THE STRESS TENSOR

“t 7 Surface § Normal tensile load. force F
F
—=0 Stress
S
*
i . . N 100 g,
% dimension of it: ; = Pascal = l‘ir . ight) (not a lot..)
More useful unit: )
wire, 1 mum
_—"  section T
100 100 Ke
MPa =10° Pa = f GPa =1000 MPa = ISD
mm 100 g mm-

Compare this for example with the Young’s modulus E =211 GPa for Fe

(note of course, that fracture onsets much before a 211GPa tensile stress can be applied )




THE STRESS TENSOR

Orientation of stress

-4 Surface §

F. on face g
o
‘FJF _ T /
) T in the y direction

"

¥ On ('T.q O

_ o=|o, o, O,

We get a 9-component tensor (matrix) = » - ?

D-Zx D-Z"l-' D—ZE

Example: traction

F F
Jﬂ=§; S'cosiF=5 => J=E=Emsﬁ=aﬂcosﬁ

A .5:‘
The shear (or “parallel”) o, = o, cosi#sin?
component 1s 1 :
\ 5 P = — oy sin(21%)
1 2
This (o) 1s the only relex‘anlt sliding system
, component for the deformation. at 45° under

so the maximum is at %= 45° " tensile strength




THE STRESS TENSOR

Q: How do we compute the stress on any surface? By a /eff product

",
A: p=n-ag P = stress resolved on the surface identified by n =| n,
n.
o U:_v Xz RO+ H}'U w T no,
(”’x : H}' N, ) Oy V¥ ¥z -
UH Iy Iz

Comment: if you “invert” the surface (77=» —77). > D= — D.

—>the stress vector 1s “opposite” on ““the other side™ of the plane.

In practice, we always think of two forces (per unit surface) acting in
=> opposite directions on the two sides of the chosen plane.

The total force 1s &J (uniform stress yields no acceleration). but “fension™ (or
“compression”, “shear”. etc.) is there.



THE STRESS TENSOR

Exercise: we reconsider the previous example

Zy p=i-0o i=(0 sim® cosd) 71, =0 —cos? sind?)

0 0 0 0
§=({} sin® cos? O O 0O |= 0
0 0 o) |oycosd?
b t D is directed in the ‘7’ direction, and is % C0Si% .
| 0 0 0
p,=(pn)n= (0 o o, cos?) sm? || sin? =JDCD!-32 7| sini?
cost?) | cost? cos ﬁ,
0 0 FOSa
Dp=D-D, = 0 — 0,08 9| sin? | = gycos ¥ | 0 |- | sinFcos ? || =
T, cos ﬁ, cos ﬂ, lf | cos” 1# )
0 0
= g, costd| —smifcosi? | = oy smiFcostd) — cosi?| = oy smitfcosF- iy

] .
sin” 17 s 1?



THE STRESS TENSOR

The situation in the previous exercise was:

Pn 5, Note that bot/ the tensile and
shear components are equal

and opposite at the two sides

4

Svmmetry of stress tensor, and vector representation

for couples to be & (to avoid rotations). we must have

1’“ gnl

O O, =0 __ (true for all couples)

y ) ]
. o, 0, 0O, g, 0; O; O3 | | Tensile
—=> o, o |= o, o = T3]
o, W o,
: a.. o,
= J5 | L Shear

There are only 6 independent components of the stress tensor. O

31 and 3/I




THE STRAIN TENSOR

We start by defining a displacement vector caused by an elastic deformation. Each vector r
is transformed by the deformation into a new vector 7' :

displacement vector. t —
- >y - > v
r=r = @ (?"' ) depends on 7 U

We next require that E}(I_} be linear: E‘T(ZF) =2U(F)

This is the same as writing:

U= T where € 1s the 3x3 matrix defining the Strain tensor

En &, &g
E=|E, &, &, Strain Matrix




THE STRAIN TENSOR

Meaning of the & i coefficients (they are adimensional!)

U =& x+& ¥

Let’s have a look in 2D: — [ = E- r

1[/‘1, =E. X+E Y
So we have. formally
dU, . oU, Off diagonal
£ = Diagonal term Ep = cehanr
ax - ax (“shear™) term
Al shear strain
|
| T
: U, depends on x
|
1
X
oU_ _ Is the fractional elongation in the -
. . X
dx chosen direction _
. The angle o is —2 for small angles.
e.g. a deformation of 1 cm of a 1 m bar has: g = ar g
au,

=0.01  (everywhere. and it will add

dx
up to 2cm for a 2m bar)



THE STRAIN TENSOR

We also have 7*'= (ﬂ + E) 77 which we can write:

. a _ g sV 4 g7 . .
' = (ﬂ + £ + £ ) 7 g V=== Symmetric Matrix
— =.5 =4 2
. ,

s
—_ - i £ —g’ . . .
; (ﬂ + £ )(ﬂ +£ ) 7 l £ AU = T Anti-symmetric Matrix
for small stramn values. such as € = 0.01
Q: But what is (’ﬂ + iA) ?  A: arotation
Example (in 2D):

—sm¢@ cos

[ L9 ]with @ a small angle. can always be written, to 1 order, 35[

cos¢ sing
-9 1

o : . x'=cosg x+sme y
which 1s a rotation by @ in the xv plane. ==l ¢ 9

y'=—SIng x+CosQ y
¥

(x,v) .— Master objects rotate clockwise. o
syts
y ?“;}.!__‘F or can be thought as a reference ___~ \‘:/t"ﬁp
e plane rotated anticlockwise. —--8



THE STRAIN TENSOR

Now: rotations are irrelevant to elasticity (they're not. really. a “deformation™).

So we will ignore ('ﬂ + £ A) and use 7' = (ﬂ + £ 5) 7 as our only relevant
deformation = =

‘X

ax T
U, . aU, A
£ av £ =20 oz ay l
ay, ’
dz

This would seem to work. but the definition of the vector £ = £ (6-D) 1s:

U,
ax all dlJ .
all, }f=ﬂ+g= X - )
ﬂl'!_l C‘}_T d:‘L‘
108
dz
al, al.,
— +
az ay

| try
Il

aer aU-: .. . 1/
= or J . There 1s no 2! :
.. Since we prefer to “read” from the vector

a7, aU,
[ v o ] the fofal angle of shear deformation




STRESS — STRAIN RELATIONS

. : . 1 — olU
Simple harmonic oscillator: U ="Jx?> F=——"=—Jx
2 ox
in some way O is analogous to F
and £ isanalogousto X
The correct expression 1s: G‘ C-¢ a full rensor relation
but in practice we use the vectors 0 . £ : g = g €

where g is a 6x6 matrix == “Elastic Moduli” or “*Stiffness Constants”

[Nﬂte: [ C;]1=Pa <= They are pressures, dimensionally. ]

Of course. we can mnvert this relation to give (€ =20

IIUJ

-1 .
where 5 = g The “Elastic Compliance™ 6x6 Matrix

..we next look at notewarthy derived modules, within the cubic symmetry



SYMMETRY OF C IN A CUBIC CRYSTAL

We assume to have a cubic isotropic crystal:

from equations like O, = ;& + Gy &, + (38 + C &, + G585 + Ci 46

C do, d0_ C. —C . .
* tmT TS, 2T hm o smee all axes are equivalent by symmetry
1 o
doy do,, 1 1 E
+ also =(C,, =—" 7 .
de, * de ) O,y 15 how much the stress on the x face along
2 W ¢ . . ‘ N
x direction depends on the yy strain.

S =C =0y

and 1s the same for all axes couples:

CrH - CSS - Cﬁﬁ

Since opposite-sign shear strains in the ¥z plane must give opposite
stress due to this linear relation, and same stress due to the murror
symmetry: the xx stress generated by yz sheanng must be zero.

(Ch G Gy 0 0 Note: all other elements are 0 by symmetry!
C, ¢, C 0 0 , d d
bR For instance G, = A i,”
Clz cllg 'If.'ll ID 'D 354 ﬂL
0

Lo R e T e Y o Y s

0 0 0 0 Cy

d
0 0 0 0 0 Cu) % - —C,, = C,, =(therefore) @
3=




ELASTIC MODULI

1) Young’s Module £

Normally written as O = E'& . has the meaning:

x oy, £
the stress (tensile) vs. deformation (in the same direction).
o, =10
0, = (8 + 8, + 08 i
0, = (8 + 8, + (8, ' / )
Normally we have ¢, =&, <0 if £.0,>0 . v 4
By symmetry &, = &;. and noting that 0, = 0; =0,
scrually we define: |, €2 Poissow’s [ BEEAPE I
£ Module

“Poisson’s Ratio™)
Limit of constant volume, defining a cube of edge “a . under umiaxial stress:

V=a V'=(+g)a(l+e)a

V=V == 1=(l+g) (1+26 +&°)=1+¢g +2¢ +0(&’)
g 1

thus: V= =3 < Poisson Ratio for constant volume
e

&



ELASTIC MODULI

Limit of constant shape tew materials here. volume
£, =£ =-1 shape but it is possible. conserved
2 1 conserved \ Fa
. . : | , | 777 .
s0. Poisson’s Ratio v : | N I P2 7777 *
-1 0 \ 12
We can get another expression for v . directly most materials ?j gg;'g I
from the Cj;’s, for the pure tensile case: are here: W - 0.280
a “stiffening”
o, = (& +2C,¢, - C o _ progression?
_ 52 _ 12 oisson’s
0, =Cpe +(G +Cy)e, =0 = v = g, C,+C,| Ratio
Let’s go back to Young’s Module. From the first equation:
o, = (G, = 2v(,)g , ,
C C;;+C,,C, +2C
B E=CH—2V Clz=cll_2 12 -C12= 11 11~12 12
Ch+Cp, Ch+Cy,

ge: 211 GPa

E = (€ - GL)(C, +2C,) Young’s (as a function of AL 70.3 definitely
(C,,+C,) Module the elastic moduli) . a1l stiffening up!




ELASTIC MODULI

2) Bulk Modulus B

Quite simply. the “spring” for volumic compression/expansion.

COmpression/expansion: V 2 V
=2 it’s again a pressure!

2
CNergy per unit volume under E ]- I I 0
. !‘._,.”" B

E 4
¥

= B is also a pressure.

For 1sotropic compression: & =&, =& =& O,

JU1 = (G, +2C,)¢ ) g I
. _ 1ey are equal
=> J o, =(C,; +2C,)s,

AV
Vo V= (14 e JV, => AV = 3cV, = ( ] _ 9’

So the energy density is

~ |ty

=EB£1
2



ELASTIC MODULI

To relate this to the C;;’s we need a general expression for the Elastic energy density:

Harmonic oscillator

1 Stress/strain
U — = kx’
2 1 .
—> = > g-£ Most natural guess for the elastic
o = kx = energy density (it’s correct. but we
E=x will have to prove it later)
For the Bulk Modulus we get: U=—08 +0,8 + 0,8
.
. 3 2
~.giventhe above... =—(Cy; +2C), e
2

$0: %BE2 = %(CH +2C,)e°

= (¢ +26) Bulk (as a function of the

= |B i
3 Modulus elastic moduli ;)




ELASTIC MODULI

1 'l-l.il.
Let’s now check the energy density expression: u= > g-£ Oy
o,
— total work made by the forces which deform -
AL = fF U d*f(]‘?]’d: the cube ( = by the applied stress ) - - &
j
For mnstance, the work associated with @« becomes 4
T dyd :-[(m'erage length merease along x}] Oy Oy

3 I 5

adding the other two contributions we have:

Al = o AvAz % E;IL--x Ax + o AxAz % aF X Ay + Cf:xﬂw-*i‘-,l'% 9% Az \we can fix this point, so
2 ax : 2 2 az this quantity becomes | 9T, Ax
AL 1 1 all 1 all 2
—=—g,§+—0, X +—0O; = = 3
AV 2 2 9y 27 oz

adding similar expressions for the work associated with displacements along v and z we get:

AL 1 1 ar, ol
—=— (05, + 0,6, + O35 ) +— O, | —= + '
AV 2 2 ay ox

+. ==5'F QED




ELASTIC MODULI

Exercise: Elastic density in a cubic crystal
((Tlfl + 0,8, + 0,6, + 0,6, + 0.6 + Gﬁgﬁ)

2, o~ :
[ Chi&) + CpéE + Cpeés + -|
v v 2‘
+ Cp8,8, +C 18, + Cphe,6+

1
yeicp T 4 : : 2
2 2|+ Che 8, +Chee+C e +

2 2 2
_ +C44(£4 + &5 +£ﬁ)

1[1 ( 2 2 1) . ( 2 2 2]
=E e +6 +& +2Cu(£l£1+£1£3+£.2£3)+(.44 £, +E& +&

(a simple enough formula...)

For the Bulk Modulus: &, =&, =&, =¢ 3 5
=> E-J(Cy+2Cp)e

£4=£5=£6=0

as already seen from a direct calculation



ELASTIC MODULI

3) Shear Modulus G

L

Quite simply. the stiffness under shear deformation. |
E .-.';; a
o=0Ge 50: G=C -’1—1 7 /
-
% W -
Summary
|"" V= (__—11_1
G+ G We have 4 moduli from just 3 elastic
(G - Cp)(G, +2C,) constants, so they are not independente.g.. :
(Cy +Cpa) .
5 _ (Cu+2GC,) 3.6y +2Cy) (G +C,y-2C)
3 3 (Cy; +Cp)
\ =3,(C11+2C12), 1-2 Ch
3 (€, +Cp)

= |E=3B(1-2v)




ISOTROPIC SOLIDS

For 1sotropic solids there is more: L 1+4e
Ay 5 |
(A) | (B)
We deform this:
=, "l 1-¢
x X
&y = —& =—&  gjven deformations along two dimensions

o, =(C, - Cp)e

0, = Cpe + &, =(C;, —C))e; =—0;  the two stresses are also opposite

Clearly. the central square gets sheared (in isotropic solids the 45° rotation is irrelevant)

2

shear

The energy densityis  u=—C & while it is also  u=(C}; —Cy,)e
2

—

total shear angle

All we need 1s to calculate the shear angle in plot B in terms of the strain €



ISOTROPIC SOLIDS

l e the angle goes from 45° to (45° - 3).
N 1.e. goes down by a small angle 9.
. \\.} tan T ﬁ. ~ ( l-¢ ] J1_ 25"| where € 1s the strain
AN , . ) \l+e) - 4 | gy |= &y | above.
. ‘ T o a| dtan
h i hi gge fan ——L?r"]ztan(—]+— (—1%)
\\Vz, while also: ( 1 | %) e .
=1+[1+tam2 il ]'(—L'})=1—3L9|
l ) } .x |

=> [-28=1-2e = J=¢

1%  The total shear angle 1s. thus &q = 2% =2e

1 ( C.-C.) True 1n
Finally, equating we get (C,, = C,,)¢e” = —C,4¢> = |C,, =-—1—=| isotropic
2 solids
Sometimes an anisotropy ratio 1s defined to check 4= 2C,, Anisotropy
the deviations from this rule in single crystals. (C,, -Cyy) Ratio
. S - I: 1.22
Confronting the different
e 241

anisotropy ratios in table 10.3: N 1.02



CALCULATION OF ELASTIC MODULI

We go back to our noteworthy modules:
_ (G -GG, +2C,) ’ ISOTROPIC SOLIDS
= C +C =2G (1 +v) =
n+Go) there are only two independent
we already knew that E =3B(1-2v) 1 constants: Cy;. Cy,

Example 1: (Table 10.2 - Aluminum)
E 70.3

B-= =
3(1-2v) 3(1-2-0.345)

=75.59 GPa  (meas.:76.0) In practice. by accurate tensile
load o. €. €, are known. This gives

70.3 . :
G-—L _ 0 —26.133 GPa  (meas.:26.1) VvandE — B.G— allC’s.
2(1+v)  2(1+0.345)

Example 2: (Crystal Table 10.3 - Aluminum)

C., 61
(V= L =0.363  (meas.:0.345)
C,,+Cp 168
= C,=CL NG, +2C 107 —61)(107+122 -

G 1D?=:} E = (G- G)(G ) _( X ) _ 62.7 GPa  (meas.:70.3)
C), =61 | (C+ ) 168

C,, +2C 107 +122

B =1 3 L2 _ . - 76,3 GPa  (meas.:76.0)




Symmetry of Stiffneess Matrixes for the Crystalline Systems

Conventional unit cells
of space lattices

Stiffness matrix [C]

Conventional unit cells
of space lattices

Stiffness matrix [C]

1,§
|
a b

ath+e
o # P #1290

triclinic lattice
¥ #90°

o

a#Fbh#+c
o=f=90%y+90°

monoclinic lattice

a= b =g
a=p=y#9%°
rhombohedral lattice

a=p
orthorhombic lalllcc

anisotropic Hooke's
(21 constants)
.:|

monoclinic or obligue

Hooke's anisotropy

o !

C':|
frigonal anisotropy
':|

(6 constants)
orthotropic Hooke's
(% constants)

NN
L
L

a=b+c¢
a=f=y=%r°
tetragonal lattice

6.

7]
a !
ai{
120°

he xagumlirlaltlcc

7.

i
a
a=b=c¢
a=pf=y=90°
cubic (regular) lattice

polycrystal

{EI

transversely isotropic
tetragonal Hooke's

[\.I }

hexagonal Hooke's
(5 constants)

isotropy (2 cunsmms}

A
/

Cubic Hooke's
{3 constanis)

?/




ELASTIC WAVES

A very simple theory of elastic waves:

Z

L The little cube will now move. as it 1s not in
O(x) O (x+dx) ey
N equilibrium: the stress values o at the two
: ends of the cube do nof cancel out
v We next construct the F = A -a equation

F = [(TH (x+Ax) -0 (x)] AVvAz - net force along x

aJ we suppose there 15 just a — .
M‘a = a = ﬁ:‘-‘ﬁl&— {cmnprizsim'eﬂ;“avﬂ, 1-1'0 :]lf_"ﬂf,ﬂﬂﬂz:] ¢ Crl - Cll gl
X
0°U, ‘ 9’ U 9 oU
M = (CHE‘ )-Volume =C,,——
ot ox dx ox
[ \
0" 1 & U (x.1)=0 The wave equation for a

x> (Cll ) ar’ | * simple compressive
\ )

F (longitudinal) wave




ELASTIC WAVES

Note: if we allow for a complete treatment, the full equation 1s

U, s oUu. (U, oU, . . EJ"L’T}, 0°U._ similar terms
P ot - ('11 o +(-'44 31’3 + 9=> + ('12 + ('44 AV + Oz *  for the vand:
” 4 e e components

For example in pure shear mode, for a purely transversal y-polarised wave
propagating along the x axis, the equation 1s:

i '\I
a° 1 o

x> (Cm) ar’
\ P )

An estimate for the speed of sound:

U,(y.1)=0

=4x10° m/sec

G 200 GPa _Jzooxmg
V10 tons/m’ 10*

o
\ typical numbers for a
metal



Bulk Acoustic Waves — BAW

Longitudinal

Transversal



Transversal and Longitudinal Phonons




Surface Acoustic Waves — SAW

Love Waves

Rayleigh Waves

ecy
Y. fion ofp, opag
atiop,

o
i,

Y L e
e A e

e e ot
2 e et 7 —

s f.--'.f._q" e -
B

e
S
e
[
Raaoo e

R

ISNRRI
T
=

Application: SAW signal filters Particle Mg,

IDT (comb-shaped electrode) IDT (comb-shaped electrode)

-

N, Surface .
s acoustic wawve

Fic signal > Fic signal >

Piezoelectric substrate (LiTaO.) |




1D PHONONS

We now want to imnvestigate vibrations in solids, using a 1D model:

{1 Y [ Y T ' .
L\ U/ L\ L\ L\ U/ g
0 a 2a 3a 4a Sa

Atomic position are at X, = j-a and we will define a displacement U :

x,—=x'=x;+U, aswedid when defining the displacement vector field

Q: What is the elastic energy in this “solid”?

1 1 2 1 2
E=EEH(EK({J{”_U”_1) +5K(U”_b{”+l) )

where the force on a particular atom } s — oE =_-K (U [ )_ K(U- _ U;H)

= = —._1 -
aLTj J J J

We now guess an the solution in wave form: U j Vj
Jf{kt’),-—m!}
U, =Uje

where K € B.Z. of the crystal, since k& — k'=k + G must give the same results



1D PHONONS

F=m-a then becomes

+Mw*U, =+K(2U,-U,,-U )

1
tha —iki
L KU, ) o re™) w(i) |
2
o ka’
=2KU, [1 - cos(ka)] =4KU,sin” (7)
. 2 41{2@ - K ka >
. =(¥) sin (?) => cu(k)—ZHIE .-.m(?) Ta 0«
| B.Z. |

a g
This gives the (k) dispersion relation for these particular “sound” waves.

Note that we have just postulated the energy function, but we have NOT specified if
these are compressive waves 1.e..

longitudinally polarized: mﬂuw ||”|I|l| = -
L / here Uj is orthogonal to & // X

or transverse waves: ||||||“| |l|||“|||”||||“ WH_b




1D PHONONS

.'rm(T)‘ , there are two limits:

—

i K
Coming back to the formula (k)= 2,*!? :

Elastic (or “acoustic”) limit: £ —0 A—x(k=27/4) w(k) 1 <&

K ka [ zll K\ /£ -
(U(;.) =7 v, . 5 ='.,_.\ IV, ”‘.{ — ﬂ/fﬁ = C(speed of sound) hEIE\

Thus, the speed of sound can be obtained from the “springs”, o /a
. / —_—
the distances, and the masses of the atoms /

To estimate ¢ 1n a solid, we start from a chemical bond, supposing 2 eV are gained along
the approximating parabola in ~ 1A

; s o .
—K(AY =2 eV—=K=4 gv/pf . in silicon {i{ ;24 A

) 1
v R
' 2
4-1.6x107% 16-1.6 .
2 eV = — — -2 10‘1°=\/ *~10% =+/10% =107
‘ W \/10--0 28x107 28
( Silicon 8.400 m/sec — Aiv=8400 m/sec for

..expect anything between Diamond 12.000 m/sec v=284kHz

1000 and 10000 m/sec Aluminum  6.420 m/sec l A=1m
Iron 5.130 m/sec

A




1D PHONONS

Optical limit: & — 77/a (at the BZ boundary)

w(k) 4 here ( (5 (5 transversal
\ w=? "%(l) 4 ? ? mode

L O O o O longitudimal

mode

>  that 1s, nearest neighbour atoms are in anti-phase:
0 Kk, n/a

U.=Uke (_ ) but &7 =—1 => the phase gained for a “a” displacement is 7
Typical frequencies = ? if we use the former estimate’s numbers:
‘ -19
w=2, ’ \/ 4_23’6 <10 — =2v2" 107" =10 =100THz typical phononic
107 -28x10 frequency

hao=101-10"% =107y

~0.1 eV —> infrared light frequencies!!



SPEED OF SOUND, REPRISED

We now have ¢ from two theories:

Cl 1 - - K 2
— atomuistic theory: —d"

Je) M

Clearly, the elastic constant derives from the stiffness of the chemical bond

- 3 - -
C=\/(£)a_= K/CT 50 Cllﬁé
a | M Jo, a

o o
In ourestimate K =4 eI’/ A~ a=2A
K _4eV _2-1,6x107"

o Cy — = ———Pa=32x10"Pa=320 GPa
o a 2?&3 10

. . — This will clearly .
o correspond to a much :
= higher speed of sound '
than this. / i
+

narrow ...and for a given bond strength lighter atoms -2 faster sound

classical elastic theory:

shallow

wide



3D PHONONS

Q: What happens to phonons in the full 3D case? therefi

A: Vi ©BZ there will be an acceptable wave = vibrational (phononic) mode

conceptually 1t’s all as before, there will be a phonon spectrum UJ(E ) k EBZ

and a density of states n(m) “counting” all the vibrational modes

3 wik : : . 114
) () carries the information on how many “phonon

modes™ there are for any given interval of frequency
_ (per unit volume of sample).
3

k : . : L= Na ma
£ > Note on density of states n(m):
-n/a 0 n/a : EEBZU for a sid £F) 1 []111 1D crystal
s1nce ,foraside L sample )\ 50, — 14
= k-L=m-27;with m=0, =1; £2; --- 1
+2

2T
We in fact have only N possible values of &k, = m: m=0, =1; £2: --- = N/2
so the “density” of states dk 2n dn  {dn\[l dk L 1 1D density of states
in the 1D BZ is T = = ’ singular for zero
- dﬂ- L fff{.} fﬁ‘f fl"f{) lT (dU_JJ.-"I fHL) group 1,'&]@cir}r, .
[ 1m a sample of volume L3. in a BZ Gﬁf( 3D density of vibrational modes
3D case: - E ' dn = - per unit volume of BZ and unit
1 (d’k) there will be ) d’k waves. {25?)3 volume of specimen
27



