
Introduction to Test
Driven Development

Dario Campagna

Let’s start with
Development

Software development practice

Clean code that works

Test first

Small steps, fast feedback

Now add Test
Driven

Easy to understand

Easy to evolve

Easy to maintain

Sustains delivery pace

Clean code

TerrariaClone class from the GitHub
repository TerrariaClone.

▪ > 6500 lines of code

▪ > 1300 lines of code for init() method

▪ Deeply nested if and for statements

▪ Many other “issues”

Example of Ugly Code

https://github.com/raxod502/TerrariaClone

Rigid

Fragile

Inseparable

Opaque

Ugly code is

The nature of code is to grow
ugly.

Bas Vodde

We have no time to clean it

We need to go “faster”

We are afraid of breaking it

Fear prevents us to clean it

Why does code
grow ugly?

The “Faster is Slower” Dynamic

Goal: conform to

original schedule
actual

variance to

original

schedule
pressure to

try actions to

conform to

original

schedule

QF

% use of “secret

toolbox”—

hacking to

generate bad

code quickly

exhortations,

bribes, and threats

to developers to

meet schedule

duration and

effort to add

new featuresO

% of clean code

with good design
of defects

O

O
duration between creating

and fixing a defect

duration and correctness

in fixing a defect

short
term
only

QF

www.craiglarman.com

www.odd-e.com

Copyright © 2009

C.Larman & B. Vodde

All rights reserved.

A system of coding practice incorporating techniques and
notions that have been cultivated and polished for decades.

Dave Nicolette

▪ The purpose is to practice and internalize programming techniques
▪ (Some are) Designed to reflect programming problems that have

particular shapes

Code Kata

https://neopragma.com/2020/04/code-katas/

To run the tests, as fast as possible

To build the test suite

To check test status

A way to write tests

Automated build

Test framework

Assertion library

Arrange/Act/Assert

Things we need to practice TDD Why?

Test Infrastructure

Test Driven Development (TDD) Cycle

Think

Red

Green

Refactor

Find out which test
to write next

The test should fail
for the right reason

Make the test pass
quickly!

How can we make
the code better?

Tests should have names
that describe a business
feature or behavior.

Technical names and leaking
implementation details.

Tests should clearly
express required
functionalities to the
reader.

Describe Avoid Communicate

Good tests

Just return the exact
value you need.

Something that works is
better than something
that doesn’t work!

When you are sure of the code
you need to write, write it, and
see the test go green!

Write a new and more
specific test that forces the
code to be more generic.

Fake it Obvious implementation Triangulation

Ways to move forward

Code, data, knowledge. Avoid removing duplication
too soon, as this may lead you
to extract the wrong
abstractions.

Extract duplication only
when you see it for the
third time.

Types of duplication Wait Rule of Three

Refactor to remove duplication

Duplication of knowledge

Duplication of knowledge

Extract method.

Duplication of hard coded data

21/11/2016 Sale.java

file:///Users/dcampagna/Downloads/it/esteco/pos/Sale.java.html 1/1

Sale.java

package it.esteco.pos;

public class Sale {

 private Display display;

 public Sale(Display display) {
 this.display = display;
 }

 public void onBarcode(String barcode) {
 display.setText("Product not found for 99999");
 }
}

21/11/2016 SellOneItemTest.java

file:///Users/dcampagna/Downloads/it/esteco/pos/SellOneItemTest.java.html 1/1

SellOneItemTest.java

package it.esteco.pos;

import org.junit.Ignore;
import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class SellOneItemTest {

 @Test

 public void productFound() throws Exception {
 Display display = new Display();
 Sale sale = new Sale(display);

 sale.onBarcode("12345");

 assertEquals("$7.95", display.getText());
 }

 @Test

 public void anotherProductFound() throws Exception {
 Display display = new Display();
 Sale sale = new Sale(display);

 sale.onBarcode("67890");

 assertEquals("$12.10", display.getText());
 }

 @Test

 public void productNotFound() throws Exception {
 Display display = new Display();
 Sale sale = new Sale(display);

 sale.onBarcode("99999");

 assertEquals("Product not found for 99999", display.getText());
 }

}

Duplication of hard coded data

Replace literal value with variable.

21/11/2016 SellOneItemTest.java

file:///Users/dcampagna/Downloads/it/esteco/pos/SellOneItemTest.java.html 1/1

SellOneItemTest.java

package it.esteco.pos;

import org.junit.Ignore;
import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class SellOneItemTest {

 @Test

 public void productFound() throws Exception {
 Display display = new Display();
 Sale sale = new Sale(display);

 sale.onBarcode("12345");

 assertEquals("$7.95", display.getText());
 }

 @Test

 public void anotherProductFound() throws Exception {
 Display display = new Display();
 Sale sale = new Sale(display);

 sale.onBarcode("67890");

 assertEquals("$12.10", display.getText());
 }

 @Test

 public void productNotFound() throws Exception {
 Display display = new Display();
 Sale sale = new Sale(display);

 sale.onBarcode("99999");

 assertEquals("Product not found for 99999", display.getText());
 }

}

21/11/2016 Sale.java

file:///Users/dcampagna/Downloads/good/it/esteco/pos/Sale.java.html 1/1

Sale.java

package it.esteco.pos;

public class Sale {

 private Display display;

 public Sale(Display display) {
 this.display = display;
 }

 public void onBarcode(String barcode) {
 display.setText("Product not found for " +
 barcode);
 }
}

Databases

Network communications

File system

Other shared fixtures

Configurations

Isolated and composable

Fast and automated

Behavioral and structure-insensitive

Specific and deterministic

Inspiring and predictive

Writable and readable

Should be… Beware of

Tests in TDD

Should you always practice
Test Driven Development?

To get value from a tool, it’s
necessary to:

1. Choose the right tool for the job.
2. Use the tool properly.

TDD is a tool

Dave Nicolette, “Against TDD”, https://neopragma.com/2019/09/against-tdd/

Test Pyramid

https://martinfowler.com/bliki/TestPyramid.html
Copyright © 2012 Martin Fowler

Test Driven Development by Example
Kent Beck

Agile Technical Practices Distilled
Pedro Moreira Santos, Marco Consolaro,
Alessandro Di Gioia

References

Extreme Programming Explained
Kent Beck

