
Version Control

Dario Campagna

Version control

Introduction to Git

Using Git and GitHub

Other version control systems

Agenda

Version control is a class of
systems responsible for managing

changes to computer programs,
documents, large web sites, or

other collections of information.

It is common for multiple versions of the same software to be
deployed in different sites.

▪ Bugs or features are often only present in certain versions.
▪ Need to retrieve and run different versions of the software.

Why version control?

It is common for developers to be working simultaneously on
updates.

▪ We need to integrate the changes into the software.
▪ Integrating the work of different developers is a crucial task.

Why version control?

Maintaining multiple versions of
the software and integrating the
work of different developers in a

manual way is inefficient and
error prone.

A Version Control System (VCS) is a software that manages changes to a set of data over time.

What’s a Version Control System?

TCS

→¥¥÷
.
I

②EFFIEes
③ FIT -

A single server contains all the versioned files, a number of
clients check out files from that central place.

▪ Everyone knows what everyone else on the project is doing.
▪ Administrators have fine-grained control over who can do what.
▪ The centralized server is a single point of failure.

Centralized VCS

Picture from Pro Git

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

Clients don’t just check out the latest snapshot of the files.
They fully mirror the repository, including its full history.

▪ No canonical, reference copy of the codebase exists by default.
▪ Common operations are fast.
▪ Communication only when pushing/pulling to/from other peers.
▪ Working copies function as remote backups.

Distributed VCS

Picture from Pro Git

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

Free and open source distributed VCS designed to handle
everything from small to very large projects with speed and
efficiency.

▪ Built to work on the Linux kernel.
▪ Speed and performance has been a primary design goal.

Git

Git development began in 2005 in response to changes around
the Linux kernel.

▪ 1991-2002: patches and archived files.
▪ 2002: BitKeeper, a proprietary distributed VCS.
▪ 2005: relationship with BitKeeper company broke down,

development of Git starts.

A bit of history of Git

The Linux development community developed Git based on
some of the lessons learned while using BitKeeper.

▪ Speed.
▪ Simple design.
▪ Strong support for non-linear development.
▪ Fully distributed.
▪ Efficient handling of large projects.

Goals of Git

Git thinks of its data like a series of snapshots of a miniature
filesystem.

▪ When you commit, Git takes a picture of what all your files look
like at that moment and stores a reference to that snapshot.

▪ If files have not changed, Git doesn’t store the file again.

Snapshots

Picture from Pro Git

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git?

Most operations in Git need only local files and resources to
operate.

▪ Most operations seem almost instantaneous.
▪ There is very little you can’t do if you’re offline or off VPN.

Nearly every operation is local

Everything in Git is checksummed before it is stored and is
then referred to by that checksum.

▪ Git uses a SHA-1 hash for the checksumming.
▪ Git stores everything in its database by hash value.

Integrity

Picture from Wikipedia

https://en.wikipedia.org/wiki/SHA-1

When you do actions in Git, nearly all of them only add data to
the Git database.

▪ After you commit a snapshot into Git, it is very difficult to lose.
▪ You can experiment without the danger of screwing things up.

Generally only adds data

The working directory, the staging area and
the Git directory.

Basic Git workflow

1. You modify files in your working directory.

2. You stage the changes you want to be part of
your next commit.

3. You do a commit.

Main sections of a Git project

You have changed the file
but have not committed
it.

You have marked a modified
file in its current version to go
into your next commit
snapshot.

The data is safely stored in
your local database.

Modified Staged Committed

The three states
Git has three main states that your files can reside in.

Initialize a Git repository for our hello-name application.

▪ Use Git from the command line.
▪ Look at some of the basic Git commands.

Let’s try Git

In order to do any collaboration in Git, you’ll
need to have a remote Git repository.

▪ Remote repositories are versions of your
project that are hosted on the Internet or
network somewhere.

▪ The preferred method for collaborating with
someone is to set up an intermediate
repository.

Remote Git repositories

O o⇐ o ⇐
i¥o5EIry post Fust REEFTON

1¥ KEEFFE,
I

¥¥oi

GitHub is the single largest host for Git repositories.

▪ A large percentage of all Git repositories are hosted on GitHub.
▪ Many open-source projects use it for Git hosting, issue tracking,

code review, and other things.

GitHub

Create a remote Git repository for our hello-name application.

▪ Set up a remote repository on GitHub.
▪ Look at Git commands to work with remote repositories.

Let’s try GitHub

IntelliJ IDEA

NetBeans

Visual Studio Code

…

SourceTree

GitHub Desktop

TortoiseGit

…

GitLab

Bitbucket

Launchpad

…

IDE Git GUI Hosting sites

Alternative tools

Git is only one of the available free and open source VCS.

▪ CVS
▪ Subversion
▪ Bazaar
▪ Mercurial
▪ …

Other version control systems

Pro Git
https://git-scm.com/book/en/v2

Git reference manual
https://git-scm.com/docs

References

https://git-scm.com/book/en/v2
https://git-scm.com/docs

esteco.com

Go version!

