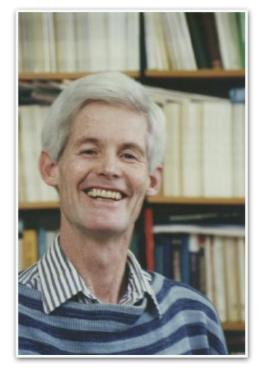
Computabilità, Complessità Complessità e Logica

Lezione 12

Teorema di Cook-Levin

Indipendentemente Cook (1971) e Levin (1973) dimostrarono che esiste un problema NP-completo



Stephen Cook

Leonid Levin

SAT (soddisfacibilità Booleana) è NP-completo

Cosa è SAT?

- SAT chiede se data una formula in logica proposizionale esiste un assegnamento che la soddisfa.
- Per capire il problema ci serve sapere:
 - Cosa è una formula in logica proposizionale?
 - Cosa è un assegnamento?
 - Cosa significa che un assegnamento soddisfa una formula?

Congiunzione, disgiunzione, negazione

- Un breve ripasso della notazione che utilizziamo
 - $a \wedge b$ è la congiunzione di a e b
 - $a \lor b$ è la disgiunzione di $a \in b$
 - $\neg a$ è la negazione di a
- Useremo anche:
 - l'implicazione $a \to b$ come abbreviazione di $\neg a \lor b$
 - l'abbreviazione $a \leftrightarrow b$ per $(a \rightarrow b) \land (b \rightarrow a)$

Formule

- Sia $V = \{x_1, ..., x_n\}$ un insieme di variabili proposizionali
- Le formule sono definite in modo induttivo come:
 - $\varphi \in V$ è una formula
 - Se φ è una formula, allora $\neg \varphi$ è una formula
 - Se φ e ψ sono formule, allora $(\varphi \land \psi)$ e $(\varphi \lor \psi)$ sono formule

Formule: esempi

- Se $V = \{A, B, C\}$ allora $(A \wedge B)$ è una formula, $A \in \neg A$ sono formule, $(A \vee (B \wedge C))$ è una formula, etc.
- Ma $A \wedge A \cap B$, $A \neg B$ non sono formule ben formate
- Generalmente assegnamo un significato alle variabili. Per esempio "oggi piove" è A "oggi c'è vento" è B, quindi $(A \wedge B)$ andrà a significare "oggi piove e oggi c'è vento"

Assegnamenti

- Data una formula, per esempio $((A \lor B) \land (\neg B \lor C))$ possiamo assegnare ad ogni variabile un valore vero (true) o falso (false)
- Possiamo quindi vedere un assegnamento come una funzione $V \to \{t,f\}$ o come un vettore \overrightarrow{x} in cui in posizione x_i c'è il valore (in $\{t,f\}$) da assegnare all'i-esima variabile in V
- Per esempio $\overrightarrow{x}=(t,f,f)$ ci dice che assegnamo ad A il valore t e a B e C il valore f

Valutazione

- Data una formula ed un assegnamento possiamo valutare la formula
- Il valore di verità di una variabile proposizionale è dato direttamente dall'assegnamento
- $\neg \varphi$ è vera se la formula φ è falsa
- $\phi \land \psi$ è vera se entrambe le formule che la compongono sono vere
- φ ∨ ψ è vera se almeno una delle due formule che la compongono è vera
- Diciamo che una formula φ è soddisfatta se esiste un assegnamento che la rende vera

Notazione

• Indicheremo con

$$\bigwedge^m \varphi_i$$

$$i=1$$
 la formula $\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_m$

• Indicheremo con

$$\bigvee_{i=1}^{m} \varphi_{i}$$
 la formula $\varphi_{1} \vee \varphi_{2} \vee \ldots \vee \varphi_{m}$

Per esempio
2

$$\bigwedge_{i=1}^{2} \bigvee_{j=1}^{2} \varphi_{i,j} = (\varphi_{1,1} \vee \varphi_{1,2}) \wedge (\varphi_{2,1} \vee \varphi_{2,2})$$

SAT è contenuto in NP

- Data una formula φ e un assegnamento \overrightarrow{x} di variabili possiamo verificare che φ è soddisfatta calcolando $\varphi(\overrightarrow{x})$,
- La verifica che una formula soddisfi un assegnamento in tempo polinomiale. Quindi data φ possiamo usare \overrightarrow{x} come certificato.
- Se vogliamo invece usare la definizione di NP con macchine non deterministiche, possiamo generare in modo non deterministico un assegnamento \overrightarrow{x} di φ e verificare se \overrightarrow{x} soddisfa φ e, in quel caso accettare. Questo richiede tempo polinomiale non-deterministico

SAT è contenuto in NP

- Dobbiamo ora mostrare che ogni problema in NP si riduce (in tempo polinomiale) a SAT
- Dato che per ogni problema in NP esiste una MdT non deterministica che lavora in tempo polinomiale che lo decide...
- ...possiamo vedere se possiamo usare una istanza di SAT per "simulare" una MdT non deterministica
- Data una MdT non deterministica M che lavora in tempo t(n) e un input w dobbiamo scrivere una formula φ che è soddisfacibile se e solo se esiste una computazione accettante di M su input w

Diagramma spazio-tempo di una MdT

Supponiamo di avere una NDTM $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\mathrm{accept}},q_{\mathrm{reject}})$ che lavora in tempo t(n)

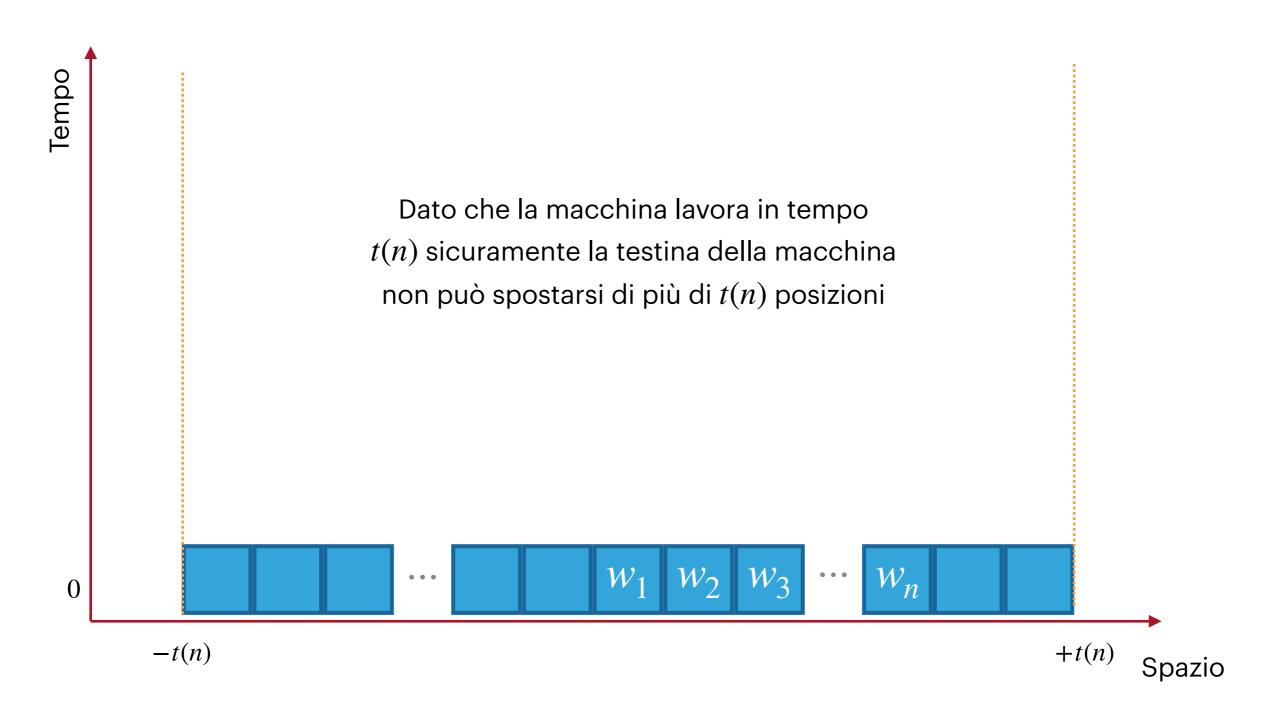
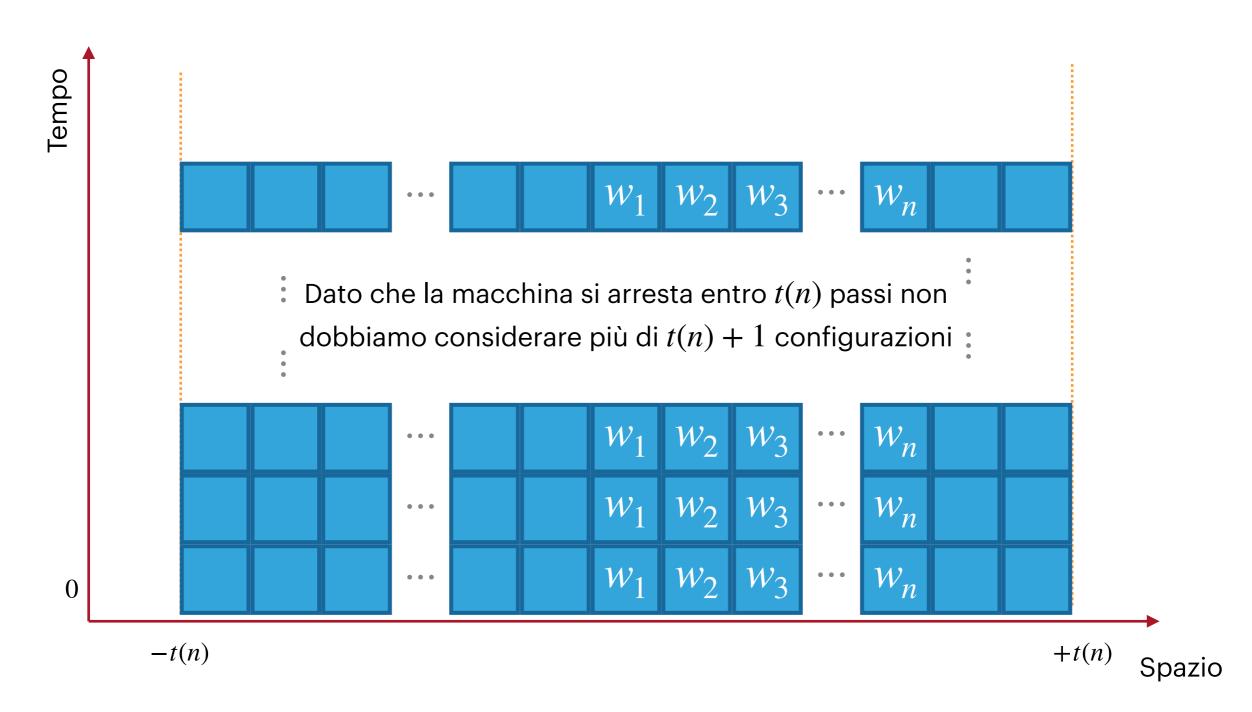


Diagramma spazio-tempo di una MdT

Supponiamo di avere una NDTM $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\mathrm{accept}},q_{\mathrm{reject}})$ che lavora in tempo t(n)



Idea della dimostrazione

- Definiamo delle variabili che ci definiscono tutte le t(n)+1 configurazioni (ognuna consistente di 2t(n)+1 celle)
 - Esempio: "la cella i al tempo j contiene il simbolo a"
- Definiamo una formula che è vera se e solo se esiste un assegnamento delle variabili che rappresenta una computazione accettante
- Peer avere una riduzione in tempo polinomiale questa formula deve essere costruibile in tempo polinomiale a partire dall'input $w \in \Gamma^*$ di lunghezza n

Variabili utilizzate

- $c_{\sigma,i,j}$ per $\sigma \in \Gamma$, $i \in \{-t(n),...,t(n)\}$, e $j \in \{0,...,t(n)\}$ indica che la cella i contiene il simbolo σ al tempo j
 - Esempio: $c_{a,4,5}$ significa "la cella 4 al tempo 5 contiene il simbolo a
- $p_{i,j}$ per $i \in \{-t(n), ..., t(n)\}$ e $j \in \{0, ..., t(n)\}$ indica che la testina della macchine è sulla cella i al tempo j
- $e_{q,j}$ per $q\in Q$ e $j\in\{0,\ldots,t(n)\}$ indica che la macchina si trova nello stato q al tempo j

Variabili utilizzate

- Le variabili della forma $c_{\sigma,i,j}$ sono $|\Gamma|(t(n)+1)(2t(n)+1)$
- Le variabili della forma $p_{i,j}$ sono (t(n) + 1)(2t(n) + 1)
- Le variabili della forma $e_{q,j}$ sono $\|Q\|(t(n)+1)$
- Dato che t(n) è polinomiale rispetto a |w| = n, il numero di variabili rimane polinomiale

Cosa deve verificare la formula

- Le t(n) + 1 configurazioni sono valide:
 - C'è sempre esattamente un simbolo per cella
 - C'è esattamente uno stato della macchina
 - La testina è in esattamente una posizione sul nastro
- La configurazione iniziale è corretta
- L'ultima configurazione è accettante
- Le transizioni sono valide
- Vediamo come codificare ciascuna di queste condizioni

Cosa deve verificare la formula

- Per ognuna di queste condizioni daremo una formula
- Consideriamo tutte le formule messe in congiunzione
- Ovvero tutte queste sotto-formule devono essere vere tutte affinché la formula risultate sia vera
- Avremo quindi che la formula è soddisfacibile se:
 - Ognuna della t(n)+1 configurazioni è valida, le transizioni sono valide, la computazione è accettante
 - Ovvero se la MdT non deterministica M che andiamo a modellare accettare su input w entro t(n) passi

C'è esattamente un simbolo per cella

· La formula è

$$\bigwedge_{i=-t(n)}^{t(n)} \bigwedge_{j=0}^{t(n)} \bigvee_{\sigma \in \Gamma} \left(c_{\sigma,i,j} \land \bigwedge_{\sigma' \neq \sigma} \neg c_{\sigma',i,j} \right)$$

- Che significa che per ogni posizione i del nastro e per ogni istante temporale j deve valere che c'è un simbolo σ nella casella j e nessun altro simbolo nella stessa casella
- Per esempio, per i=1, j=0 e alfabeto $\Gamma=\{a,b,\#\}$ avremo la formula:

$$(c_{a,1,0} \land \neg c_{b,1,0} \land \neg c_{\#,1,0}) \lor (c_{b,1,0} \land \neg c_{a,1,0} \land \neg c_{\#,1,0}) \lor (c_{\#,1,0} \land \neg c_{a,1,0} \land \neg c_{b,1,0})$$

C'è esattamente uno stato della macchina

· La formula è

$$\bigwedge_{j=0}^{t(n)} \bigvee_{q \in Q} \left(e_{q,j} \wedge \bigwedge_{q' \neq q} \neg e_{q',j} \right)$$

- Che significa che in ogni istante temporale j quando lo stato della macchina è q allora non può essere in nessuno stato $q' \neq q$
- Per esempio all'istante temporale j=0 per $Q=\{q,r\}$ avremmo la formula: $(e_{q,0} \land \neg e_{r,0}) \lor (e_{r,0} \land \neg e_{q,0})$

La testina è in esattamente in una posizione sul nastro

La formula è

$$\bigwedge_{j=0}^{t(n)} \bigvee_{i=-t(n)}^{t(n)} \left(p_{i,j} \land \bigwedge_{i'\neq i} \neg p_{i',j} \right)$$

- Che significa che in ogni istante temporale j quando la testina è in posizione i sul nastro allora non è in nessuna altra posizione $i' \neq i$
- Per esempio all'istante temporale j=0 per t(n)=1 avremmo la formula:

$$(p_{-1,0} \land \neg p_{0,0} \land \neg p_{1,0}) \lor (p_{0,0} \land \neg p_{-1,0} \land \neg p_{1,0}) \lor (p_{1,0} \land \neg p_{-1,0} \land \neg p_{0,0})$$

La configurazione iniziale è corretta

- Mettiamo una congiunzione delle seguenti formule:
- $e_{q_0,0}$ ovvero al tempo 0 lo stato è q_0
- $p_{0,0}$ ovvero al tempo 0 la testina è sulla cella 0
- $c_{w_i,i,0}$ per $i\in\{0,\ldots,n-1\}$ con $w=w_0w_1\cdots w_{n-1}$. Ovvero in posizione i del nastro c'è l'i-esimo simbolo dell'input
- $c_{\#,i,0}$ per $i \in \{-p(n), ..., -1, n, ..., p(n)\}$. Ovvero, dove non c'è l'input c'è il simbolo di blank

L'ultima configurazione è accettante

- Per semplificare la notazione consideriamo che, se anche la macchina si arresta prima del tempo t(n) tutte le configurazioni successive al tempo di arresto non cambiano
- Quindi ci basta controllare che lo stato al tempo t(n) sia accettante
- Si esprime con: $e_{q_{\mathrm{final}},t(n)}$

Le transizioni sono valide

- Questa è la parte più complessa
- Dobbiamo esprimere tre cose:
 - La posizione sotto la testina cambia in modo compatibile con la funzione di transizione
 - Lo stato cambia in modo compatibile con la funzione di transizione
 - Nessuna delle altre celle cambia

Nessuna delle altre celle cambia

• Per ogni transizione dal tempo j-1 al tempo j definiamo la formula

$$\bigwedge_{i=-p(n)}^{p(n)} \neg p_{i,j-1} \to \left(\bigwedge_{\sigma \in \Gamma} c_{\sigma,i,j-1} \leftrightarrow c_{\sigma,i,j}\right)$$

- Che dice "se al tempo j-1 la testina non era sulla cella i allora il contenuto della cella i coincide al tempo j-1 e j"
- Questo significa che il contenuto del nastro non cambia per le posizioni dove non c'è la testina

Applicazione della funzione di transizione

• Per ogni transizione dal tempo j-1 al tempo j definiamo la formula

$$\bigwedge_{i=-t(n)} \bigwedge_{q \in Q} \bigwedge_{\sigma \in \Gamma} \left(p_{i,j-1} \wedge e_{q,j-1} \wedge c_{\sigma,i,j-1} \to \psi_{q,\sigma,i} \right)$$

• Dove
$$\psi_{q,\sigma,i}$$
 è definito come
$$\bigvee \left(c_{\sigma',i,j} \wedge e_{q'j} \wedge p_{i+d,j}\right)$$
 $(q',\sigma',d) \in \delta(q,\sigma)$

dove usiamo $d = \{-1,1\}$ per i movimenti \leftarrow e \rightarrow della testina (ci serve indicare come varia la posizione)

Verso la fine della dimostrazione

- Se prendiamo tutte le formule definite fino ad ora e le mettiamo in congiunzione allora abbiamo che la formula è soddisfacibile solo se rispetta tutte le condizioni elencate
- Ognuna delle sotto-formule ha dimensione polinomiale rispetto a n e anche la formula finale ha dimensione polinomiale rispetto ad n e le operazioni per costruirla sono eseguibili in tempo polinomiale
- Abbiamo quindi mostrato che SAT è NP-completo

Conseguenze

- Se esiste una soluzione efficiente (in tempo polinomiale deterministico) per SAT allora esiste per ogni problema in NP. E questo mostrerebbe P=NP
- Chiaramente questo non è stato mostrato
- SAT non è l'unico problema NP-completo noto, ma il primo trovato
- Se abbiamo un problema $L \in \mathrm{NP}$ e vogliamo mostrare che è NP -completo ci basta mostrare che $\mathrm{SAT} \leq_P L$
- Dato che SAT è NP -completo questo implica che anche L lo sia