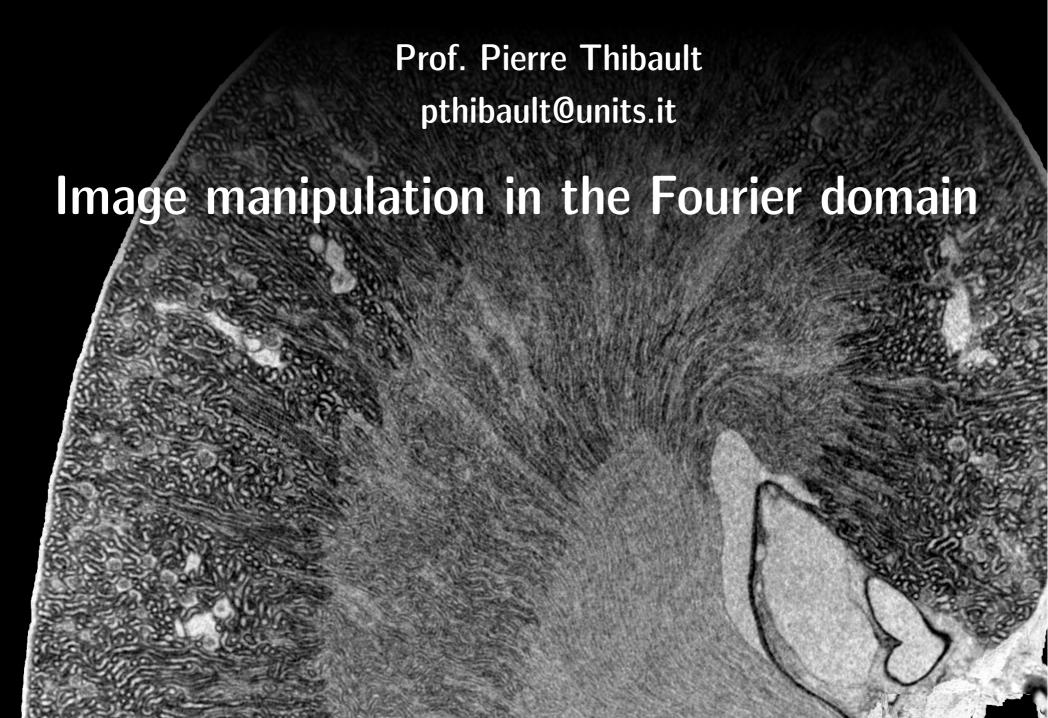
Image Processing for Physicists



Overview

- The Fourier transform (FT)
 - introduction, properties
 - Fourier series, convolution, Dirac comb
 - Discrete Fourier transform (DFT),
 sampling, aliasing
- Linear filters
 - smoothing, sharpening, edge detection

Literature

- Rafael C. Gonzalez, "Digital Image Processing", Prentice Hall International; (2008)
- E. Oran Brigham, "Fast Fourier Transform and Its Application", Prentice Hall International; (1988)
- J.D. Gaskill, "Linear Systems, Fourier Transforms, and Optics", John Wiley and Sons, (1978)

The Fourier transform

- First introduced by Joseph Fourier (1768-1830) to describe heat transfer
- today extremely important
- widely used in many fields

- basis functions: oscillations (sine and cosine)
- describe signal by its frequency spectrum

What's a spatial frequency?

Analogy with time domain: temporal frequency: #cycles unit of time For images: spatial frequency: #cycles unit of length e.g. printer resolution: 300 dpi dots per inches"

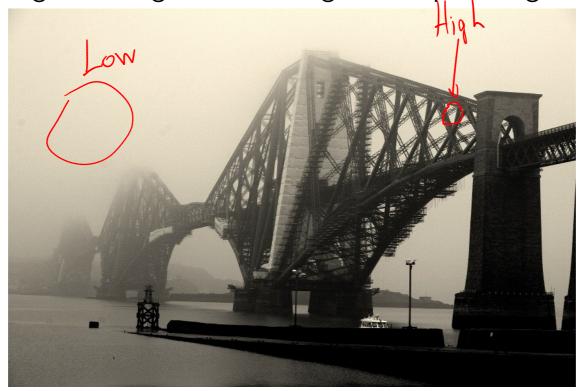
What's a spatial frequency?

High spatial frequencies:

- "fast" changes in image content, small details, edges, ...

Low spatial frequencies:

"slow" changes in image content, large areas, plane regions, ...



Single frequencies are not localized in an image!

Definitions

convention most common in imaging

Continuous Fourier transform

Continuous Fourier transform
$$\int \left\{ f(x) \right\} = F(u) = \int f(x) e^{-2\pi i u x} dx$$

$$\int (x) = \int \left\{ F(u) \right\} = \frac{1}{2\pi} \int F(u) e^{2\pi i u x} du \qquad \left[physics e^{-iq \cdot x} \right]$$
Fourier series

Fourier series
$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{2\pi i k x} p = period of f(x)$$

$$f(x) : periodic$$

$$f_{k=-\infty} p = -2\pi i k x / p$$

$$f_{k=-\infty} f(x) = \int_{-2\pi i k} f(x) e^{-2\pi i k x} p dx$$
Discrete Fourier transform

Discrete Fourier transform

N: total number

$$F_{k} = \sum_{n=0}^{N-1} f_{n} e^{-2\pi i k n} N$$
of samples

$$f_{n} = \sqrt{\sum_{k=0}^{N-1} F_{k}} e^{2\pi i n k} N$$

f. sample points of a periodic

Properties

linearity

$$a f(x) + b g(x) \xrightarrow{\mathcal{F}} a f(u) + b G(u)$$

scaling

$$f(a \cdot x) \xrightarrow{\mathcal{F}} \frac{1}{a} F(\frac{u}{a})$$

reciprocal relationship

shifting/modulation

$$f(x-x_o)$$
 $\xrightarrow{\mathcal{F}}$

Parseval's identity

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{\infty}^{\infty} |F(u)|^2 du$$

0-frequency term

$$\int (u=0) = \int_{0}^{\infty} f(x) dx$$

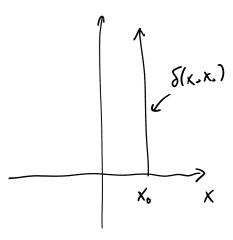
"direct current"

constant termthat doesn't

Dirac distribution

"sifting" property

$$\int_{\infty}^{\infty} f(x) \, \delta(x - x_0) \, dx = f(x_0)$$



normalization

$$\int_{\infty}^{\infty} \delta(x) dx = 1$$

relation to Fourier transforms

$$\frac{7}{5} = \int_{-\infty}^{\infty} e^{-2\pi i u X} dx = \delta(u)$$

$$\frac{1}{5} = \int_{-\infty}^{\infty} e^{-2\pi i u X} dx = \delta(u)$$

$$\frac{1}{5} = \int_{-\infty}^{\infty} e^{-2\pi i u X} dx = \delta(u)$$

Convolution

$$[f*q](x)$$

definition

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(s) g(x-s) ds$$

commutativity, associativity, distributivity

$$\Rightarrow f * g = g * f$$

ity, associativity, distributivity
$$f * (q+h) = f * q + f * h$$

$$f * (q+h) = f * q + f * h$$

$$(f*q) * h = f * (q*h)$$

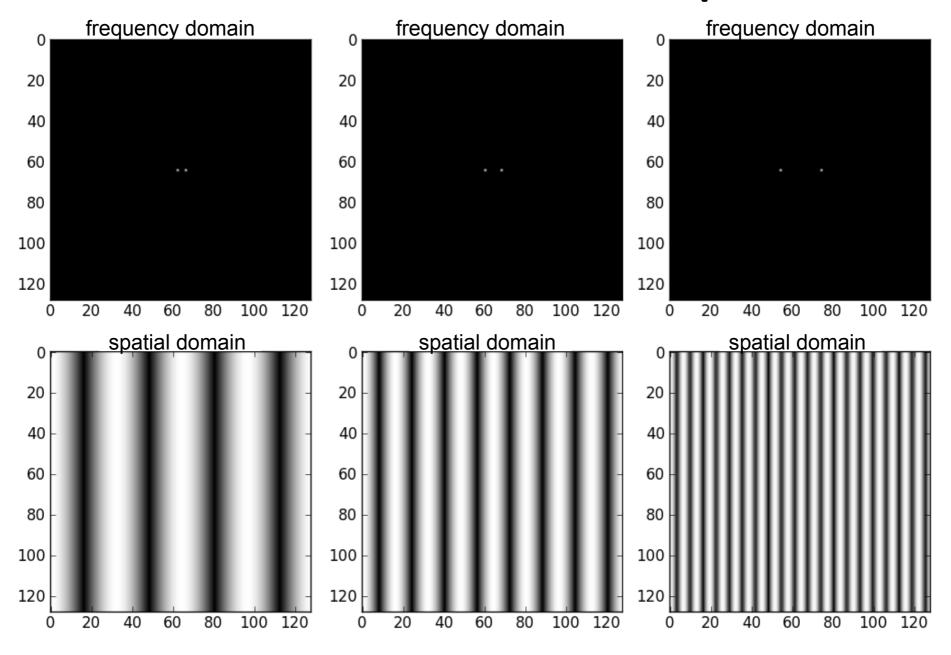
Dirac distribution: indentity/translation

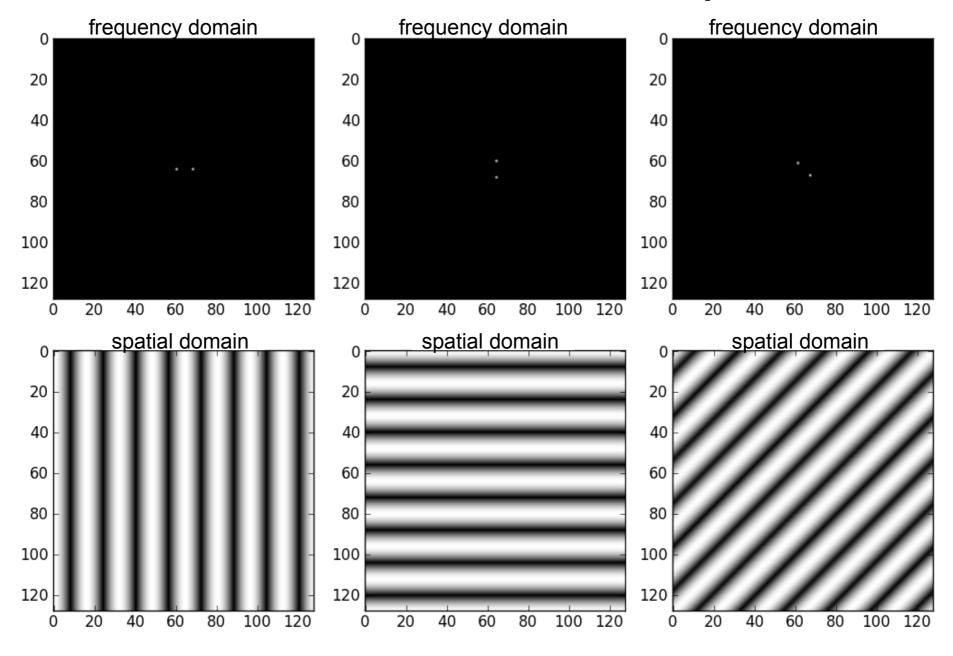
$$\left[f(x') \star \delta(x'-x_o)\right](x)=f(x-x_o)$$

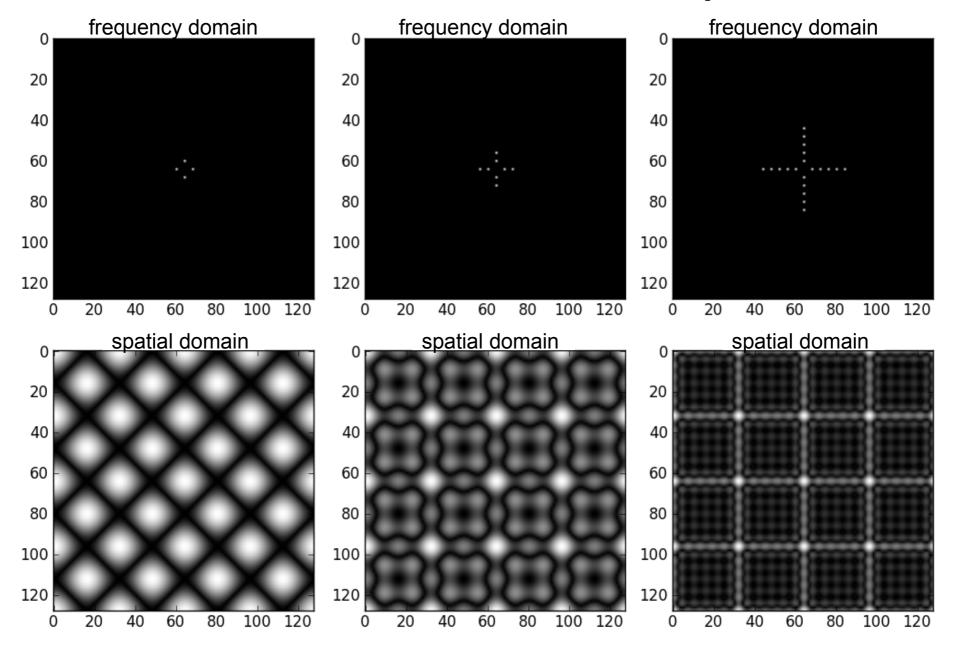
relation to Fourier transforms

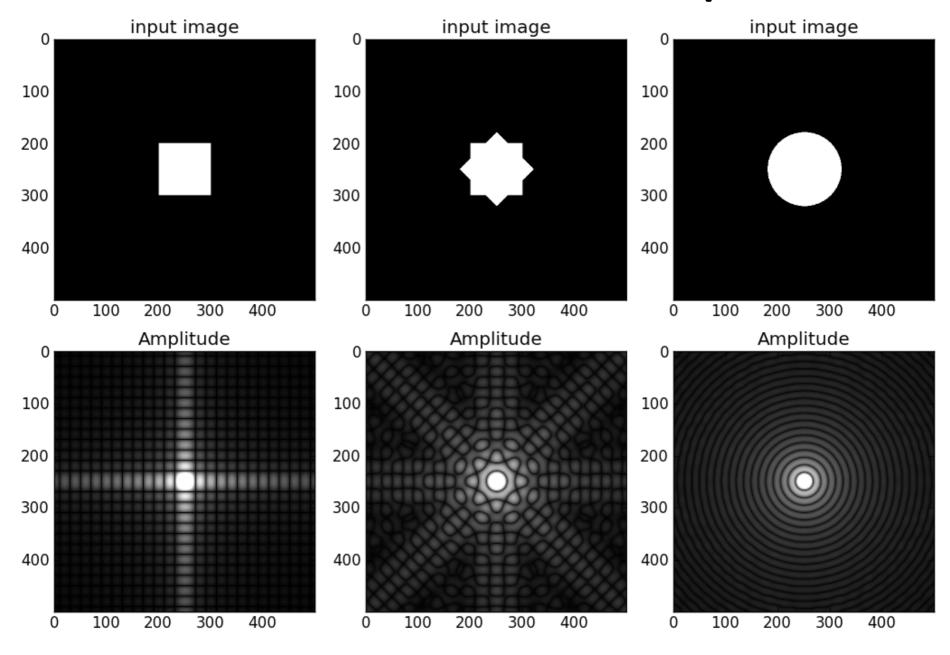
Fourier transforms

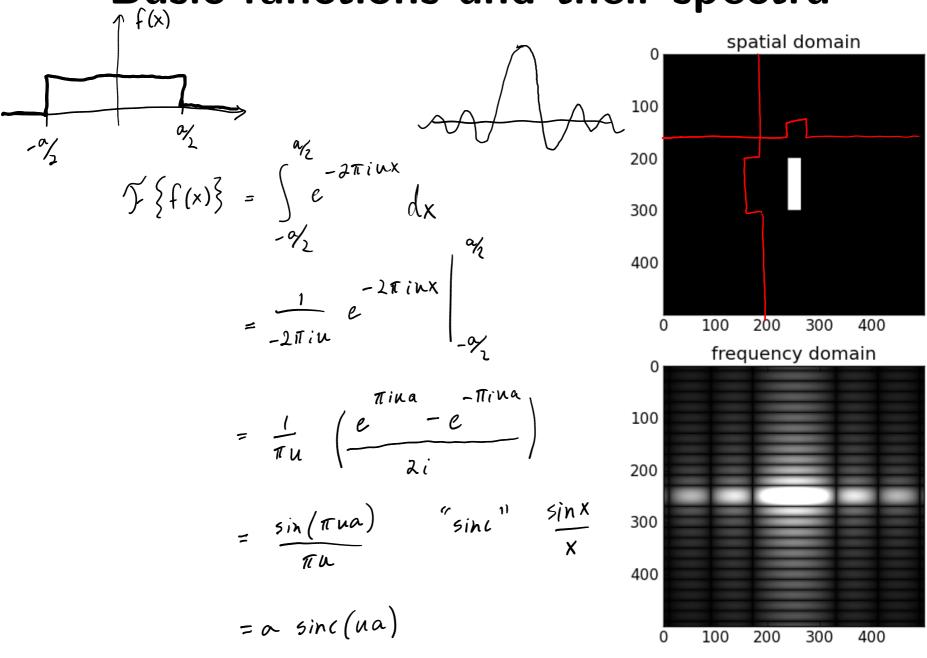
$$\int \left\{ f * g \right\} = F(u), G(u)$$
important!

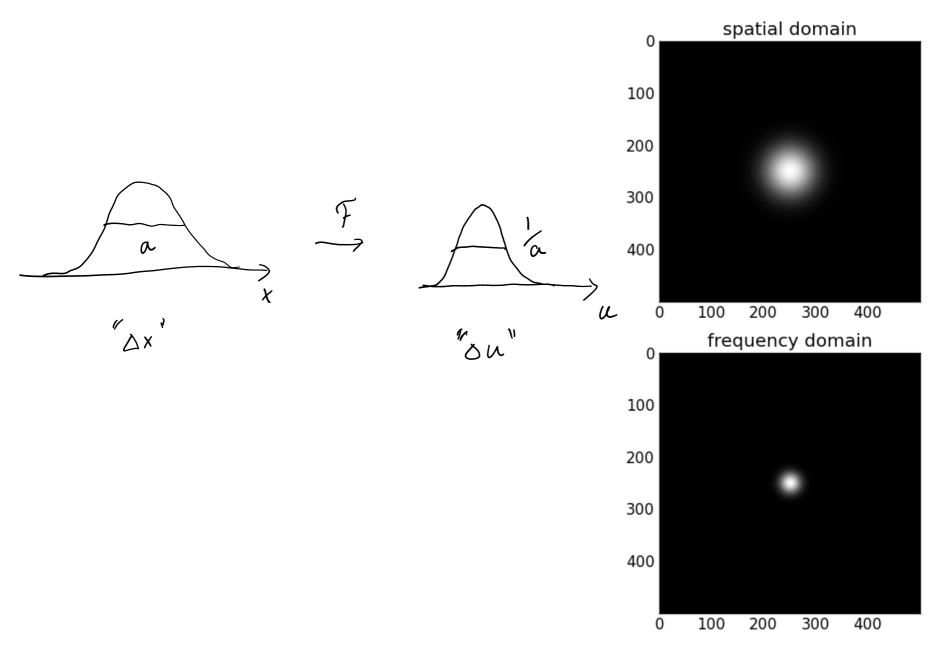












Additional properties

uncertainty principle

$$\triangle X \triangle u \geqslant \frac{1}{4\pi}$$

power spectrum

$$P(u) = |F(u)|^2$$

derivatives

$$\int \left\{ \frac{\partial}{\partial x} f(x) \right\} = 2\pi i u F(u)$$

$$\frac{2^{n}}{2x^{n}}f \xrightarrow{\mathcal{F}} (2\pi i u)^{n} F(u)$$

"Friedel" (crystallography terminology) symmetry:
if
$$f(x) \in \mathbb{R}$$
 then $f(u) = F(-u)$

Periodic signals

$$f(x): Periodic function with period p$$

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{2\pi i u x} dx \qquad \text{("Fourier synthesis" or inverse Fourier transform)}$$
but also:
$$f(x) = \int_{-\infty}^{\infty} C_{\mu} e^{2\pi i k x} p \qquad \text{(Fourier series)}$$

$$f(u) = \int_{k=-\infty}^{\infty} C_{k} \delta(u-kp) \qquad \text{periodic} \longrightarrow \text{discrete}$$

$$f(x)$$

$$f(x)$$

$$f(x)$$

$$f(x)$$

$$f(x)$$

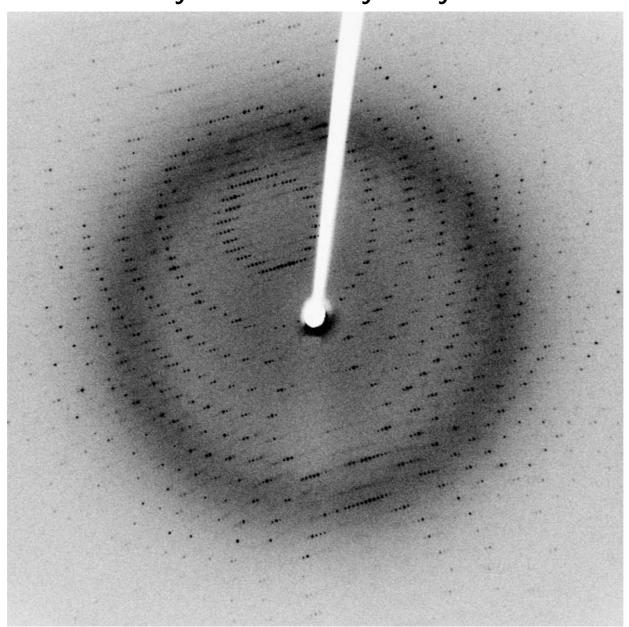
$$f(x)$$

$$f(x)$$

$$f(x)$$

Periodic signals

X-ray diffraction by a crystal



Dirac heltas

Coursed by

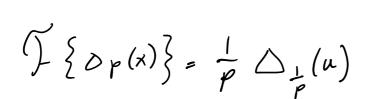
periodicity

The Dirac comb

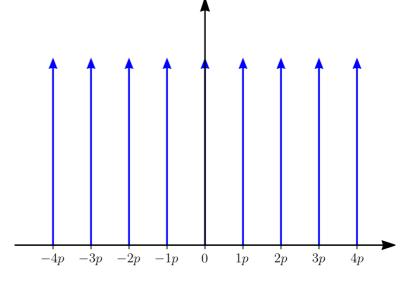
A periodic function made of Dirac functions

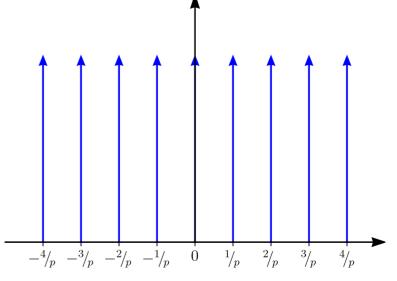
$$\Delta_{p}(x) = \sum_{n=-\infty}^{\infty} \delta(x-np)$$

$$\triangle_{\frac{1}{p}}(u) = \sum_{k=-\infty}^{\infty} \delta(u - k)$$



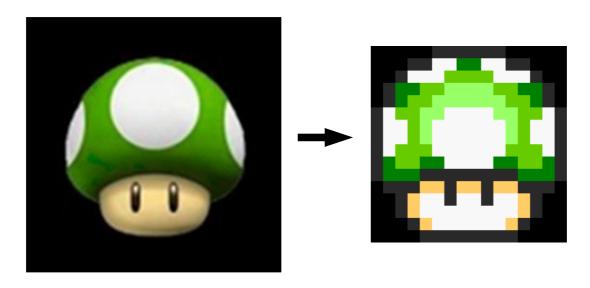
F.T. of a Dirac comb is a Dirac comb

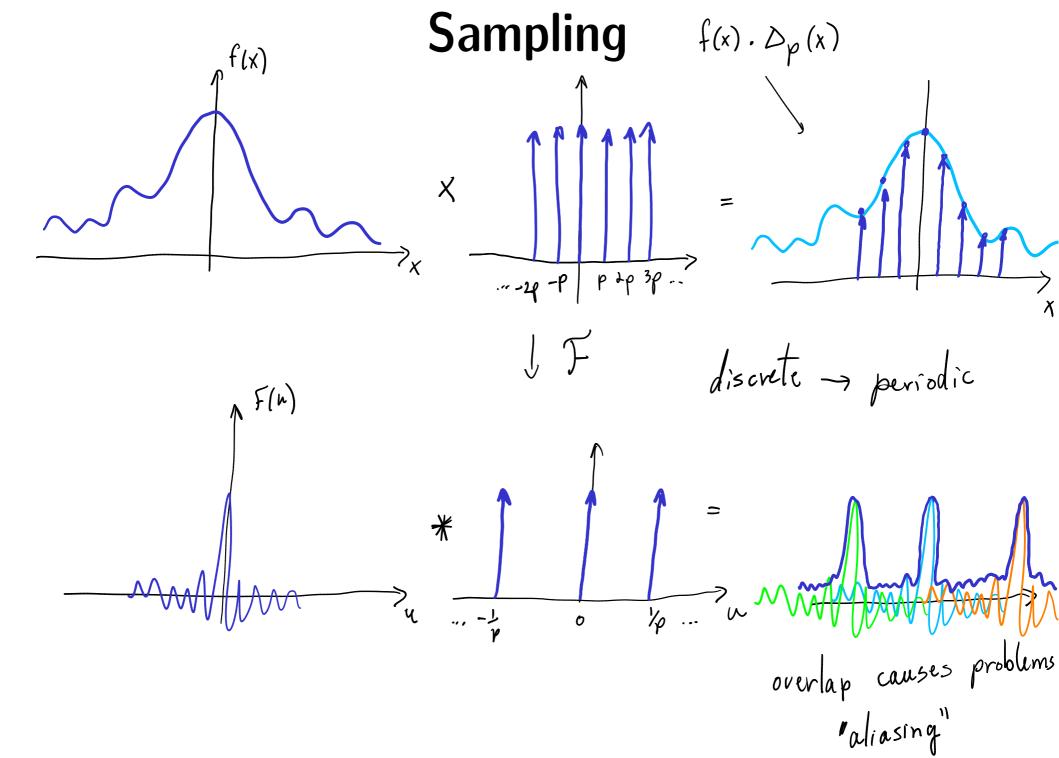




The discrete Fourier transform

- additional ingredients needed:
 - sampling in space
 - finite field of view in space
 - sampling in frequency domain
 - finite frequency band
- discrete approximation of some continuous function





F.T.

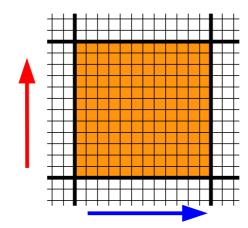
continuous, infinite

F. S.

continuous, periodic

D. F.T.

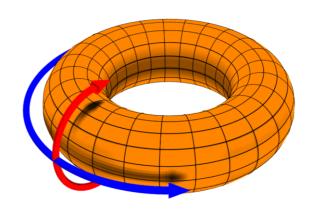
discrete, periodic



Summary
Fourier space
continuous, infinite domain

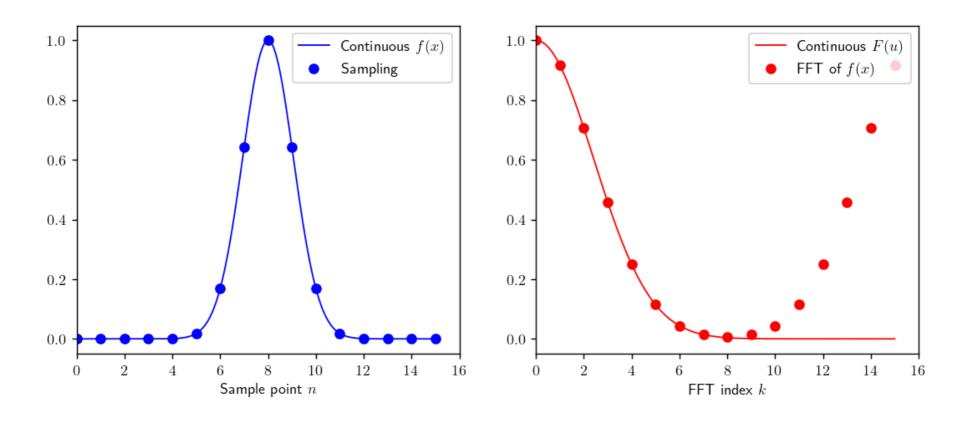
discrete, infinite domain

discrete, periodic



DFT example

Example: relation between space, sampling and frequency

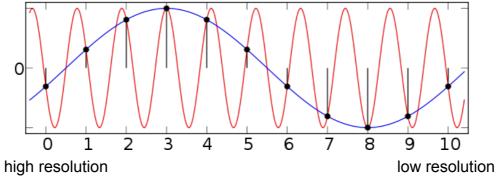


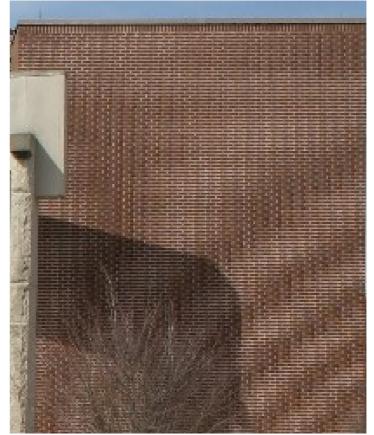
zero frequency component is in the top left corner output array.

Aliasing

Moiré: after resampling, high spatial frequencies appear as low spatial

frequencies





source: http://wikipedia.org