Since in reality a force can never be applied suddenly, it is of interest to consider a dynamic force
that has a finite rise time, #,, but remains constant thereafter, as shown in Fig. 4.5.1b:
ps(t/t) t<t,
p(t) = 4.5.1)
Po 1=1
The excitation has two phases: ramp or rise phase and constant phase.
For a system without damping starting from rest, the response during the ramp phase is given
by Eq. (4.4.2), repeated here for convenience:

t sinw,t
u(t) = (ug), (t_ — > 1<t (4.5.2)

r a)llrl‘

The response during the constant phase can be determined by evaluating Duhamel’s integral
after substituting Eq. (4.5.1) in Eq. (4.2.4). Alternatively, existing solutions for free vibration and
step force could be utilized to express this response as

ut,) .
ll(f) = Ll([l') CosS Cl),,([ - f,-) -+ ——81n (U,,(f - [I') + (usl)u[l — COSs a),,(f - [))] 11, (453)
1)

The third term is the solution for a system at rest subjected to a step force starting at f = 7,; it is
obtained from Eq. (4.3.2). The first two terms in Eq. (4.5.3) account for free vibration of the system
resulting from its displacement u(#,) and velocity i(z,) at the end of the ramp phase. Determined
from Eq. (4.5.2), u(z,) and i(t,) are substituted in Eq. (4.5.3) to obtain

1
u(t) = (tg)o { 1+ — [(1 — COS w,t,) sinw, (t —t,)

ntr
— sin w,t, cos w,(t — r,.)} } t>1t, (4.5.4a)
This equation can be simplified, using a trigonometric identity, to

I
W) = () { [ —— [sin @, — Sin @t — r,.)] } 1>1, (4.5.4b)

ntr

The normalized deformation, u(f)/(uy),, is a function of the normalized time, ¢/T,,, because
w,t = 2m(t/T,). This function depends only on the ratio #./T, because w,t, = 27(t,/T,), not
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Figure 4.5.1 (a) SDF system; (b) step

(a) (b) force with finite rise time.
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1n§tam These results permit several observations:

5.0 1. During the force-rise phase the system oscillates at the natural period 7, about the static
solution.

2. During the constant-force phase the system oscillates also at the natural period 7,, about the

iven static solution.

3. If the velocity i(t,) is zero at the end of the ramp, the system does not vibrate during the
constant-force phase.
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Figure 4.5.2 Dynamic response of undamped SDF system to step force with finite rise time; static
solution is shown by dashed lines.
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step force; see Fig. 4.3.1c.

5. For larger values of ¢,/T,, the dynamic displacement oscillates close to the static solution,
implying that the dynamic effects are small (i.e., a force increasing slowly—relative to 7,—
from O to p, affects the system like a static force).

The deformation attains its maximum value during the constant-force phase of the response.
From Eq. (4.5.4a) the maximum value of u(?) is

1 -
U, = (ug)o | 1+ —;f( 1 — cos w1, + (sinw,z,)’ (4.5.5)
Using trigonometric identities and 7, = 27 /w,, Eq. (4.5.5) can be simplified to
u, sin(wt, /T,
R,= = | eintredi/ Tl (4.5.6)
(ust)a 7Tt,-/7‘,,

The deformation response factor R, depends only on ¢./T,, the ratio of the rise time to the natural
period. A graphical presentation of this relationship, as in Fig. 4.5.3, is called the response spectrum
for the step force with finite rise time.

This response spectrum characterizes the problem completely. In this case it contains infor-
mation on the normalized maximum response, u,/(i),, of all SDF systems (without damping) due
to any step force p, with any rise time #,. The response spectrum permits several observations:

1. Ift, < T,/4 (ie., a relatively short rise time), u, 2 2(t4s),s implying that the structure “sees”
this excitation like a suddenly applied force.

2. Ift, > 3T, (i.e., arelatively long rise time), u, = (uy),, implying that this excitation affects the
structure like a static force.

3. Ift,/)T,=1,2,3, ..., u, = (uy),, because u(t,) =0 at the end of the force-rise phase, and the
system does not oscillate during the constant-force phase; see Fig. 4.5.2.
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Figure 4.5.3 Response spectrum for step force with finite rise time.
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Figure 4.8.1 (a) SDF system; (b) half-cycle sine
(a) (b) pulse force.

Case1: t,/T,#1

Forced Vibration Phase. The force is the same as the harmonic force p(t) = p, sin wt
considered earlier with frequency w = 7 /t,. The response of an undamped SDF system to such
a force is given by Eq. (3.1.6b) in terms of w and w,, the excitation and natural frequencies. The
excitation frequency w is not the most meaningful way of characterizing the pulse because, unlike a
harmonic force, it is not a periodic function. A better characterization is the pulse duration #,, which
will be emphasized here. Using the relations w = 7 /¢, and w, = 2 /T, and defining (uy), =p,/k,
as before, Eq. (3.1.6b) becomes

u(t) 1 ) t T, . t
= sinfr— | — sin | 27 — t<ty (4.8.2)
(Ltsl)n 1 - (Tn/zrd)z Z‘z/ zrz/ 7171

Free Vibration Phase. ~ After the force pulse ends, the system vibrates freely with its motion
described by Eq. (4.7.3). The displacement u(z,) and velocity i(z,) at the end of the pulse are
determined from Eq. (4.8.2). Substituting these in Eq. (4.7.3), using trigonometric identities and
manipulating the mathematical quantities, we obtain

), letra B [2n <i - li)] t=1 (48.3)
(usl)n (7",,/21‘(/)2 - 1

Case2: t,/T,=

Forced Vibration Phase. The forced response is now given by Eq. (3.1.13b), repeated here
for convenience:

t<t, (4.8.4)

(), 2

Free Vibration Phase.  After the force pulse ends at ¢ = 1,, free vibration of the system is
initiated by the displacement u(z,) and velocity #(z,) at the end of the force pulse. Determined from
Eq. (4.8.4), these are

— —— €08 ——

u(t) 1/ . 2nt 2wt 2t
= sin co
]1” 7"” 7"”

Ll(tl[) _ v . _
W), "2 (o= 4.8.5)

The second equation implies that the displacement in the forced vibration phase reaches its maxi-
mum at the end of this phase. Substituting Eq. (4.8.5) in Eq. (4.7.3) gives the response of the system
after the pulse has ended:

t t 1
W) T cos2mw| — — — t>ty, (4.8.6)
Ty ~2

s 2




Response history. The time variation of the normalized deformation, u(?)/(uty),, given
by Egs. (4.8.2) and (4.8.3) is plotted in Fig. 4.8.2 for several values of #,/T,. For the special case of
ty/T, =1, Bgs. (4.8.4) and (4.8.6) describe the response of the system, and these are also plotted in
Fig. 4.8.2. The nature of the response is seen to vary greatly by changing just the duration 7, of the
pulse. Also plotted in Fig. 4.8.2 is uy(t) = p(t) /k, the static solution. The difference between the two
curves is an indication of the dynamic effects, which are seen to be small for ¢, = 37, because this
implies that the force is varying slowly relative to the natural period 7, of the system.

The response during the force pulse contains both frequencies @ and w, and it is positive
throughout. After the force pulse has ended, the system oscillates freely about its undeformed con-
figuration with constant amplitude for lack of damping. If #,/7, = 1.5, 2.5, .. ., the mass stays still
after the force pulse ends because both the displacement and velocity of the mass are zero when the
force pulse ends.
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Figure 4.8.2 Dynamic response of undamped SDF system to half-cycle sine pulse force; static
solution is shown by dashed lines.
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Figure 4.10.1 Shock spectra for three force pulses of equal amplitude.

If the pulse duration #, is shorter than 7,,/2, the overall maximum response of the system
occurs during its free vibration phase and is controlled by the time integral of the pulse. This can
be demonstrated by considering the limiting case as #,/T, approaches zero. As the pulse duration
becomes extremely short compared to the natural period of the system, it becomes a pure impulse

of magnitude

d
I:/ p(t)dt (4.10.1)
0
The response of the system to this impulsive force is the unit impulse response of Eq. (4.1.6)
times Z:
L.
u(t)y=7 | — sinw,t (4.10.2)
mw,
The maximum deformation,
Z 127
Uy=——=—— (4.10.3)
mw, kT,

is proportional to the magnitude of the impulse.
Thus the maximum deformation due to the rectangular impulse of magnitude Z = p,1, is

0 t(
(”) zan’ (4.10.4)
Llﬁl o n

that due to the half-cycle sine pulse with Z = (2/m)p,t, is

0 [(
e 4t (4.10.5)

(Llsl)o - T‘n
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Figure 4.11.2 Shock spectra for a half-cycle sine pulse force for five damping values.

Thus a conservative but not overly conservative estimate of the response of many practical structures
with damping to pulse-type excitations may be obtained by neglecting damping and using the earlier
results for undamped systems.

4.12 RESPONSE TO GROUND MOTION

The response spectrum characterizing the maximum response of SDF systems to ground motion
ii (1) can be determined from the response spectrum for the applied force p() with the same time
variation as ii,(¢). This is possible because as shown in Eq. (1.7.6), the ground acceleration can be
replaced by the effective force, peg(t) = —mii, ().

The response spectrum for applied force p(¢) is a plot of R; = u,/(uy),, where (uy), =p,/k,
versus the appropriate system and excitation parameters: w/w, for harmonic excitation and #,/T,
for pulse-type excitation. Replacing p, by (pes), gives

(peff)n _ ’nugu _ L‘go
k k w?

(usl)n = (4121)

where ii,, is the maximum value of ii,(¢) and the negative sign in p.¢(¢) has been dropped. Thus

Uy wlu,

(us()u iiyn

. (4.12.2)
Therefore, the response spectra presented in Chapters 3 and 4 showing the response u,/(uy), due to
applied force also give the response w?u, /ii,, to ground motion.

For undamped systems subjected to ground motion, Eqs. (1.7.4) and (1.7.3) indicate that
the total acceleration of the mass is related to the deformation through ii'(f) = —w?u(t). Thus the
maximum values of the two responses are related by i’ = w?u,. Substituting in Eq. (4.12.2) gives

Ry=== (4.12.3)

Uy,

Thus the earlier response spectra showing the response u,/(u), of undamped systems subjected to
applied force also display the response if’ /it,, to ground motion.
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