, which allows the simulation
tool to initialize all of the signals inside of the latch to known values.

2

crnlr
Nota
Tools->Run simulation tool->RTL simulation:Attendere un po' di tempo (è lento!), si aprirà modelsim. Aggiungete la testbench e compilatela (il resto è già compilato). Aggiungete i segnali che vi servono a Wave e simulate.

crnlr
Nota
Tolls-> Netlist viewers -> RTL viewer o Technology Map Viewer.

Figure 4: Simulation waveforms for the RS latch.

Part II
Figure 5 shows the circuit for a gated D latch.

S

R

Clk

D S_g

R_g

Qa (Q)

Qb

Figure 5: Circuit for a gated D latch.

Perform the following steps:

1. Create a new Quartus project. Generate a VHDL file using the style of code in Figure 2 for the gated D
latch. Use the KEEP directive to ensure that separate logic elements are used to implement the signals
R,S_g,R_g,Qa, and Qb.

2. Compile your project and then use the Technology Map Viewer tool to examine the implemented circuit.

3. Verify that the latch works properly for all input conditions by using functional simulation. Examine the
timing characteristics of the circuit by using timing simulation.

4. Create a new Quartus project which will be used for implementation of the gated D latch on your DE-series
board. This project should consist of a top-level module that contains the appropriate input and output ports
(pins) for your board. Instantiate your latch in this top-level module. Use switch SW0 to drive the D input
of the latch, and use SW1 as the Clk input. Connect the Q output to LEDR0.

5. Include the required pin assignments and then compile your project and download the compiled circuit onto
your DE-series board.

6. Test the functionality of your circuit by toggling the D and Clk switches and observing the Q output.

Part III
Figure 6 shows the circuit for a master-slave D flip-flop.

3

D Q

Q

Master Slave

D

Clock

Q

Q

D Q

Q

Qm Qs

ClkClk

Figure 6: Circuit for a master-slave D flip-flop.

Perform the following:

1. Create a new Quartus project. Generate a VHDL file that instantiates two copies of your gated D latch
module from Part II to implement the master-slave flip-flop.

2. Include in your project the appropriate input and output ports for your DE-series board. Use switch SW0 to
drive the D input of the flip-flop, and use SW1 as the Clock input. Connect the Q output to LEDR0.

3. Include the required pin assignments and then compile your project.

4. Use the Technology Viewer to examine the D flip-flop circuit, and use simulation to verify its correct oper-
ation.

5. Download the circuit onto your DE-series board and test its functionality by toggling the D and Clock
switches and observing the Q output.

4

Part IV
Figure 7 shows a circuit with three different storage elements: a gated D latch, a positive-edge triggered D flip-flop,
and a negative-edge triggered D flip-flop.

D

Clock

Qa

Qb

D Q

Q

(b) Timing diagram

D Q

Q

D Q

Q

D

Clock Qa

Qb

Qc

Qc

Qb

Qa

(a) Circuit

Clk

Qc

Figure 7: Circuit and waveforms for Part IV.

Implement and simulate this circuit using the Quartus software as follows:

1. Create a new Quartus project.

2. Write a VHDL file that instantiates the three storage elements. For this part you should no longer use the
KEEP directive (that is, the VHDL ATTRIBUTE statement) from Parts I to III. Figure 8 gives a behavioral
style of VHDL code that specifies the gated D latch in Figure 5. This latch can be implemented in one
4-input lookup table. Use a similar style of code to specify the flip-flops in Figure 7.

3. Compile your code and use the Technology Map Viewer to examine the implemented circuit. Verify that
the latch uses one lookup table and that the flip-flops are implemented using the flip-flops provided in the
target FPGA.

5

4. Use Modelsim to simulate the circuit you created. Use the included testbench file to specify the inputs
D and Clock as indicated in Figure 7. Make sure that the testbench correctly instantiates the module you
created and run the simulation to observe the different behavior of the three storage elements.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY latch IS
PORT (D, Clk : IN STD_LOGIC ;

Q : OUT STD_LOGIC) ;
END latch ;

ARCHITECTURE Behavior OF latch IS
BEGIN

PROCESS (D, Clk)
BEGIN

IF Clk = ’1’ THEN
Q <= D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 8: A behavioral style of VHDL code that specifies a gated D latch.

Part V
We wish to display the hexadecimal value of an 8-bit number A on the two 7-segment displays HEX3 − 2. We
also wish to display the hex value of an 8-bit number B on the two 7-segment displays HEX1 − 0. The values
of A and B are inputs to the circuit which are provided by means of switches SW7−0. To input the values of A
and B, first set the switches to the desired value of A, store these switch values in a register, and then change the
switches to the desired value of B. Finally, use an adder to generate the arithmetic sum S = A + B, and display
this sum on the 7-segment displays HEX5− 4. Show the carry-out produced by the adder on LEDR(0).

1. Create a new Quartus project which will be used to implement the desired circuit on your DE-series board.

2. Write a VHDL file that provides the necessary functionality. Use KEY0 as an active-low asynchronous reset,
and use KEY1 as a clock input.

3. Include the necessary pin assignments for the pushbutton switches and 7-segment displays, and then compile
the circuit.

4. Download the circuit onto your DE-series board and test its functionality by toggling the switches and
observing the output displays.

6

crnlr
Nota
Chiamarla con un altro nome. Questo crea conflitti con le primitive di Quartus

Copyright c© Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, En-
pirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in
the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to any products
and services at any time without notice. Intel assumes no responsibility or liability arising out of the application
or use of any information, product, or service described herein except as expressly agreed to in writing by Intel.
Intel customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

7

	Part I
	Part II
	Part III
	Part IV
	Part V

