

- Le catecolamine sono i neurotrasmettitori che sostengono l'attività simpatica
- La noradrenalina è rilasciata dai terminali sinaptici delle fibre nervose simpatiche
- L'adrenalina è prodotta dalla midollare del surrene e viene rilasciata nel circolo sanguigno

Principali catecolamine

anello catecolico catena aminica

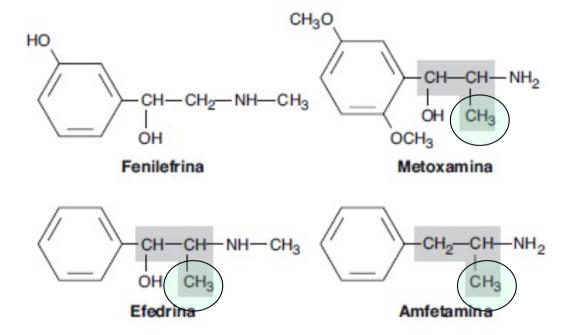
Noradrenalina (norepinefrina)

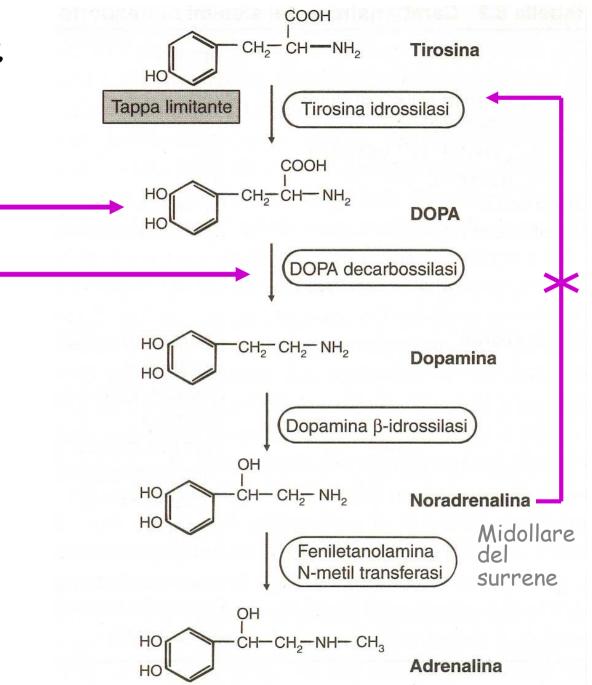
Adrenalina (epinefrina)

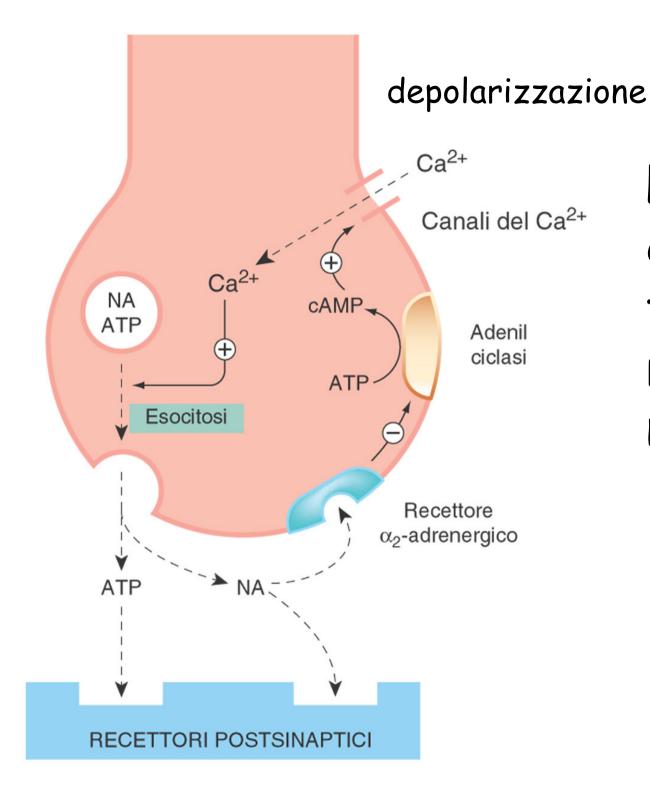
Dopamina

Isoprenalina (isoproterenolo)

HO CH CH₂ NH₂ Noradrenalina
$$\alpha$$
 Noradrenalina HO CH CH₂ NH CH₃ Adrenalina Adrenalina



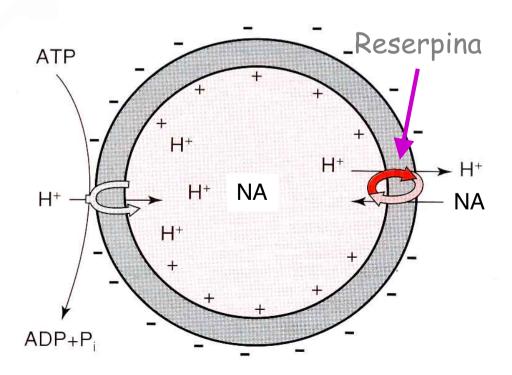


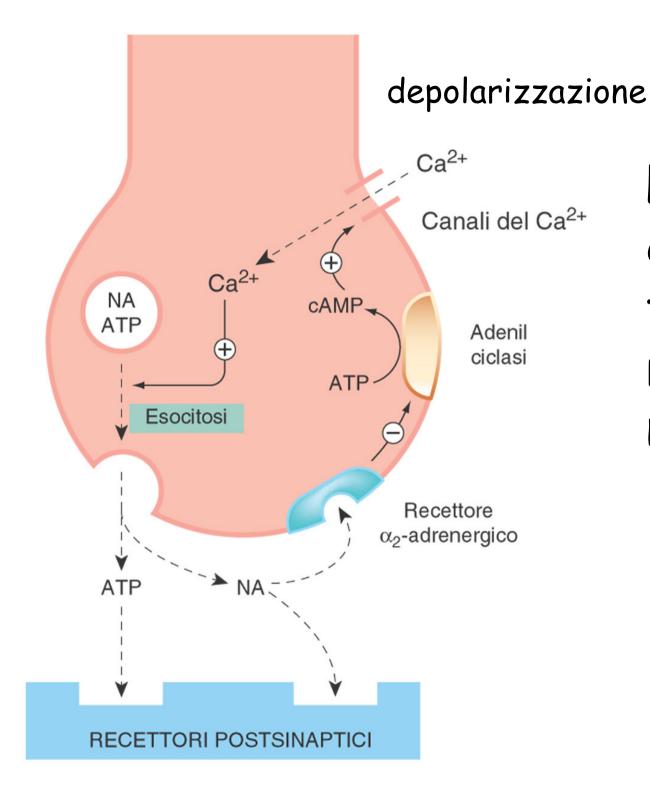

Figura 9-5. Alcuni esempi di farmaci simpaticomimetici non catecolaminici. Il gruppo isopropilico è evidenziato con l'ombreggiatura.

Biosintesi delle catecolamine

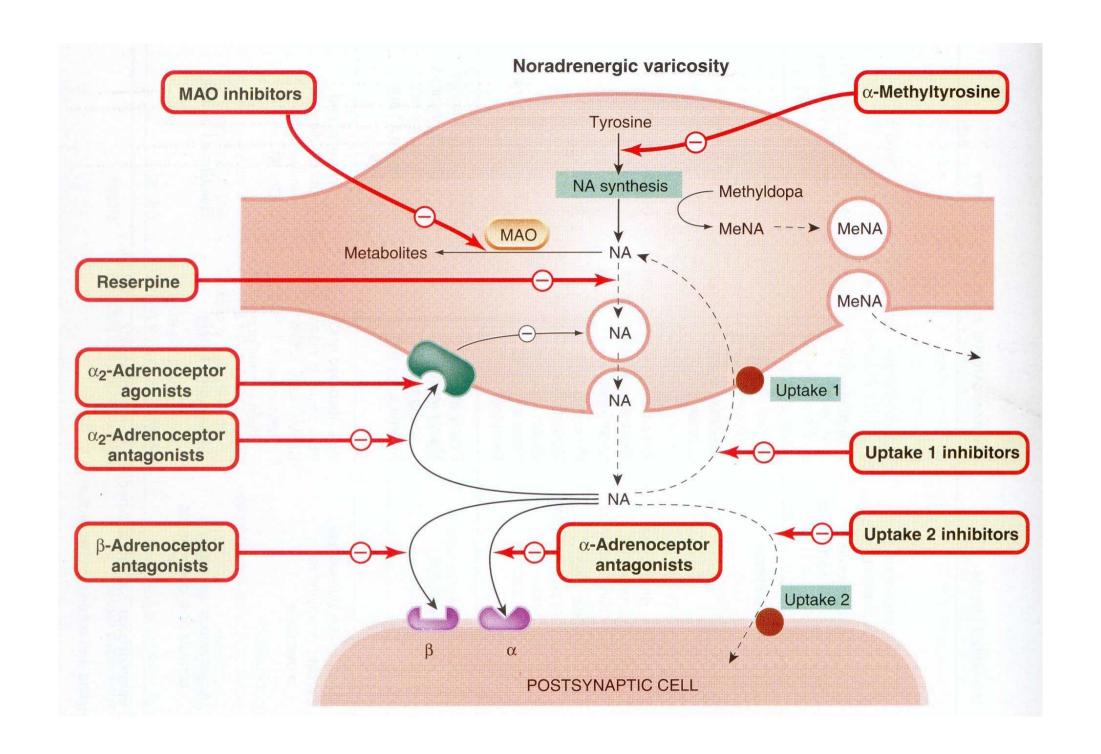
falsi trasmettitori $(\alpha$ -metildopa)

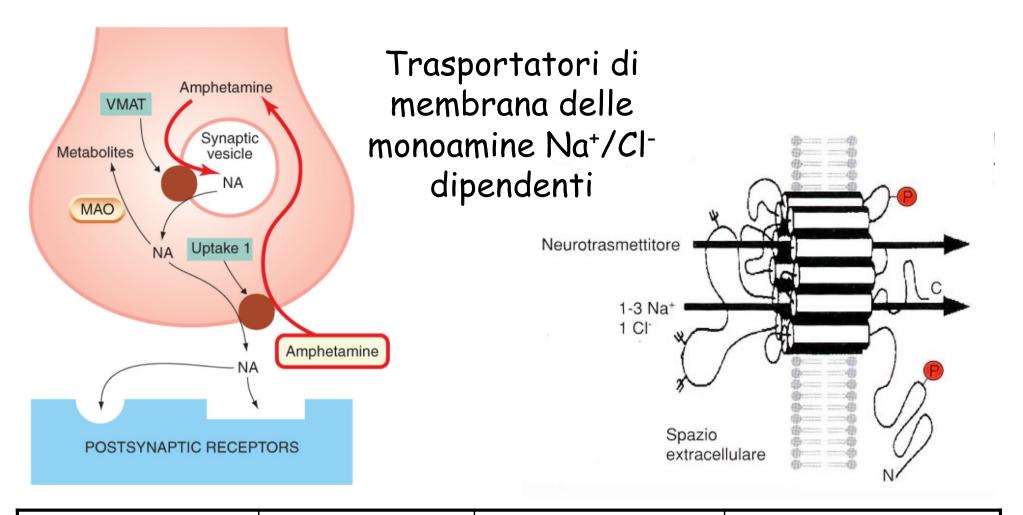
carbidopa

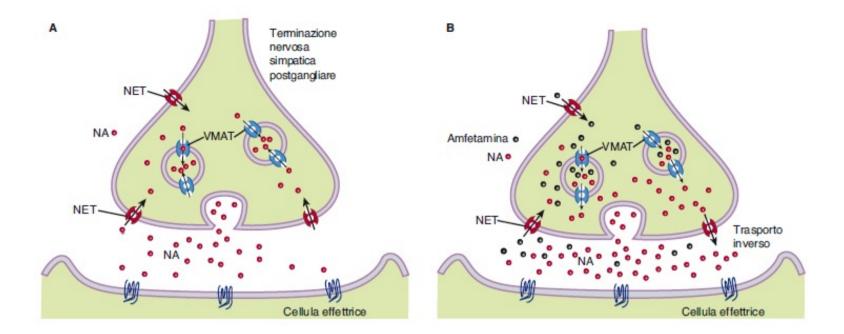


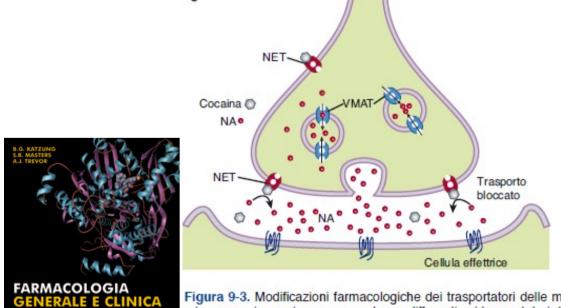


Liberazione e controllo a feedback del rilascio di noradrenalina

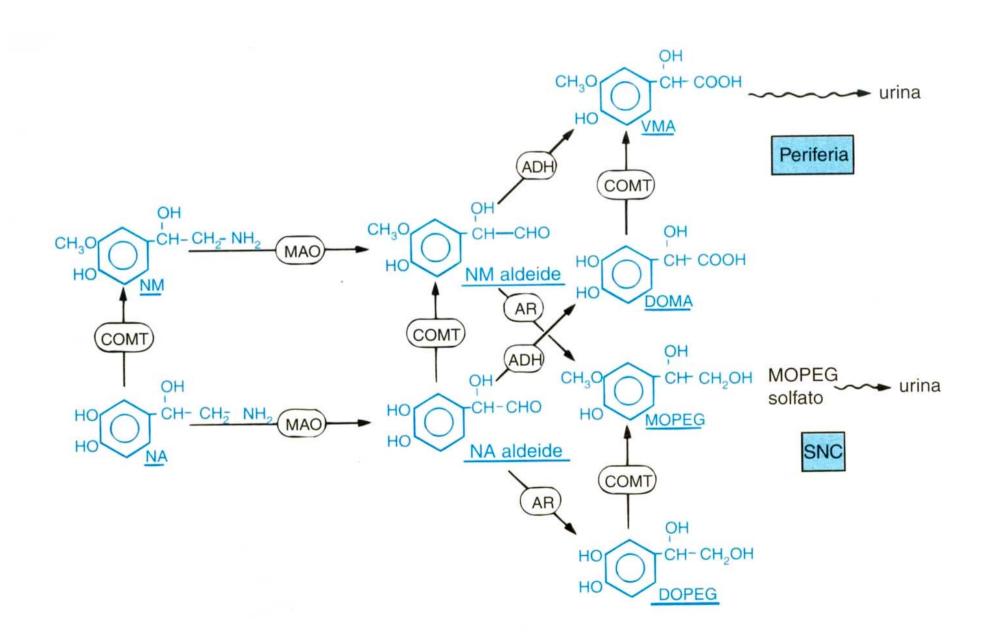

Trasportatori vescicolari H+-dipendenti


Trasportatore	Struttura molecolare	Localizzazione	Substrato	Inibitori
VMAT1	512 aa 12 TM	Cellule cromaffini	NA~DA ~5-HT ~A	Reserpina > tetrabenazina
VMAT2	521 aa 12 TM	SNC	NA~DA ~5-HT ~A	Tetrabenazina > reserpina



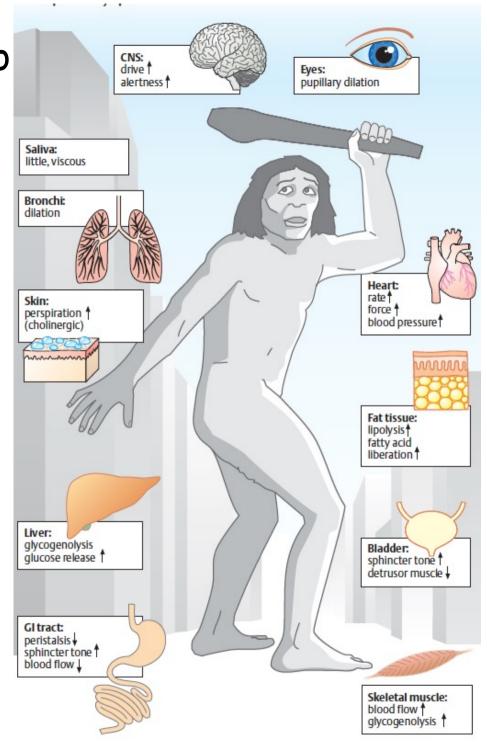

Liberazione e controllo a feedback del rilascio di noradrenalina

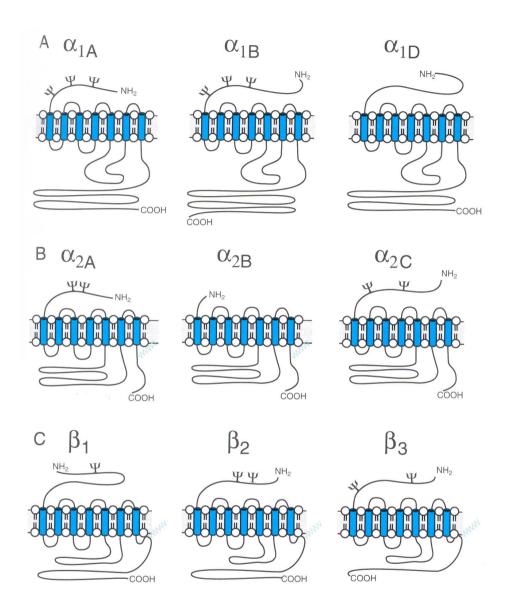
Struttura molecolare	Localizzazione	Substrato	Inibitori
Tras	sportatore del	la noradrenalina	(NET)
~600 aa 12 TM	Neuronale	Noradrenalina Dopamina Amfetamina	Antidepressivi triciclici Cocaina



Prof. PACLO PREZIOSI

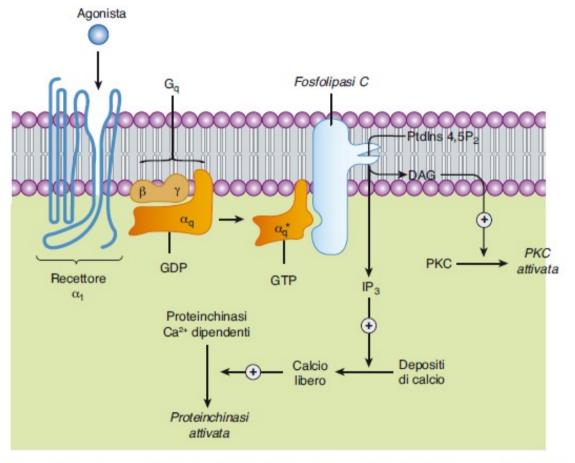
PICCIN


Figura 9-3. Modificazioni farmacologiche dei trasportatori delle monoammine. Farmaci di uso comune, quali antidepressivi, amfetamine e cocaina, agiscono con potenze differenti sui trasportatori delle monoammine (noradrenalina, dopamina e serotonina). Nel diagramma A è illustrato il meccanismo di ricaptazione della noradrenalina (NA) nel neurone noradrenergico attraverso il trasportatore della noradrenalina (NET). All'interno della terminazione, una parte della noradrenalina ricaptata è sequestrata nelle vescicole presinaptiche attraverso il trasportatore vescicolare delle monoamine (VMAT). I diagrammi B e C illustrano gli effetti di amfetamina e cocaina su queste vie. Si veda il testo per i dettagli.


Vie di degradazione delle catecolamine

Azioni del sistema simpatico (reazione di lotta e fuga)

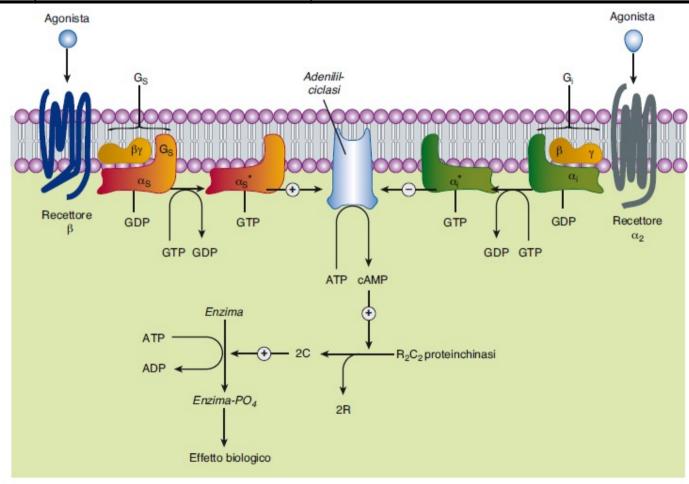
- Aumento della forza, frequenza e gittata cardiaca (recettori β₁)
 Vasocostrizione cutanea e splancnica (recettori α) e vasodilatazione muscolare (recettori α e β₂)
- Dilatazione bronchiale e riduzione delle secrezioni bronchiali
- Aumentata forza di contrazione della muscolatura scheletrica
- · Glicolisi e lipolisi
- Midriasi, piloerezione, sudorazione



Recettori adrenergici

a: noradrenalina > adrenalina >> isoproterenolo

β: isoproterenolo > adrenalina > noradrenalina


Famiglia	Sottotipi	Meccanismi di trasduzione
α_1	$\alpha_{1A} \alpha_{1B} \alpha_{1C} \alpha_{1D}$	↑ IP-3/DAG

Attivano anche vie di trasduzione del segnale che sono generalmente associate ai recettori per i fattori di crescita peptidergici che attivano tirosinchinasi (MAP chinasi, PI-3-chinasi), forse importanti per la stimolazione della crescita e proliferazione cellulare

Figura 9-1. Attivazione delle risposte α_1 . La stimolazione dei recettori α_1 da parte delle catecolamine porta all'attivazione di una proteina accoppiante G_q . La subunità attivata α di questa proteina (α_q^*) attiva l'effettore, la fosfolipasi C, che porta al rilascio di IP₃ (inositolo 1,4,5 trifosfato) e di DAG (diacilglicerolo), a partire dal fosfatidilinositolo 4,5, bifosfato (PtdIns 4,5P₂). IP₃ stimola il rilascio del calcio (Ca²⁺) sequestrato nei depositi intracellulari, aumentando le concentrazioni intracitoplasmatiche di Ca²⁺. Gli ioni Ca²⁺ possono poi attivare le proteinchinasi Ca²⁺ dipendenti, che possono a loro volta poi fosforilare i loro substrati. Il DAG attiva la proteinchinasi C (PKC). GTP, quanosin trifosfato; GDP, quanosin difosfato. Si veda il testo per effetti addizionali dell'attivazione di recettori α_1 .

Famiglia	Sottotipi	Meccanismi di trasduzione
α_2	$\alpha_{2A} \alpha_{2B} \alpha_{2C}$	↓ cAMP ↑ permeabilità al K ⁺ , ↓ permeabilità al Ca ²⁺

Famiglia	•	Meccanismi di trasduzione
β	β_1 β_2 β_3	↑ cAMP

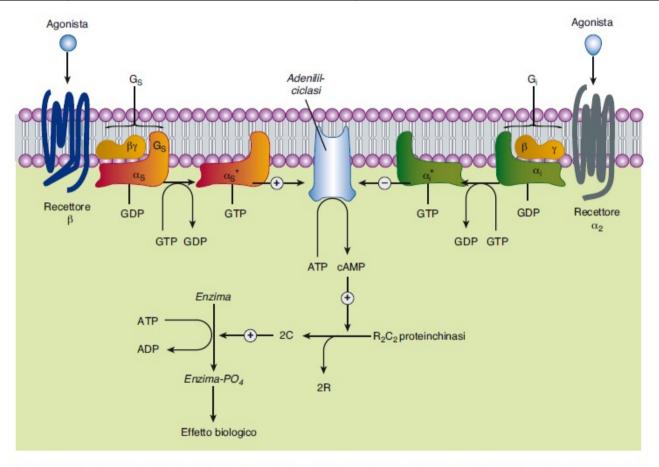


Figura 9-2. Attivazione ed inibizione dell'adenililciclasi da parte degli agonisti che si legano ai recettori adrenergici. Il legame ai recettori β -adrenergici stimola l'adenililciclasi, attraverso l'attivazione della proteina G stimolatoria, G_s , che induce la dissociazione della sua subunità alfa legata al GTP. Questa subunità attivata, α_s , attiva direttamente l'adenililciclasi, aumentando la velocità di sintesi di cAMP. I ligandi per i recettori alfa, inibiscono l'adenililiciclasi provocando la dissociazione della proteina G inibitoria, G_s , in due subunità, cioè una subunità α_s caricata con GTP ed un'unità β_s . Il meccanismo attraverso il quale queste subunità inibiscono l'adenililiciclasi non è noto. Il cAMP si lega alla subunità regolatoria (R) della proteinchinasi cAMP-dipendente, inducendo la liberazione di subunità catalitiche attive (C) che fosforilano specifici substrati proteici e ne modificano l'attività. Queste unità catalitiche fosforilano anche la proteina di legame dell'elemento di risposta di cAMP (CREB) che modifica l'espressione genica. Si veda il testo per altre azioni di recettori adrenergici α_s e β .

Recettori	Tessuto	Risposta
α_1	Muscolatura liscia vasale (cute, splancnico, mucosa nasale)	Contrazione Granda agonista a
	Occhio	Midriasi
	Prostata	Contrazione
	Muscolatura liscia organi	Contrazione (sfinteri), rilassamento (pareti)
	Fegato	Glicogenolisi
		Gluconeogenesi
	SNC	Stato di veglia
α_2	presinaptico	

Farmaci attivi sui recettori α adrenergici

Alfa agonisti	Impiego clinico
α_1 agonista	
Midodrina	Nel trattamento dell'ipotensione posturale
Fenilefrina (tachiflu dec + paracetamolo + ac ascorbico)	Vasocostrittore e anticongestionante, midriatico
α_2 agonista	
Clonidina	Antiipertensivo, sedativo, nella sindrome da astinenza da oppiacei
Alfa antagonisti	
Non selettivi	
Fentolamina e fenossibenzamina	Diagnosi e trattamento del feocromocitoma
α_1 antagonista	
Prazosina	Antiipertensivo
Terazosina	Ipertrofia prostatica

Clonidina

When activated, alpha 2
receptors inhibit
neurotransmitter
release from
presynaptic neurons.

Alpha 1

PharmacologyCorner.com

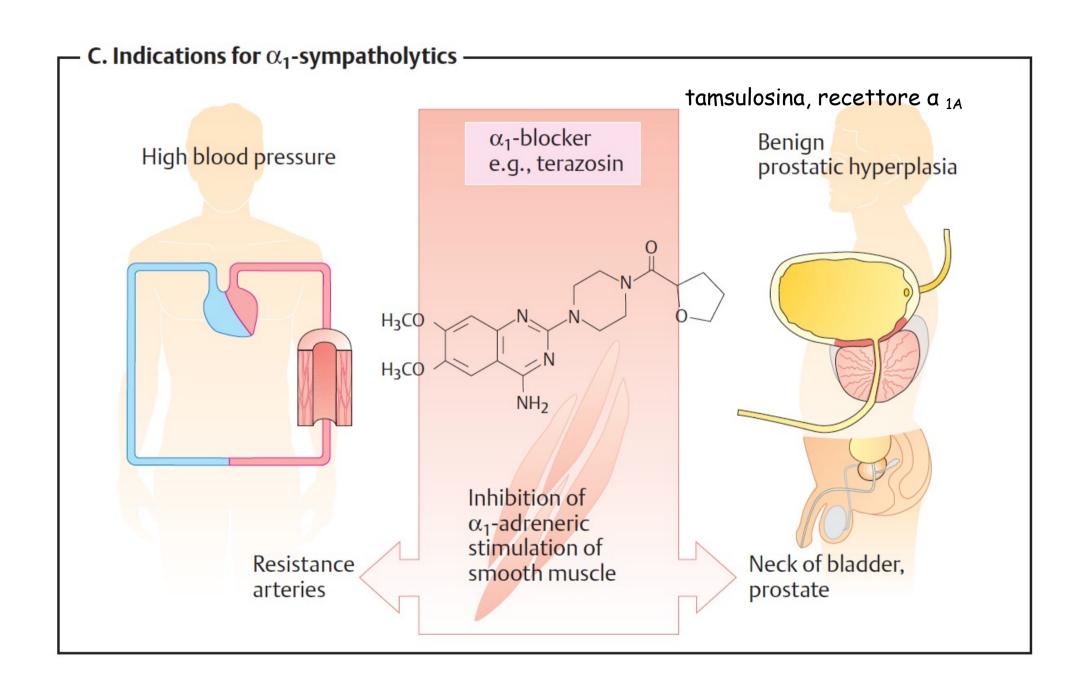
- · Derivato imidazolinico
- L'attivazione dei recettori α2 nella regione inferiore del tronco cerebrale riduce le efferenze simpatiche dal SNC
- Attività centrale e periferica di inibizione della secrezione di noradrenalina dalle terminazioni adrenergiche
- Diminuisce la concentrazione plasmatica di adrenalina e noradrenalina
- · Diminuisce le resistenze periferiche
- Diminuisce la frequenza e la portata cardiaca

Clonidina

- Comparsa d'azione rapida (30' per os)
- · Effetto massimo a 2-4 ore
- Dopo somministrazione e.v. può esserci un fugace aumento della pressione (per stimolazione dei recettori a₂ postsinaptici della muscolatura liscia vasale)
- Durata d'azione 12 ore, T1/2 12 ore, biodisponibilità 75%, biotrasformazione 30-50%
- E' un farmaco liposolubile con grande potenza (adatto per somministrazioni transdermiche)
- Posologie: 0,1-0,2 mg/die (starter) poi aumento settimanale fino a 1,2 mg/die massimali
- Cerotto transdermico con rilascio del principio attivo per 7 giorni
- I dosaggi possono essere diminuiti mediante associazione con diuretici tiazidici e/o con calcio antagonisti (classe della nifedipina) la cui azione cardiostimolante viene ridotta dalla clonidina

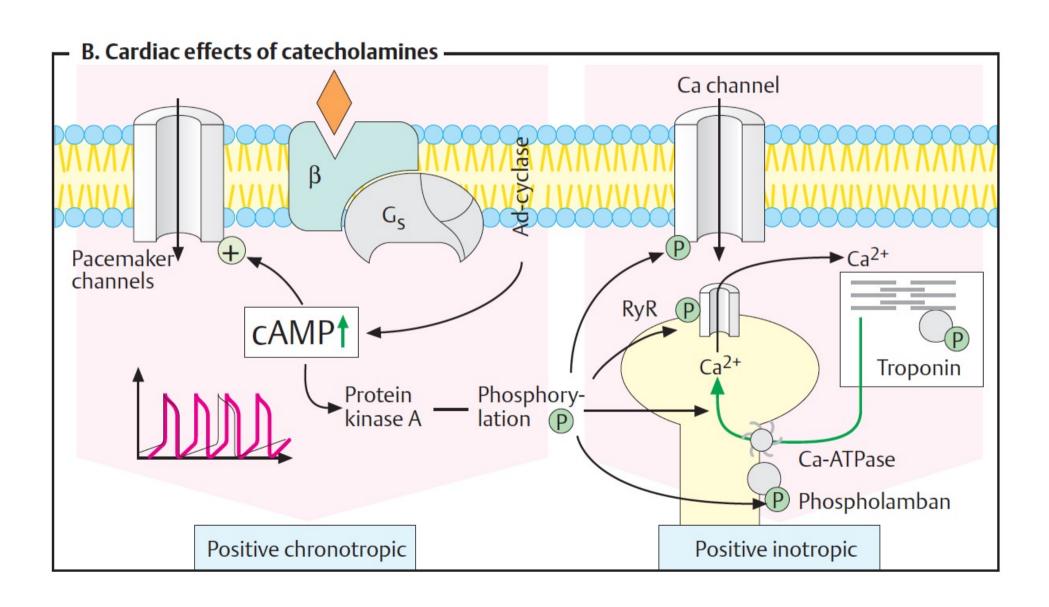
Clonidina

Effetti collaterali

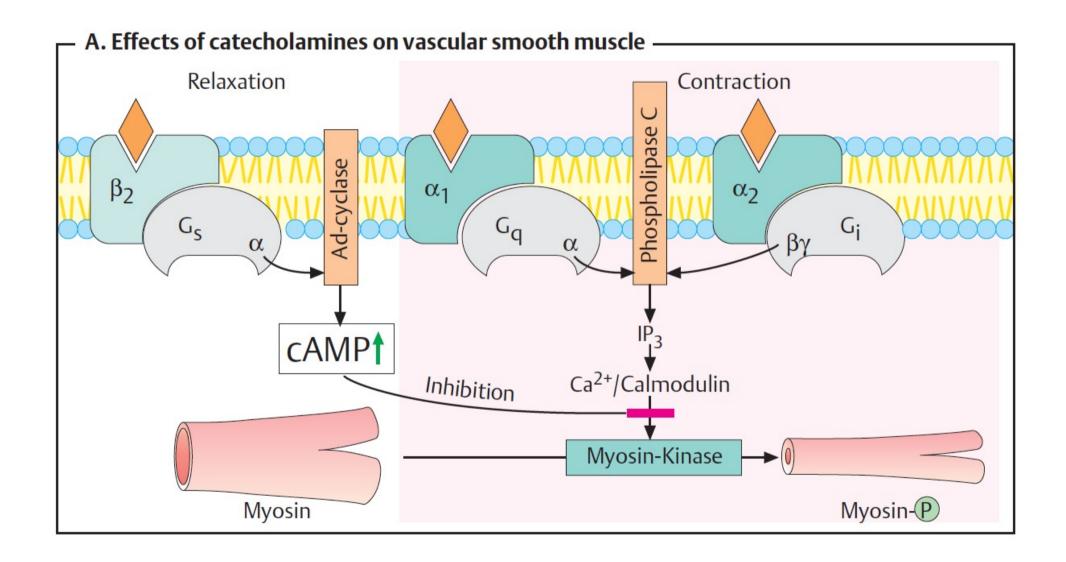

- Ipertensione ortostatica e da rebound in caso di sospensione repentina
- Bradicardia (malattia del seno o blocco AV)
- · Sedazione, disturbi del sonno (anche incubi), depressione
- Xerostomia con secchezza della mucosa orale, dell'occhio e turgore delle parotidi con dolore
- Impotenza, nausea e vertigini
- Gli effetti collaterali sono ridotti con l'uso di preparati transdermici.

Indicazioni

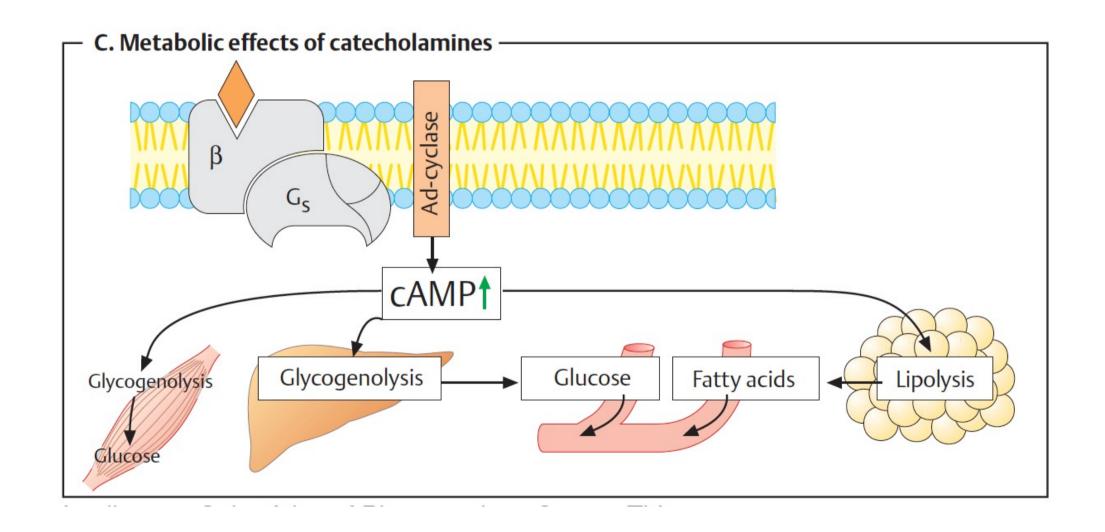
- Ipertensione arteriosa essenziale (II-III scelta)
- Crisi ipertensiva acuta
- Astinenza da oppiacei, alcool e tabacco


Farmaci attivi sui recettori α adrenergici

Alfa agonisti	Impiego clinico
α_1 agonista	
Metossamina	Ipertensivo
Fenilefrina	Vasocostrittore e anticongestionante
α_2 agonista	
Clonidina	Antiipertensivo, sedativo, nella sindrome da astinenza da oppiacei
Alfa antagonisti	
Non selettivi	
Fentolamina (legame reversibile) e fenossibenzamina (legame irreversibile)	Diagnosi e trattamento del feocromocitoma (fenossibenzamina non più in commercio in Italia)
α_1 antagonista	
Prazosina	Antiipertensivo (non in commercio in Italia)
Terazosina, tamsulosina	Ipertrofia prostatica


Recettori	Tessuto	Risposta
β_1	Cuore	Aumento frequenza, contrattilità, velocità di conduzione, automatismo
	Rene	Aumento secrezione renina
	Occhio	Secrezione umor acqueo
β2	Muscolatura liscia vasale	Rilassamento
	Muscolatura liscia organi	Rilassamento
	Muscolatura scheletrica	Aumento forza di contrazione
	Fegato	Glicogenolisi, gluconeogenesi
βз	Tessuto adiposo	Lipolisi e termogenesi

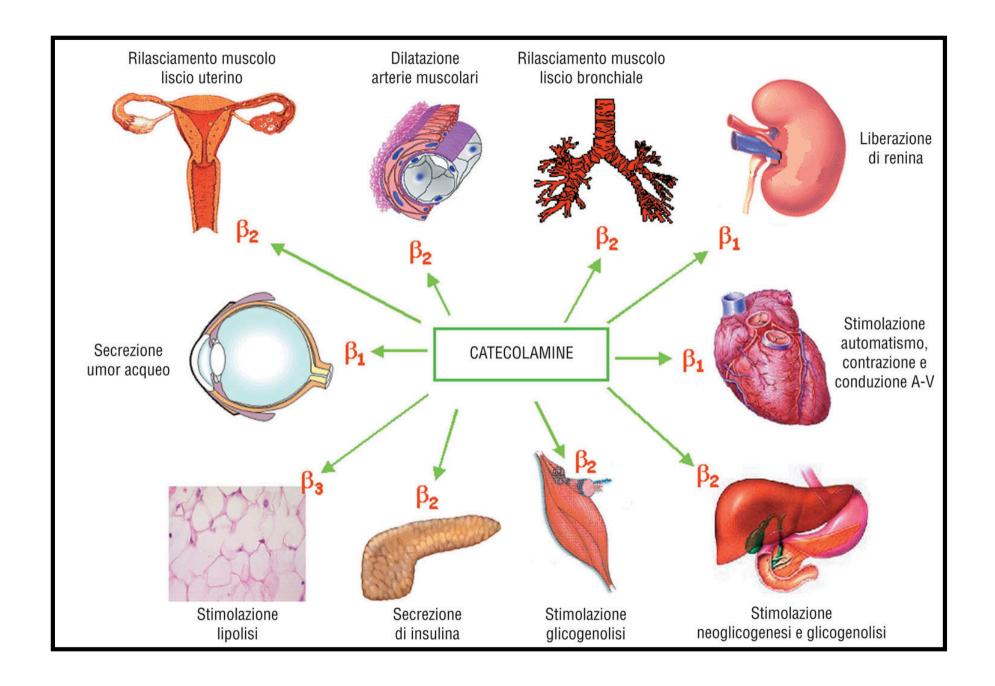
Attivazione dell'adenilato ciclasi da parte dei recettori β_1 adrenergici cardiaci



Recettori	Tessuto	Risposta
β_1	Cuore	Aumento frequenza, contrattilità, velocità di conduzione, automatismo
	Rene	Aumento secrezione renina
	Occhio	Secrezione umor acqueo
β 2	Muscolatura liscia vasale	Rilassamento
	Muscolatura liscia organi	Rilassamento
	Muscolatura scheletrica	Aumento forza di contrazione
	Fegato	Glicogenolisi, gluconeogenesi
β 3	Tessuto adiposo	Lipolisi e termogenesi

Recettori	Tessuto	Risposta
β_1	Cuore	Aumento frequenza, contrattilità, velocità di conduzione, automatismo
	Rene	Aumento secrezione renina
β 2	Muscolatura liscia vasale	Rilassamento
	Muscolatura liscia organi	Rilassamento
	Muscolatura scheletrica	Aumento forza di contrazione
	Fegato	Glicogenolisi, gluconeogenesi
β 3	Tessuto adiposo	Lipolisi e termogenesi

Recettori	Tessuto	Risposta
β_1	Cuore	Aumento frequenza, contrattilità, velocità di conduzione, automatismo
	Rene	Aumento secrezione renina
β 2	Muscolatura liscia vasale	Rilassamento
	Muscolatura liscia organi	Rilassamento
	Muscolatura scheletrica	Aumento forza di contrazione
	Fegato	Glicogenolisi, gluconeogenesi
β 3	Tessuto adiposo	Lipolisi e termogenesi



Ordine di potenza degli agonisti β

 β_1 : adrenalina = noradrenalina

β₂: isoproterenolo > adrenalina > noradrenalina

β₃: noradrenalina > adrenalina

Farmaci attivi sui recettori β adrenergici

Beta agonisti	Impiego clinico
Non selettivi	
Isoproterenolo	In emergenza per stimolare la frequenza cardiaca in pazienti con bradicardia o blocco cardiaco, in previsione dell'inserimento di un pacemaker
β ₁ selettivi	
Dobutamina	Trattamento a breve termine dello scompenso cardiaco in seguito ad un intervento cardiochirurgico, shock cardiogeno, test farmacologico di stress cardiaco
β ₂ selettivi	
Salbutamolo	Asma
Beta antagonisti = Beta bloccanti	
Non selettivi	
Propranololo	Antiipertensivo, antianginoso, antiaritmico
β ₁ selettivi	
Atenololo	antiipertensivo

Dobutamina

- · Test farmacologico di stress cardiaco
- Aumenta la contrattilità miocardica e vasodilatazione sistemica e coronarica
- La tachicardia e l'aumento del lavoro cardiaco possono consentire l'individuazione ecocardiografica o scintigrafica di aree di ischemia
- Nei pazienti che non possono sottoporsi alla prova da sforzo

Farmaci attivi sui recettori β adrenergici

Beta agonisti	Impiego clinico	
Non selettivi		
Isoproterenolo	Arresto cardiaco	
β ₁ selettivi		
Dobutamina	Shock cardiogeno, test farmacologico di stress cardiaco	
β ₂ selettivi		
Salbutamolo	Asma e BPCO	
Beta antagonisti = Beta bloccanti		
Non selettivi		
Propranololo	Antiipertensivo, antianginoso, antiaritmico	
β ₁ selettivi		
Atenololo	antiipertensivo	

β_2 agonisti

Salbutamolo (Albuterolo, Ventolin...), Metaproterenolo (terbutalina): può essere somministrato per via sistemica ed inalatoria. L'azione compare, quando somministrato per inalazione, entro 15 minuti e l'effetto dura 3 - 4 ore. Farmaci simili sono la terbutalina (Bricanyl) e il fenoterolo (Dosberotec).

Formoterolo (Oxis, Foradil): a lunga durata d'azione. Produce rilassamento della muscolatura liscia bronchiale in pochi minuti e la sua azione può durare anche 12 ore. Possibile effetto di broncospasmo paradosso.

Salmeterolo (Arial, Serevent): a lunga durata d'azione (circa 12 ore). Tuttavia l'effetto non compare velocemente e pertanto da solo non è utile per gli episodi acuti. Possibile effetto di broncospasmo paradosso.

β_2 agonisti

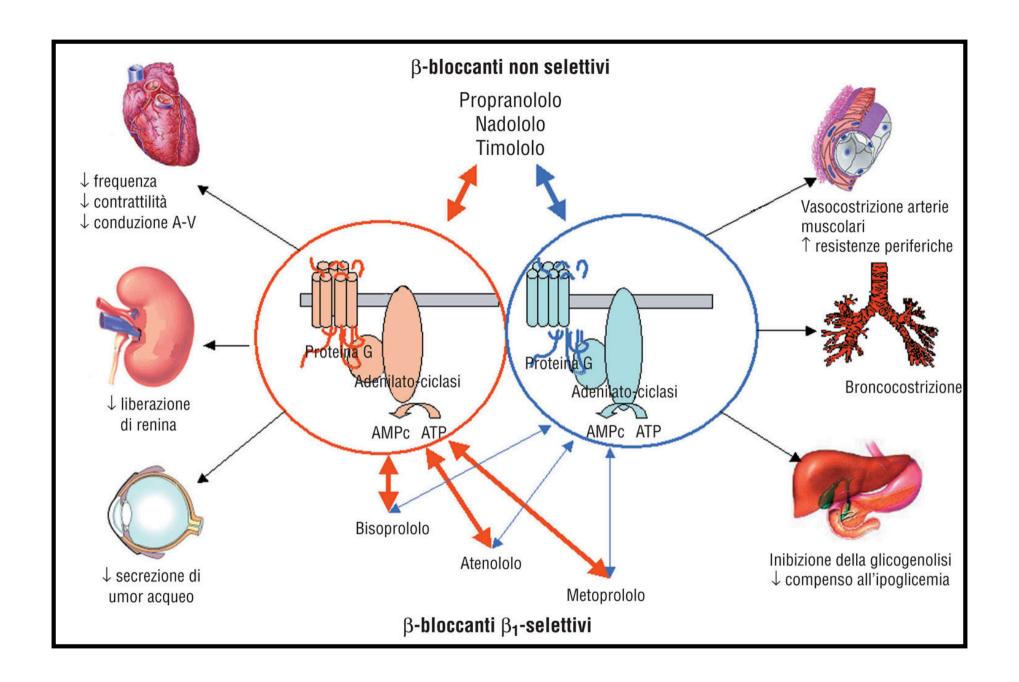
Ritodrina (Miolene): farmaco tocolitico.

β-2 receptors

- I beta-agonisti a breve durata d'azione ad alti dosi sono associati ad un rischio di gravi eventi avversi cardiovascolari sia per la madre che per il feto, soprattutto se utilizzati per un periodo di tempo prolungato.
- Considerato il profilo di eventi avversi cardiovascolari identificati e gli scarsi dati che supportano i benefici delle forme orali e suppositorie come tocolitici a breve durata d'azione, queste formulazioni non devono più essere utilizzate per alcuna indicazione ostetrica.
- I beta-agonisti a breve durata d'azione parenterali sono efficaci nel breve termine e possono ancora essere utilizzati in tutte le indicazioni ostetriche autorizzate (inibizione del parto prematuro, versione cefalica esterna, uso di emergenza in condizioni specifiche). Tuttavia, il loro uso dovrebbe essere limitato alle donne tra le settimane 22 e 37 della gravidanza e le donne che ricevono questi medicinali devono essere tenute sotto controllo specialistico per harmacologyCorner.com la durata del trattamento, che è limitata a un massimo di 48 ore.
- I beta-agonisti a breve durata d'azione parenterali non devono essere utilizzati nelle donne con una storia di malattia cardiaca, o significativi fattori di rischio per le malattie cardiache, o quando il prolungamento della gravidanza è pericoloso per la madre o per il feto.

β_2 agonisti: effetti avversi

- Tremore a carico dei muscoli scheletrici
- Tachicardia, tachiaritmie, ischemia miocardica specie in pazienti con patologia coronarica
- Vasodilatazione periferica
- · Ipokaliemia per captazione muscolare dello ione
- In alcuni pazienti con diabete possono peggiorare l'iperglicemia

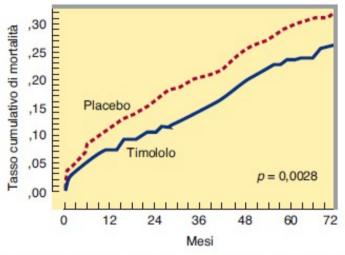

- · Antagonizzano l'effetto delle catecolamine sui recettori adrenergici
- · La maggior parte sono antagonisti competitivi puri
- · Alcuni sono antagonisti parziali (inibiscono l'attivazione dei recettori \(\beta \) quando vi sono elevate concentrazioni di catecolamine, ma attivano moderatamente i recettori quando l'agonista endogeno è assente)
- Alcuni hanno affinità maggiore per i recettori β_1 (ma nessuno ha selettività assoluta)

B-bloccanti

- Riducono forza di contrazione, gittata e frequenza cardiaca (recettori β_1 cardiaci) e quindi riducono la richiesta di ossigeno del cuore: effetto antianginoso e antiaritmico (aritmie sopraventricolari, infarto miocardico acuto)
- Riducono la produzione di renina da parte dell'apparato juxtaglomerulare renale: effetto antiipertensivo (utili nel trattamento di tutte le principali forme di ipertensione essenziale, non causano ipotensione nel soggetto sano) (recettori β₁ renali)

B-bloccanti

- I non selettivi provocano broncocostrizione (recettori β_2 bronchiali), vasocostrizione (recettori β_2 vasali), potenziano l'ipoglicemia da insulina nel diabetico (recettori β_2 epatici)
- Riducono la pressione endoculare nell'occhio glaucomatoso per ridotta produzione di umor acqueo
- Alcuni hanno azione anestetica locale, da blocco dei canali del sodio (ma a concentrazioni molto elevate)


DRUG	MEMBRANE STABILIZING ACTIVITY	INTRINSIC AGONIST ACTIVITY	LIPID SOLUBILITY	EXTENT OF ABSORPTION (%)	ORAL AVAILABILITY (%)	PLASMA t _{1/2} (hours)	PROTEIN BINDING (%)		
Classical nonselective β blockers: First generation									
Nadolol	0	0	Low	30	30-50	20-24	30		
Penbutolol	0	+	High	~100	~100	~5	80-98		
Pindolol	+	+++	Low	>95	~100	3-4	40		
Propranolol	++	0	High	<90	30	3–5	90		
Timolol	0	0	Low to moderate	90	75	4	<10		
eta_1 Selective blockers: Second generation									
Acebutolol	+	+	Low	90	20-60	3–4	26		
Atenolol	0	0	Low	90	50-60	6–7	6-16		
Bisoprolol	0	0	Low	≤90	80	9–12	~30		
Esmolol	0	0	Low	NA	NA	0.15	55		
Metoprolol	+a	0	Moderate	~100	40-50	3–7	12		
Nonselective β blockers with additional actions: Third generation									
Carteolol	0	++	Low	85	85	6	23-30		
Carvedilol	++	0	Moderate	>90	~30	7–10	98		
Labetalol	+	+	Low	>90	~33	3-4	~50		
eta_1 selective blockers with additional actions: Third generation									
Betaxolol	+	0	Moderate	>90	~80	15	50		
Celiprolol	0	+	Low	~74	30-70	5	4-5		
Nebivolol	0	0	Low	NA	NA	11-30	98		

Indicazioni:

- ·ipertensione arteriosa (spesso associati ad un diuretico o vasodilatatore) non riducono la pressione nei soggetti normotesi
- ·angina pectoris

·extrasistoli e tachicardie sopraventricolari, tachicardia

sinusale nell'ipertiroidismo, sindrome cardiaca ipercinetica •nei pazienti post-infartuati i betabloccanti senza ISA (timololo, propranololo, metoprololo) possono prolungare la sopravvivenza

Figura. 10-8. Effetti della terapia con un beta bloccante sul tasso cumulativo di mortalità dovuta a tutte le cause, in 6 anni, di 1884 pazienti sopravvissuti ad infarto miocardico. I pazienti sono stati casualmente assegnati al trattamento con placebo (linea tratteggiata) o con il timololo (linea intera). (Riprodotta, previo consenso, da Pederson TR: Six-year follow-up of the Norwegian multicenter study on timolol after acute myocardial infarction. N Engl J Med 1985; 313:1055).

Principali caratteristiche dell'attività antipertensiva dei beta bloccanti

- · Media intensità d'azione
- Inizio lento e graduale (con fase di latenza)
- Durata d'azione protratta
- Ottima attitudine all'associazione (con diuretici e vasodilatatori)
- Azioni associate: antianginosa, antiaritmica, cardioprotettiva (dopo infarto miocardico)
- · Assenza di effetti di ortostatismo
- Scarsi effetti sulla funzione sessuale
- Da utilizzare nei soggetti con ipertensione da iperattivazione adrenergica (dopo ictus), ipertensione labile o in associazione ad altri farmaci nell'ipertensione resistente

Indicazioni:

- ipertensione arteriosa (spesso associati ad un diuretico o vasodilatatore)
- ·angina pectoris
- ·extrasistoli e tachicardie sopraventricolari, tachicardia

sinusale nell'ipertiroidismo, sindrome cardiaca ipercinetica ·nei pazienti post-infartuati i betabloccanti senza ISA (timololo, propranololo, metoprololo) possono prolungare la sopravvivenza

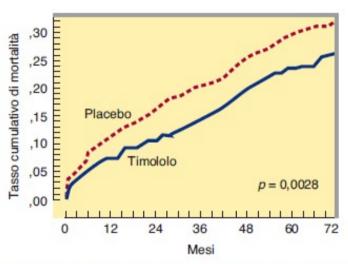
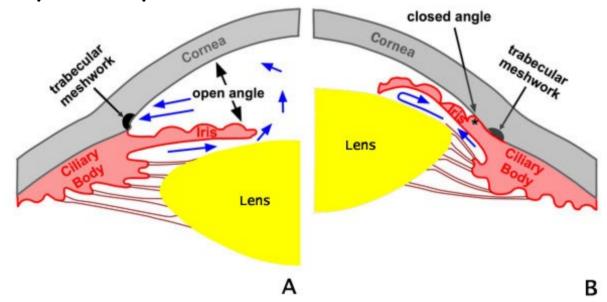
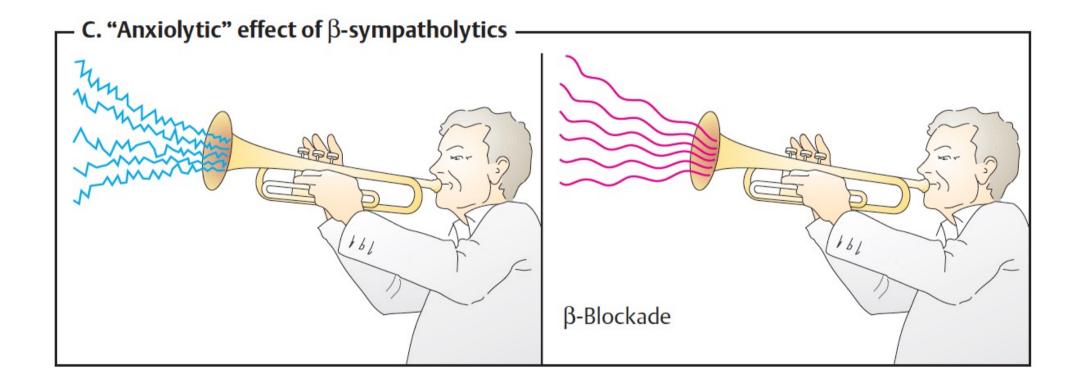



Figura. 10-8. Effetti della terapia con un beta bloccante sul tasso cumulativo di mortalità dovuta a tutte le cause, in 6 anni, di 1884 pazienti sopravvissuti ad infarto miocardico. I pazienti sono stati casualmente assegnati al trattamento con placebo (linea tratteggiata) o con il timololo (linea intera). (Riprodotta, previo consenso, da Pederson TR: Six-year follow-up of the Norwegian multicenter study on timolol after acute myocardial infarction. N Engl J Med 1985; 313:1055).

Indicazioni:


scompenso cardiaco (metoprololo, bisoprololo, carvedilolo, uso attento in pazienti selezionati con aumenti graduali delle dosi aumenta la sopravvivenza; rimodellamento miocardico e riduzione del rischio di morte improvvisa)
Glaucoma ad angolo aperto, cronico, timololo per via topica riduce la produzione di umor acqueo ed è meglio tollerato rispetto alla pilocarpina

Indicazioni:

- ·Ipertiroidismo
- ·Attacchi di emicrania
- Varici esofagee (diminuiscono la pressione nella vena porta in pazienti cirrotici)
- ·Emangiomi infantili

Manifestazioni somatiche dell'ansia

Principali effetti indesiderati dei beta bloccanti

- Bradicardia
- Broncocostrizione
- Effetti sul SNC: lieve sedazione, sogni, allucinazioni, turbe visive, depressione, insonnia
- · Vasocostrizione periferica (aggravamento ischemia arti)
- Ipoglicemia
- · Scompenso cardiaco congestizio
- Interazioni con il verapamil: grave ipotensione, bradicardia, insufficienza cardiaca, anormalità nella conduzione cardiaca
- Effetti sull'apparato gastroenterico: nausea, diarrea, stipsi

· Controindicazioni:

 insufficienza cardiaca scompensata, grave ipotensione, grave bradicardia, malattia del nodo del seno, blocco AV > I grado, asma bronchiale, claudicatio intermittens in caso di arteriopatia obliterante.

Nome generico	Nome commerciale (esempi)	Dose media giornaliera (mg)					
1a generazione: betabloccanti non cardioselettivi							
1.1. senza ISA:							
Nadololo	Corgard	60-240 × 1					
Propranololo	Inderal	40-80 × 2-3					
1.2. con ISA:							
Pindololo	Visken	5 × 1-3					
2a generazione: betabloccanti β1-selettivi							
2.1. senza ISA:							
Atenololo	Tenormin	50-100 × 1					
Betaxololo	Kerlon	10-20 × 1					
Bisoprololo	Concor	5-10 × 1					
Metoprololo	Lopresor	50-100 × 2					
2.2. con ISA							
Acebutololo	Prent	400-800 × 1					
Celiprololo	Cardiax	200 × 1-2					
3a generazione: betabloccanti con azione vasodilatatrice							
3.1. senza ISA							
carvedilolo (α- e β-bloccante)	Dilatrend	12,5-25 × 1					
nebivololo (β1-selettivo)	Lobivon	5×1					
3.2. con ISA							
celiprololo (β1-selettivo)	Cordiax	200 × 1					

- · agonista a/B
- Vasocostrizione di molti distretti vascolari, specie nei vasi precapillari di resistenza di cute, mucose e del rene
- Aumenta il flussi ematico al muscolo scheletrico (recettori β_2)

- · agonista a/B
- Aumenta la frequenza cardiaca, la gittata cardiaca, il volume sistolico (recettori β_1)
- · Aritmie!!

- · agonista a/B
- Rilassamento della muscolatura liscia GI, vescicale e bronchiale (recettori β_2)

- · agonista a/B
- uso: shock anafilattico, arresto cardiaco, asma (trattamento di emergenza)

Nell'anafilassi (farmaco salvavita):

- Reazioni lievi: 0,3 0,5 mg s.c., i.m.
 (Fastjekt 0,33 mg)
- Reazioni gravi: e.v. 5 10 μg/min e.v.

- Come vasocostrittore per l'azione sui recettori a della muscolatura liscia vascolare
- In associazione con anestetici locali permette di prolungare l'azione dell'anestetico riducendone la dose totale e quindi gli eventuali effetti tossici (1:200.000)

Adrenalina

- effetti indesiderati: ipertensione, vasocostrizione, tachicardia, aritmie ventricolari
- scarso assorbimento orale, rimozione rapida dai tessuti, metabolizzata dalle MAO e dalle COMT
- · emivita plasmatica 2 min

Farmaci inotropi usati nello shock

FARMACO	Indicazioni	Azioni	Dosi
Noradrenalina	Basse resistenze vascolari periferiche	Vasocostrizione	4 - 8 μg/min ev
Adrenalina	Shock anafilattico		
Dopamina	Bassa contrattilità Basse resistenze	†contr. cardiaca †resistenze Mantiene flusso renale	1μg/Kg/min inotropo 5 μg/min ev vasocostrittore (anche 10 - 15 μg)
Dobutamina	Bassa contrattilità Basse resistenze	↑contr. cardiaca	2,5 µg/Kg/min aumentabili fino a 15
Isoproterenolo	Bradicardia Blocco AV Torsioni di punta	↑contr. cardiaca ↑frequenza ↓resistenze ↑ conduzione AV	0,5 μg/Kg/min aumentabili