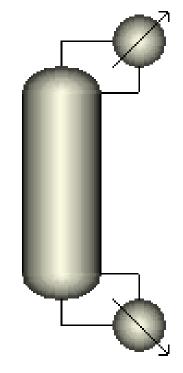
RadFrac – Designing a rigorous separation tower

Maurizio Fermeglia <u>Maurizio.fermeglia@units.it</u> Department of Engineering & Architecture University of Trieste

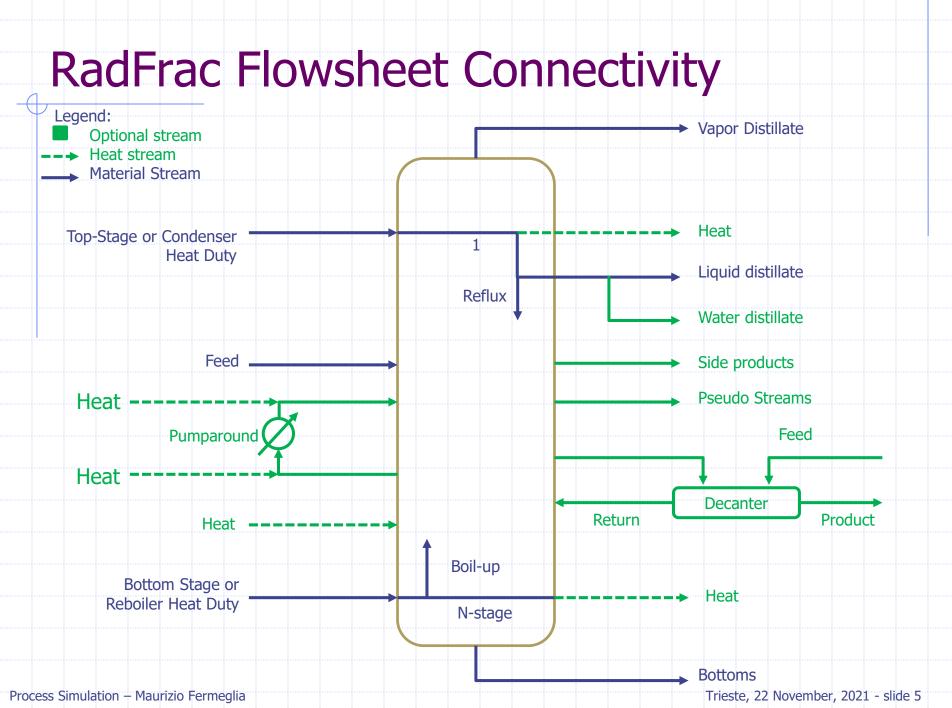
Agenda

RadFrac in ASPEN+

- Setup
- Results
- Plotting results
- Distillation shortcut methods
- Design specifications
- Examples
 - Binary Methanol water distillation
 - Multicomponent distillation
 - Extractive distillation


Objectives

- Understand the requirements for designing a rigorous separation column, starting from shortcut methods
- Enter the minimum input required for the RadFrac fractional model
- Implement Design Specification
- Introduce column efficiency and hydraulic calculations



RadFrac in Aspen Plus

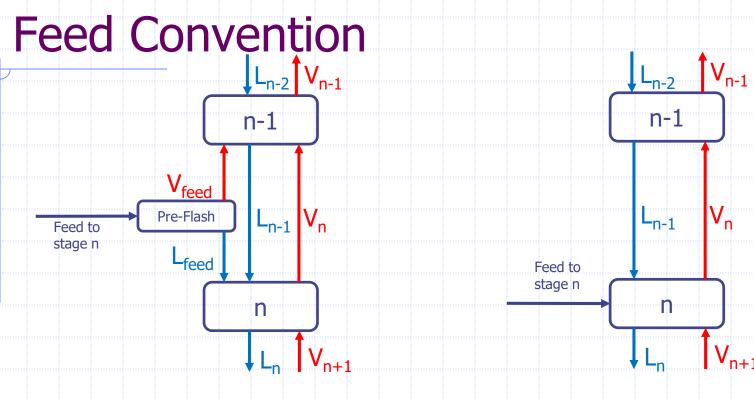
- Vapor-Liquid or Vapor-Liquid-Liquid phase simulation of:
 - Ordinary distillation
 - Absorption, reboiled absorption
 - Stripping, reboiled stripping
 - Azeotropic distillation
 - Reactive distillation
- Configuration options:
 - Any number of feeds
 - Any number of side draws
 - Total liquid draw off and pumparounds
 - Any number of heaters
 - Any number of decanters

RADFRAC

RadFrac Setup Configuration Sheet

Specify:

- Calculation Type: Equilibrium, Rate-Based
- Number of stages
- Condenser and reboiler configuration: Total, Partial, Kettle, Thermosyphon, etc...
- Valid Phases
- Convergence
- Column operating specifications: Distillate Rate, Reflux Ratio, Distillate to Feed Ration, Condenser/Reboiler Duty, etc.


D Setup		T Louis	The second secon	
Property Sets	Configuration Streams OPressur	e Condenser ØReboiler	3-Phase Comments	
Analysis Flowsheet	Setup options Calculation type	Equilibrium	•	
 b D Streams a 22 Blocks 	Number of stages		Stage Wizard	
A COLUMN	Condenser			
Specifications	Reboiler	Kettle	(•)	
Configuration Column Internals	Valid phases	Vapor-Liquid		
Rate-Based Modeli	Convergence	Standard	•	
 Canalysis Convergence 	Operating specifications			
 Dynamics 	Distillate rate	Mole	lbmo(/hr	
EO Modeling	Reflux ratio	Mole 🔹		
Results Profiles Stream Results	Free water reflux ratio	0	Feed Basis	
Sureari results	Design and specify column internals			
Reactions				

RadFrac Setup Streams Sheet

Specify:

- Feed stage location
- Feed stream convention: Above stage, On-Stage, On-Stage-Liquid, On-Stage-Vapor, Decanter (for VLL calculations only)
- Bottom and overhead product streams
 - Side products

Configuration	Greams	Pressure	Condenser	Reboiler	3-Phase	Comments	s			
<u>,</u>										
d streams —										
Name	Stage		Convention							
FEED		Above-S	Stage							
duct streams – Name	Stage	Pha	se	Basis	Flow	Uni	its Flow	v Ratio	Feed Specs	
	Stage	Pha: Liquid	se Ma		Flow	Uni Ibmol/hi		v Ratio	Feed Specs Feed basis	
Name	Stage			ole	Flow		r	v Ratio		
Name DIST	Stage	Liquid	Ма	ole	Flow	lbmol/h	r	v Ratio	Feed basis	

Above-Stage (default)

RadFrac introduces the material stream between adjacent stages – the liquid portion flows to the specified stage and the vapor portion flows to the stage above

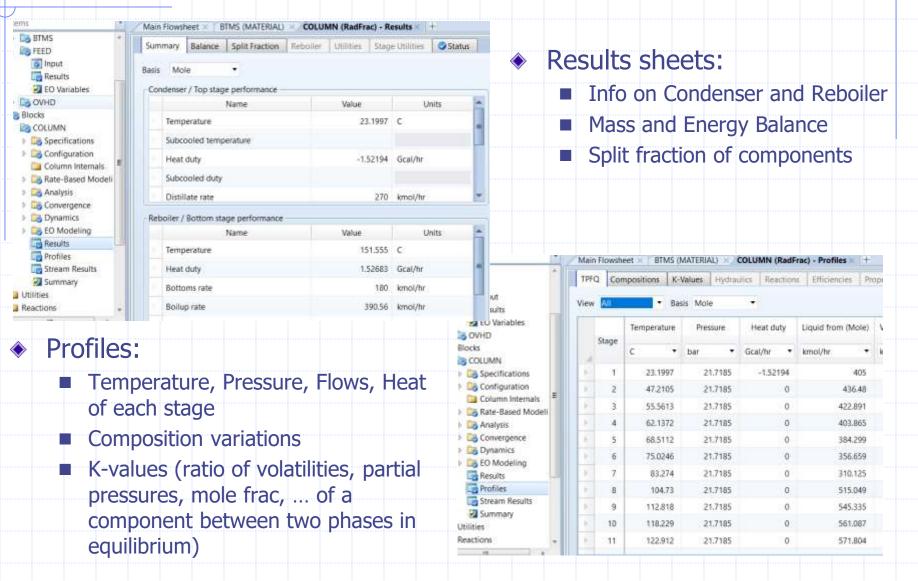
On-Stage

- <u>On-Stage</u>: RadFrac introduces both liquid and vapor portions of the feed flow to the stage specified
- <u>On-Stage Liquid</u> and <u>On-Stage-Vapor</u>: similar to On-Stage, but no flash is ever performed with these specifications. Feed is treated as being entirely in the phase specified

RadFrac Setup Pressure Sheet

Specify one of:

- Top/Bottom Pressure: Pressure in Stage 1/Condenser represents column pressure if no pressure drop is specified. It is possible to specify pressure drop information on a stage-wise or full column basis
- Pressure profile
- Section pressure drop:


As in Elevente							
lain Flowshe	eet × COLUMN (Ra	$adFrac) \times [\pm]$	*				
Configur	ation 🛛 Ә Streams	Pressure	Condenser	Reboiler	3-Phase	Comments	
iew	Top / Bottom		•				
Top stage /	Condenser pressure						
Stage 1 / C	ondenser pressure		bar	•			
Stage 2 pre	ssure (optional)						
Stage 2	pressure		bar	-			
Condens	er pressure drop		psi	v			
Pressure dro	op for rest of column	(optional) —					
Stage pr	essure drop		bar	•			
0	pressure drop		psi	_			

RadFrac Setup Pressure Sheet

- Pressure profile:
 This option allows the user to specify pressures for any stage in the column
 Stage pressure not entered (Stage 3 in this case) are linearly interpolated or extrapolated from specified values
 - Section pressure drop:
 - This option lets the user specify pressures drop across any range of stages in the column
 - Top Stage pressure is required

Main Flows	/sheet ×	COLUMN (R	adFrac) × 🕂				Main	Flowsheet \times	COLUMN (RadFrac) ×	+		-
Config	guration	Streams	Pressure	Condenser	Reboiler	Ţ	00	onfiguration	Stream	s 🛛 🖉 Pressu	re 🕜 Condens	ser 🛛 🥝 Reboiler	3-1
View	Press	sure profile		•			View	Sect	ion pressure	drop	•		
Pressure	profile —					_	Colu	imn section p	ressure drop				
St	Stage	Pressure					Тор	stage pressur	e	1 bar	•		
		bar •	·					Section	Starting	Ending	Pressure drop		
	2		1						stage	stage	bar 🔹		
No. 1	4	1.3	2					1	2	4	0.05		
									_	-			
								2	5	6	0.01		

RadFrac Results

Plotting RadFrac Results

- Use the Plotting Tool from the Home tab of the ribbon to quickly generate plot results of a simulation:
 - Assay data analysis
 - Physical property analysis
 - Data regression analysis
 - Profiles for all separation models including RadFrac, MultiFrac and PetroFrac
 - Sensitivity Analysis

 Provide additional information if requested, such as phases, components, etc...

Custom	Tempera	ture			
arametric	Composi	tion			
Iow Rate	Pressur				
K-Values	Relative Vo	latility			
	\sim				
ep Factor	Flow Ra	tio			
	0.0252030.02784	tio	100	٥	×
	0.0252030.02784	tio Select basis		٥	×
Vapor Vapor	0.0252030.02784			0	×
Composition profiles Select phase	0.0252030.02784	Select basis		D	×
Composition profiles Select phase Vapor Vapor Uiquid	0.0252030.02784	Select basis			×
Composition profiles Select phase Vapor Uiquid 1st Liquid 2nd Liquid Select component(s) - Select all	0.0252030.02784	Select basis		0	×
Composition profiles Select phase Vapor Uiquid 1st Liquid 2nd Liquid Select component(s) - Select all	0.0252030.02784	Select basis			×
Composition profiles Select phase Vapor Uquid 1st Liquid 2nd Liquid Select component(s) - Select all C1 C2	0.0252030.02784	Select basis			×
Composition profiles Select phase Vapor Uiquid 1st Liquid 2nd Liquid Select component(s) - Select all	0.0252030.02784	Select basis			×
Composition profiles Select phase Vapor Uiquid 1st Liquid 2nd Liquid Select component(s) Select all C1 C2 C3 NC4 NC5	0.0252030.02784	Select basis			×
Composition profiles Select phase Vapor Uiquid 1st Liquid 2nd Liquid Select all C1 C2 C3 NC4	0.0252030.02784	Select basis			×

Define RadFrac parameters

We need to define these parameters:

- Number of stages
- Type of condenser/reboiler
- Any two of the available operating specifications
- Feed stage
- Pressure

Configuration	Streams	Pressure	Condenser	@Reboiler	3-Pha	se Comm	nents
Setup options							
Calculation type			Equilibrium	•			
Number of stages				12 🗘	Sta	ge Wizard	
Condenser			Partial-Vapor		_	-	
Reboiler			Kettle			-	
Valid phases			Vapor-Liquid			-	
Convergence			Standard			•	
Reflux ratio Bottoms rate		•	Mole	:	1.2 99	kmol/hr	
Bottoms rate Distillate rate		2	Mole	•	99	kmol/hr	
Bottoms rate			0				Feed
Reflux rate Boilup rate Boilup ratio Distillate to feed Bottoms to feed Condenser duty Reboiler duty	i ratio						

Using Shortcut method: DSTWU

DSTWU:

- DSTWU performs shortcut design calculations for single-feed, twoproduct distillation columns with a partial or total condenser.
- It assumes constant molal overflow and constant relative volatilities.
 - It is based on equations of:
 - Winn for Minimum number of stages
 - Underwood for Minimum reflux ratio
 - Gilliland for calculation of reflux ratio for a specified number of stages or the required number of stages for a specified reflux ratio
- For the specified recovery of light and heavy key components, DSTWU estimates:
 - Minimum reflux ratio
 - Minimum number of theoretical stages
- DSTWU then estimates one of the following:
 - Required reflux ratio for the specified number of theoretical stages
 - Required number of theoretical stages for the specified reflux ratio
- DSTWU also estimates the optimum feed stage location and the condenser and reboiler duties.

Using Shortcut method: DISTL & ConSep

DISTL:

- Distl simulates multistage multicomponent columns with a feed stream and two product streams.
 - Distl performs shortcut distillation rating calculations using Edmister approach: assumes constant mole overflow and constant relative volatilities.


ConSep:

- Use ConSep to develop design parameters and perform feasibility studies for distillation columns.
- It requires the definition of the splitting of three key components and the mapping of the others relative to key components

Design Using Design Specification **Specification sheet** INCOME. Specifications Components Feed/Product Streams 0 > 03 UQ Design specifications can be > ITENDS Description Mass reflux flow PRODUCT PURCE Design specification specified inside the RadFrac block > CO FXIN Type Mass reflux flow > CRACK Mole purity DIS SEPTO Specification Mass purity using Design Specs and Vary forms (in TOPSHORT Target. StdVol purity > CO VAP Mole recovery # 🚉 Blocks Specifications) Mass recovery A COLUMN A Constitutions StdVol recovery One or more RadFrac inputs can Settup Mole flow Specification Su Mass flow a 😂 Design Specifica StdVol flow be manipulated (Vary) 31 Mole ratio # D Vary Mass ratio 1 StdVol ratio to achieve specifications for one or more **Efficiencies** Stage temperature Properties **Property value** RadFrac performance parameters Reactions **Property difference** Block Options **Property ratio** User Subroutine RadFrac Vary variables must be a Vary sheet input to the block (usually on the All thereis COLUMN Specifications Very - 1 COLUMN Raditaci - Composition -In Plants. Specifications sheet): Specifications Components Results 5 DU 50 H ES CTENOS Description Condenser duty Imposure More complex columns have additional > CS PURGE Activated variable In EXEMPT Tepe **Condenser** duty EXCLUT options Datifiete super fraction SEPPD Opper and lower too Distillate rate IDPSHORT Lower bound Bottoms rate CO VAR Examples: pump around heater, stage Distillate to feed ratio Upper bround a 🚞 Biede **Bottoms to feed ratis** # COUMY duty, side draw rate Optional Beffux rate 4 Specifications Maximum shep size Setup Bullup cete Specification Sal Reflux ratio The number of Specs should, in ✓ ₽> Design Specifics **Soilup ratio** Condenser duty # Jary Raboller duty most cases, be equal to the 1 Free water reflux ratio 5 Efficiencies Liquid sidestream rate A Postarrian Vapor sidestream rate number of varies A Reactions **External duty** Blinck Option Feed rate

Specifying Efficiencies in RadFrac

- RadFrac assumes total equilibrium on each separation stage
- For non-ideal separation, you can specify Efficiencies
- For trayed columns: Nstages= Ntrays+2
 - Matches real equipment
 - Enter efficiencies to match plant performance

Specifying Efficiencies in RadFrac

- Specify efficiencies on Vapor-Liquid sheet
 - Stages and efficiencies not entered are linearly interpolated from specified values
- Murphree efficiencies are preferred as vaporization efficiencies can alter the temperature profile and thus relative volatilities

$$\varepsilon_{mV} = \frac{y_n - y_{n+1}}{y_n^{eq} - y_{n+1}}$$
$$\varepsilon_{mL} = \frac{x_n - x_{n-1}}{x_n^{eq} - x_{n-1}}$$

Mu	rphree			
	Section	Starting stage	Ending stage	Efficiency
	1	1	3	1
	2	4	5	0.95

Sizing and Rating for Trays and Packing

- Extensive capabilities to size, rate, and perform pressure drop calculations for trayed and packed columns
- Calculations are based on vendor-recommended procedures when available.
- Tray and packing calculations do NOT affect column separation by default.
- Rating specifications are used when performing cost analysis

	0-															I a set	
	1		tart tage 5	End tage	Mode	Type	Tray/Packing Type	Tray Details		Packing Deta	its.		ng/Section Height	Dian	vetor.	Details	
								Number of Passes	Vendor	Material	Dimension						
		CS-1	2	7 Inters	active sizing	7. Trayed	SIEVE	1				0.6096	meter	0.128959	meter	View	
1.1.1	and a second	C5-2	8	19 knew	octive sizing	7 Trayed	SIEVE	1				0.60%	meter	0.786255	meter.	View	
		Update pressure Update pressure Vodate pressure Vodate pressure	drop fi por her	um hottom d in pressu	i stape ne drop cal	culations											
		O Update pressure	drop fi por her	um hottom ed in pressu across sum	n stage ne drop cal												
	L	O Update pressure Include static va Calculate pressu	drop fi por her	um hottom ed in pressu across sum	i stape ne drop cal												
	19	C Update presum C Update presum C Include static va C Calculate presu Sump	drop fi por her	om hothom ed in pressu across sum	n stage ne drop cal	uter +											

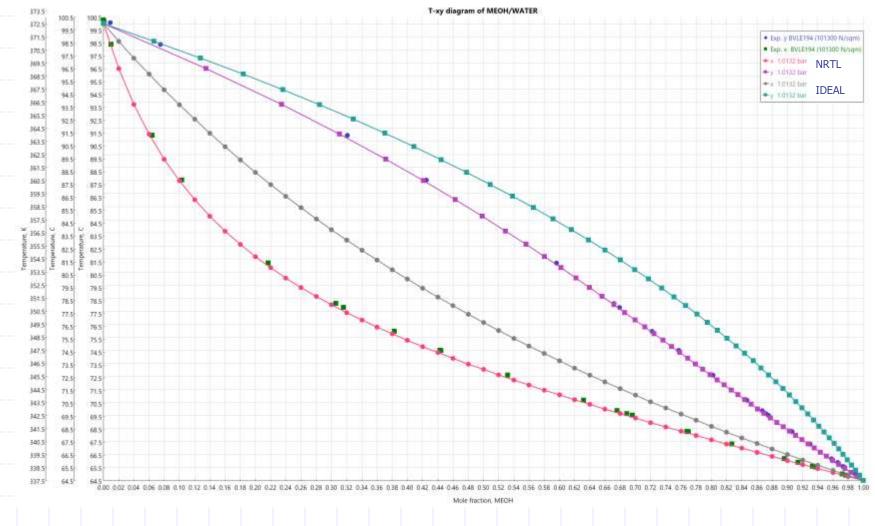
RadFrac Convergence Notes

- 1. Ensure that column operating conditions are feasible
- 2. Check that physical property issues are properly addressed
- 3. If the column err/tol is decreasing fairly consistently, increasing the max number of iterations (RadFrac | Convergence | Convergence | Basic Sheet
- 4. Convergence without Design Specs and Vary to initialize the column before adding (or revealing) specs and varys
- 5. Provide Temperature estimates for some stages in the column using RadFrac | Convergence | Estimates | Temperature sheet (for absorbers)
- Provide composition estimates for some satges in the column using RadFrac | Convergence | Estimates | L and V Composition sheet (for non-ideal systems)
- 7. Consider different convergence methods on RadFrac | Specifications | Setup | Configuration Sheet
- 8. Remember to reinitialize the simulation every time!

Methanol water binary distillation with Radfrac

COLUMN

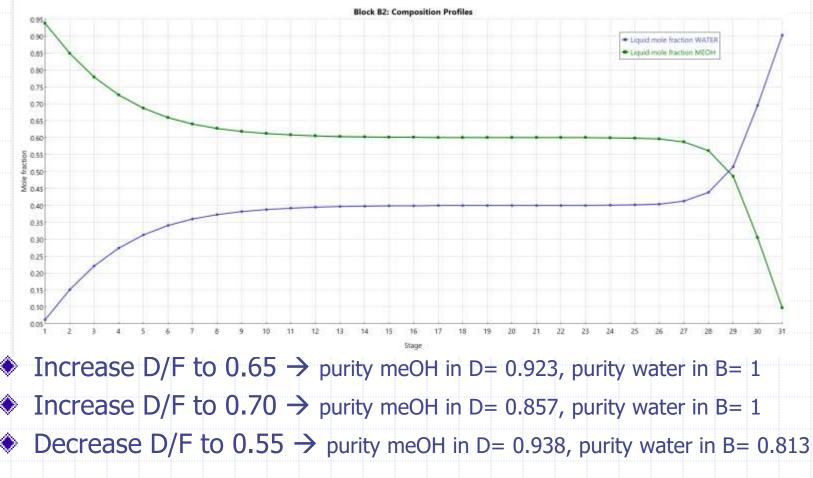
FEED


- Components Methanol water
- Property Method: NRTL-RK
- Feed Stream:
 - Mole fractions: 60 mole% methanol, 40 mole% water
 - Mass Flow: 100 kmol/hr
 - Pressure: 1.1 bar
 - Condition: saturated liquid (V/F=0)
 - Radfrac column:
 - 31 trays
 - Feed tray: 20
 - Total condenser, kettle reboiler
 - Top stage pressure: 1.1 bar
 - Pressure drop per stage: 0.0005 bar
 - Distillate to feed ratio: 0.598
 - Molar reflux ratio: 0.496
- Objectives: purity top and bottom > .99 mole
- Results:
 - Any Warning?
 - Heat Duties?
 - Plot the compositions and understand what is going on
 - Did we achieve a good separation? If not try to increase D/F to .65 and more

DIST

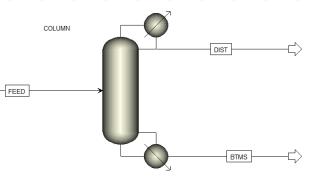
BTMS

Methanol water thermodynamic analysis


Comparison NRTL – IDEAL

Trieste, 22 November, 2021 - slide 23

Results

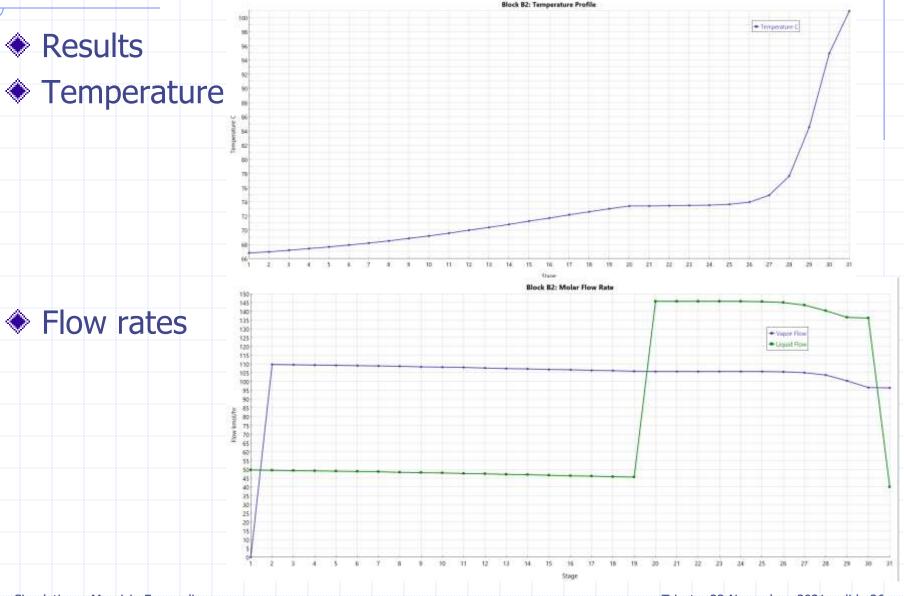

- Separation not good: purity meOH in D= 0.938, purity water in B= 0.902
- Concertation profiles are flat for many stages around feed stage

• Des spec 1 \rightarrow purity MeOH in DISTIL \Rightarrow

Des spec 2 \rightarrow purity Water in BOTTOM

0	Specific	cation Summ	hary							
0	Primar	y specificatio	ons							
Re	flux rat	tio		Mole	1.	0.496	Feed Basis			
Di	stillate	to feed ratio	• •	Mole	•	0.598				
Fre	e water	reflux ratio			0					
•	Additi	onal specific	ations							
	ID	Active		cription		Туре	Units	larget Value	Calculated Value	Error
	1	1	molepur		Mole	e purity		0.992	0.992	8.70786e
	2	1	2		Mole	e purity		0.99	0.99	1.31098e

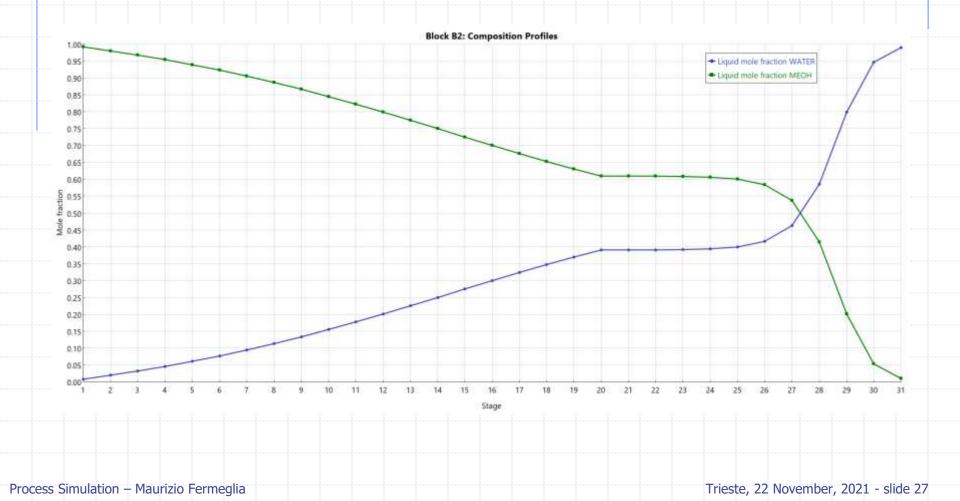
Adjusted variables


Edit

Delete

New

ſ	ID	Active	Description	Туре	Units	Lower Bound	Upper Bound	Calculated Value	
	1	1	1	Molar Reflux Ratio		0.1	10	0.802574	
	2	1	2	Distillate To Feed Ratio		0.1	0.9	0.600815	


-08

Process Simulation – Maurizio Fermeglia

Trieste, 22 November, 2021 - slide 26

Results: compositions

Multicomponent distillation benzene – toluene – cumene with Radfrac

Example: multicomponent distillation

- Multicomponent distillation of benzene-toluene-cumene using RADFRAC. Data:
 - Feed is x_{BZ} = 0.233, x_{TOL} = 0.333, x_{CUM} = 0.434, saturated liquid, F = 1.0 kmol/h.
 - Feed stage is number 10 above the partial reboiler, and there are 19 equilibrium stages plus a partial reboiler. A total condenser is used.
 - L/D = 1.0
 - P = 101.3 kPa (1 atm).
 - Relative volatilities: $\alpha_{BZ} = 2.25$, $\alpha_{TOL} = 1.0$, $\alpha_{CUM} = 0.21$..

Specification: 99% recovery of benzene in the distillate.
 Find:

- The distillate rate to achieve 99% recovery
- Temperature, flow rate, concentration profiles in the column

Example: multicomponent distillation

Components

	Petroleum	Noncome	entional	Enters	prise Database	Comments	1	
Select compor	tents							
Compo	ment ID		Тур	a.		Com	ponent name	Alia
TOLUEN	E G	aniwritional				TOLUENE		C7H8
BENZEN	E C	onventional				BENZENE		Сене
CUMEN	t: 0	anventional				ISOPROPYLE	ENZENE	C9H12-2
1				-				
Find	Elec Wizar	d SFE.	Assistant	U.	ser Defined	Reorder	Review	
Methods -	Specificatio	ins X +						
Global	Flowsheet	t Sections	Referen	nced	Comments	6		
1.1.1.1.1.1.1.1.1.1	Langest arts	ecologica (alice) and	W/YOU/UN/	ALC: POINT				
	methods & a				Method na	me		
Method I		COMMON	(-	SRK		Methods As	sistan
Base met	hod	SRK		•	- IT Advert	25		
Henry co	mponents				Modify	y.		
Petrole	um calculatio	on options			E05		ESSRK	-
Free-wa	ster method	STEAMN	BS		Data set			1(0)
	olubility	3			Liquid ger	TUTUE		2.0
Water s					Data set			
7.0-53	S (6) 84			_		CANADA AND AND A DATE	10110/00/01	
Electrol	yte calculatio	on options	2		Liquid me	star enthalpy	HUMARQ3	
Electrol	try ID			•		lar enthalpy lar volume	VLMXR03	
Electrol				•				
Electrol Chemis	try ID true compo	nents	Flash Opt	ions		lar volume		
Electrol Chemis V Use	try ID true compor	nents	Flash Opt	ans	Liquid mo	lar volume	VEMXRDB	
Electrol Chemis	try ID true compor	nents	Flash Opt	ions	Liquid mo	lar volume	VEMXRDB	

Temperature Value Component Pressure 1 atm . TOLLIENE 0.333 Vapor fraction 0 **BENZENE** 0.233 Total flow basis Mole . CUMENE 0.434 Total flow rate 1 kmol/hr . Solvent Reference Temperature Volume flow reference temperature ic: Component concentration reference temperature ic. Total de 30

Example: multicomponent distillation

Column specifications

- Initial value of distillate rate from material balance
 - Pressure 1 atm
- Feed stage 9

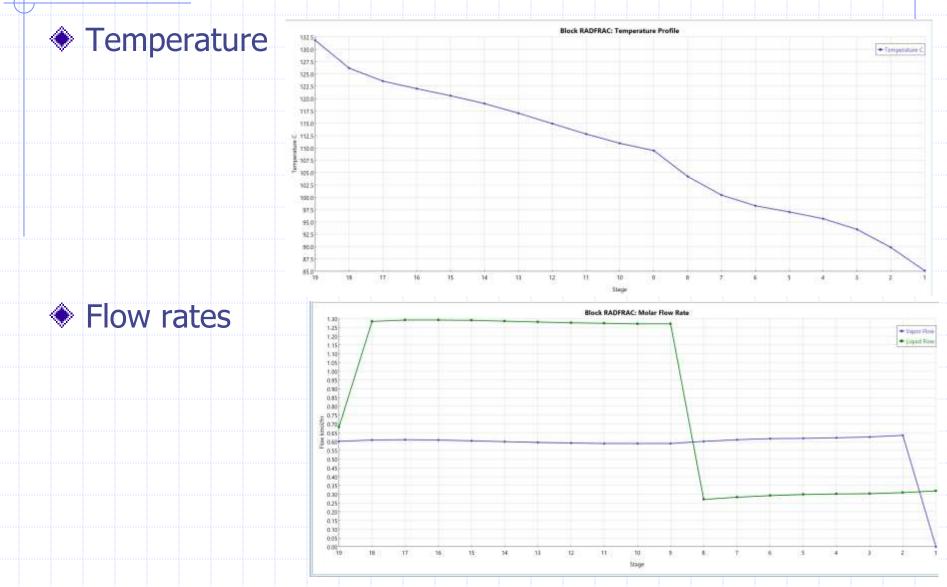
Design specification

- Mole recovery of Benzene at 99% mole
- Vary distillate rate (0.1 0.5)
- Result: D=0.3178

Specificat	tions	Components	Seed/Product Str
Description	Mol	e recovery, 0.99	
Design spe	cificati	on	
Туре		Mole recovery	-

Specification

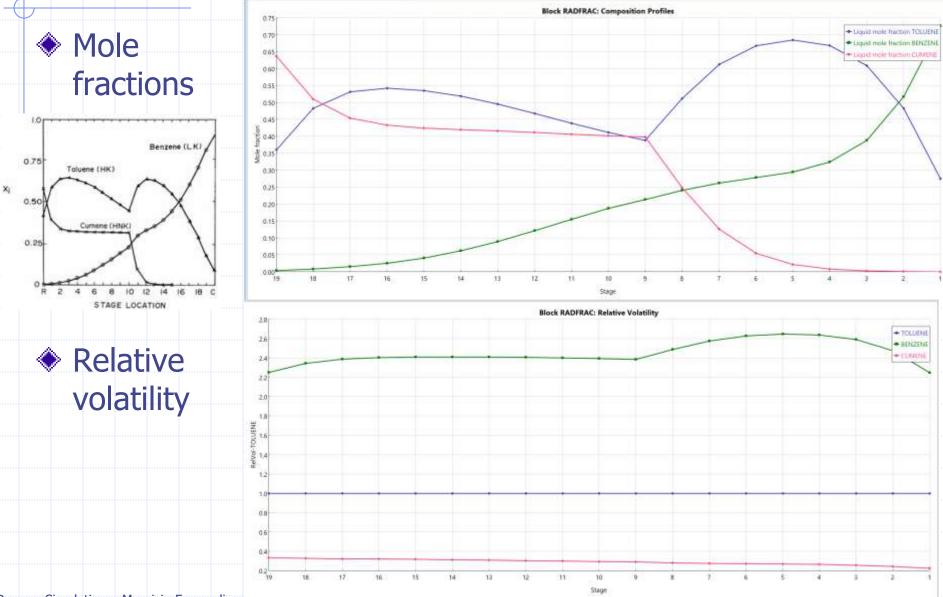
	^	\sim
	•••	•


	п		9	Q	
	v	٠	-	-	

Configuration	Streams	Pressure	Condenser	Reboiler	3-Ph	ase	Comm			
Setup options					1					
Calculation type	Calculation type Number of stages		Equilibrium							
Number of stages			19 🗘 Sta				age Wizard			
Condenser	Condenser			Total						
Reboiler			Kettle			•				
Valid phases	Vapor-Liquid				÷					
Convergence			Standard							
Operating specific	cations									
Distillate rate			Mole	•	0.2	kme	kmol/hr			
Reflux ratio	Reflux ratio		Mole	17	1	1				
	on Distill d variable -	ate rate, 0.1								
Туре		Disti	llate rate							
Upper a	and lower be	ounds				_				
Lower b	ound		0.1	kmol/hr						
Upper b	ound		0.5	kmol/hr	nol/hr					
Optiona	əl —									
Maximu	ım step size	e								

Trieste, 22 November, 2021 - slide 31

Target


Example: multicomponent distillation - column profiles no design specifications

Process Simulation – Maurizio Fermeglia

Trieste, 22 November, 2021 - slide 32

Example: multicomponent distillation - column profiles no design specifications

Process Simulation – Maurizio Fermeglia

THESLE, 22 NOVETHDEL, 2021 - SHUE 33

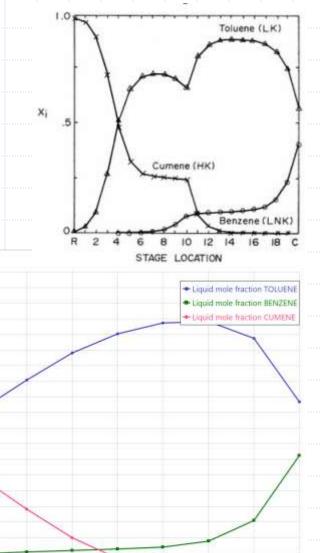
Example: multicomponent distillation - column profiles for 99% recovery of toluene

Block RADFRAC: Composition Profiles

- Mole fractions profiles for same distillation but with a 99% recovery of Toluene in the distillate
 - Distillate flow rate = 0.563 kmol/hr

15

13

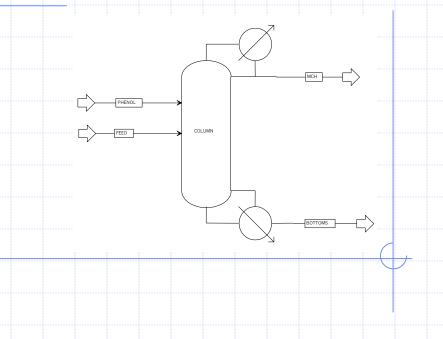

14

12

11

10

Stage

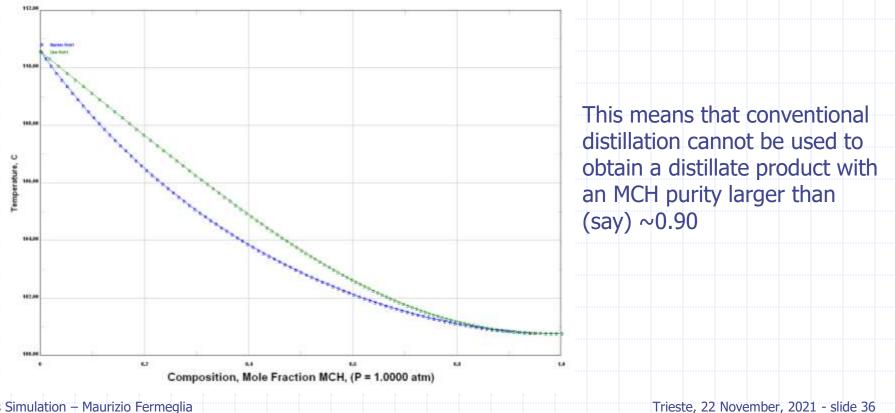


1.00

0.90

0.85 0.80 0.75 0.70 0.65 0.60 0.55 Ê 0.50 \$ 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00

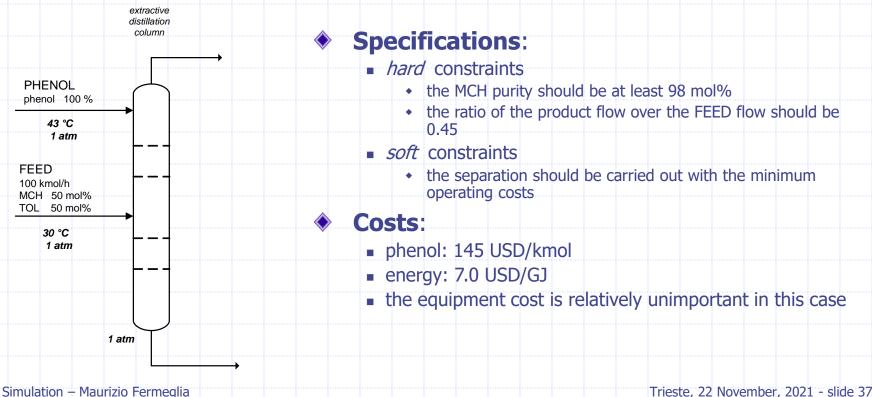
Recovery of Methyl-cyclohexane (MCH) by extractive distillation



The problem

Methylcyclohexane (MCH) must be recovered by distillation from a liquid solution where it is mixed with toluene (TOL)

T-X-Y Plot for MCH and TOLUENE


the main problem with this separation is that the binary system MCH/TOL shows an azeotrope in the MCH-rich side of the equilibrium diagram

The problem /cont.

An extractive distillation column is used to circumvent this problem

- a <u>heavy solvent</u> (phenol; PHE) is fed near the top of the column
- the solvent dissolve most of the toluene, leaving the MCH to travel to the top
- the solvent is practically non-volatile

Recovery of Methyl-cyclohexane (MCH)

We want to recover a product with 98% MCH purity (mole basis) from a feed containing 0.5 mole fraction of toluene (TOL)and 0.5 of MCH. Temperature and pressure of the feed are 25°C and 1 atm, respectively.

 An extractive distillation column needs to be used, with phenol (PHE) as the solvent which is available at 25 °C and 1 atm.

Understand the thermodynamic behavior first

- use the UNIFAC thermo model
- check the vapor pressures of the three components
- build the binary VLE diagram for the feed
- build the binary diagrams involving the solvent and the feed components

Physical property analysis (Aspen Properties):

 A thermodynamic analysis of the binary systems MCH-TOL, MCH-PHE and PHE-TOL, using UNIFAC as the model

Recovery of Methyl-cyclohexane (MCH)

Aspen+ simulation without phenol

- a base case without PHE, to obtain the desired purity
 - a sensitivity study without PHE, where the reflux ratio is changed
 - a sensitivity study without PHE, where the number of stages is increased
- Aspen+ simulation with phenol
 - a base case with PHE, to obtain the desired purity
 - a sensitivity study with PHE, where the PHE feed flow rate is changed
 - a sensitivity study with PHE, where the reflux ratio is changed
 - a design specification analysis to achieve the desired purity at assigned PHE feed flow rate and reflux ratio
 - the selection of appropriate values for PHE feed flow rate and reflux ratio, depending on the reboiler heat duty (optrimization with respect of reboiler energy consumption

Tackling the problem

Understand the thermodynamic behavior first

- use the UNIFAC thermo model
- build the binary VLE diagram for the feed
- build the binary diagrams involving the solvent and the feed components
 - Where do you expect that the MCH is taken out from? Top or bottom? Why?
- Build a preliminary base case without solvent
 - Which design and operating parameters do you need to assign? (degrees of freedom)
 - How do these parameters affect the separation?
- Feed the solvent
 - Where?
 - How much?
- Devise a base case where the hard constraints are satisfied

Think about minimizing the energy consumption