
CHAPTER 10
VHDL Synthesis

In this chapter, we focus on how to write VHDL that can
be read by synthesis tools. We start out with some simple
combinational logic examples, move on to some sequential
models, and end the chapter with a state machine de-
scription.

All of the examples are synthesized with the Exemplar
Logic Leonardo synthesis environment. The technology li-
brary used is an example library from Exemplar Logic. All
of the output data should be treated as purely sample out-
puts and not representative of how well the Exemplar
Logic tools work with real design data and real con-
straints.

10

Chapter Ten252

c

a

d

b

out

out

in [1]

in [0]

in [1]

in [0]

Figure 10-1
Model
Implementation.

Simple Gate—Concurrent
Assignment
The first example is a simple description for a 3-input OR gate:

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
ENTITY or3 IS

PORT (a, b, c : IN std_logic;
PORT (d : OUT std_logic);

END or3;

ARCHITECTURE synth OF or3 IS
BEGIN
d <= a OR b OR c;

END synth;

This model uses a simple concurrent assignment statement to describe
the functionality of the OR gate. The model specifies the functionality
required for this entity, but not the implementation. The synthesis tool
can choose to implement this functionality in a number of ways, depending
on the cells available in the technology library and the constraints on
the model. For instance, the most obvious implementation is shown in
Figure 10-1.

This implementation uses a 3-input OR gate to implement the func-
tionality specified in the concurrent signal assignment statement contained
in architecture synth.

What if the technology library did not contain a 3-input OR device? Two
other possible implementations are shown in Figures 10-2 and 10-3.

The first implementation uses a 3-input NOR gate followed by an inverter.
The synthesis tool may choose this implementation if there are no 3-input
OR devices in the technology library. Alternatively, if there are no 3-
input devices, or if the 3-input devices violate a speed constraint, the

253VHDL Synthesis

b

c

a

PAD

PAD

PAD
INBUF

INBUF

INBUF
Y

Y Y D

Y

A

B

C

OUTBUF
PAD dNANDOC

Figure 10-2
3-Input OR.

3-input OR function could be built from four devices, as shown in Figure
10-3. Given a technology library of parts, the functionality desired, and
design constraints, the synthesis tool is free to choose among any of the
implementations that satisfy all the requirements of a design, if such a
design exists. There are lots of cases where the technology or constraints
are such that no design can meet all of the design requirements.

IF Control Flow Statements
In the next example, control flow statements such as IF THEN ELSE are
used to demonstrate how synthesis from a higher level description is
accomplished. This example forms the control logic for a household alarm
system. It uses sensor input from a number of sensors to determine
whether or not to trigger different types of alarms. Following is the input
description:

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
ENTITY alarm_cntrl IS

PORT(smoke, front_door, back_door, side_door,
PORT(alarm_disable, main_disable,
PORT(water_detect : IN std_logic;
PORT(fire_alarm, burg_alarm,
PORT(water_alarm : OUT std_logic);

END alarm_cntrl;

ARCHITECTURE synth OF alarm_cntrl IS
BEGIN

PROCESS(smoke, front_door, back_door, side_door,
PROCESS(alarm_disable, main_disable,
PROCESS(water_detect)
BEGIN

Chapter Ten254

c

a

d

b

out

out

in [1]

in [0]

in [1]

in [0]

Figure 10-3
Another 3-Input OR
Implementation.

IF ((smoke = ‘1’) AND (main_disable = ‘0’)) THEN
fire_alarm <= ‘1’;

ELSE
fire_alarm <= ‘0’;

END IF;

IF (((front_door = ‘1’) OR (back_door = ‘1’) OR
(side_door = ‘1’)) AND
((alarm_disable = ‘0’) AND (main_disable =

‘0’))) THEN
burg_alarm <= ‘1’;

ELSE
burg_alarm <= ‘0’;

END IF;

IF ((water_detect = ‘1’) AND (main_disable = ‘0’))
THEN

water_alarm <= ‘1’;
ELSE

water_alarm <= ‘0’;
END IF;

END PROCESS;
END synth;

The input description contains a number of sensor input ports such as
a smoke detector input, a number of door switch inputs, a basement water
detector, and two disable signals. The main_disable port is used to disable
all alarms, while the alarm_disable port is used to disable only the
burglar alarm system.

The functionality is described by three separate IF statements. Each
IF statement describes the functionality of one or more output ports. No-
tice that the functionality could also be described very easily with equa-
tions, as in the first example. Sometimes, however, the IF statement style
is more readable. For instance, the first IF statement can be described by
the following equation:

255VHDL Synthesis

back_door

burg_alarm

fire_alarm

water_alarm

side_door

front_door

smoke

main_disable

water_detect

alarm_disable

NOR2A

D0
D1
D2
D3

S00
S01
S10
S11

NOR2A

CM8

Y

Y

GND

Y

VCC

A Y

Y

Y

A Y

A

A

B

B

Figure 10-4
A sample synthesized
output.

fire_alarm <= smoke and not(main_disable);

Because the three IF statements are separate and they generate
separate outputs, we can expect that the resulting logic would be three sep-
arate pieces of logic. However, the main_disable signal is shared between
the three pieces of logic. Any operations that make use of this signal may
be shared by the other logic pieces. How this sharing takes place is deter-
mined by the synthesis tool and is based on the logical functionality of the
design and the constraints. Speed constraints may force the logical oper-
ations to be performed in parallel.

A sample synthesized output is shown in Figure 10-4. Notice that
signal main_disable connects to all three output gates, while signal
alarm_disable only connects to the alarm control logic. The logic for
the water alarm and smoke detector turn out to be quite simple, but we
could have guessed that because our equations were so simple. The next
example is not so simple.

Chapter Ten256

Case Control Flow Statements
The next example is an implementation of a comparator. There are two 8-
bit inputs to be compared and a CTRL input that determines the type of
comparison made. The possible comparison types are A > B, A < B, A � B,
A ≠ B, A � B, and A � B. The design contains one output port for each of
the comparison types. If the desired comparison output is true, then the out-
put value on that output port is a ‘1’. If false, the output port value is a
‘0’. Following is a synthesizable VHDL description of the comparator:

PACKAGE comp_pack IS
TYPE bit8 is range 0 TO 255;
TYPE t_comp IS (greater_than, less_than, equal,

not_equal, grt_equal, less_equal);
END comp_pack;

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE WORK.comp_pack.ALL;
ENTITY compare IS

PORT(a, b : IN bit8;
PORT(ctrl : IN t_comp;
PORT(gt, lt, eq, neq, gte, lte : OUT std_logic);

END compare;

ARCHITECTURE synth OF compare IS
BEGIN

PROCESS(a, b, ctrl)
BEGIN
gt <= ‘0’; lt <= ‘0’; eq <= ‘0’; neq <= ‘0’; gte <=

‘0’; lte <= ‘0’;
CASE ctrl IS

WHEN greater_than =>
IF (a > b) THEN

gt <= ‘1’;
END IF;

WHEN less_than =>
IF (a < b) THEN

lt <= ‘1’;
END IF;

WHEN equal =>
IF (a = b) THEN

eq <= ‘1’;
END IF;

WHEN not_equal =>
IF (a /= b) THEN

neq <= ‘1’;
END IF;

WHEN grt_equal =>
IF (a >= b) THEN

257VHDL Synthesis

gte <= ‘1’;
END IF;

WHEN less_equal =>
IF (a > b) THEN

lte <= ‘1’;
END IF;

END CASE;
END PROCESS;

END synth;

Notice that, in this example, the equations of the inputs and outputs are
harder to write because of the comparison operators. It is still possible to
do, but is much less readable than the case statement shown earlier.

When synthesizing a design, the complexity of the design is related
to the complexity of the equations that describe the design function.
Typically, the more complex the equations, the more complex the design
created. There are exceptions to this rule, especially when the equations
reduce to nothing.

A sample synthesized output from the preceding description is shown
in Figure 10-5. The inputs are shown on the left of the schematic diagram,
and the outputs are shown in the lower right of the schematic. The equa-
tions for the comparison operators have all been shared and combined
together to produce an optimal design. This design is a very small number
of gates for the operation performed.

There are still a number of cases where hand design can create smaller
designs, but in most cases today the results of synthesis are very good;
and you get the added benefit of using a higher level design language for
easier maintainability and a shorter design cycle.

Simple Sequential Statements
Let’s take a closer look at an example that we already discussed in the
last chapter. This is the inferred D flip-flop. Inferred flip-flops are created
by WAIT statements or IF THEN ELSE statements, which are surrounded
by sensitivities to a clock. By detecting clock edges, the synthesis tool can
locate where to insert flip-flops so that the design that is ultimately built
behaves as the simulation predicts.

Following is an example of a simple sequential design using a WAIT
statement:

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
ENTITY dff IS

Figure 10-5
A Sample Synthesized
Output.

PORT(clock, din : IN std_logic;
PORT(dout : OUT std_logic);

END dff;

ARCHITECTURE synth OF dff IS
BEGIN

PROCESS
BEGIN
WAIT UNTIL ((clock’EVENT) AND (clock = ‘1’));

dout <= din;

END PROCESS;
END synth;

Chapter Ten258

259VHDL Synthesis

The description contains a synthesizable entity and architecture rep-
resenting a D flip-flop. The entity contains the clock, din, and dout ports
needed for a D flip-flop, while the architecture contains a single process
statement with a single WAIT statement. When the clock signal has a rising
edge occur, the contents of din are assigned to dout. Effectively, this is how
a D flip-flop operates.

The synthesized output of this design matches the functionality of the
RTL description. It is very important for the synthesis and simulation
results to agree. Otherwise, the resulting synthesized design may not
work as planned. Part of the synthesis methodology should require that
a final gate level simulation of the design is executed to verify that the
gate level functionality is correct. (We perform this step in an example
later on.)

The output of the Leonardo synthesis tool is shown in Figure 10-6.
As expected, the output of the synthesis tool produced a single D flip-
flop. The synthesis tool connected the ports of the entity to the proper
ports of actual FPGA library macro so that the device works as expected
in the design.

Asynchronous Reset
In a number of instances, D flip-flops are required to have an asynchronous
reset capability. The previous D flip-flop did not have this capability. How
would we generate a D flip-flop with an asynchronous reset? Remember
the simulation and synthesis results must agree. Following is one way to
accomplish this:

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
ENTITY dff_asynch IS

QD

>

din

clock
R

S
dout

Figure 10-6
The Output of the
Leonardo Synthesis
Tool.

Chapter Ten260

PORT(clock, reset, din : IN std_logic;
PORT(dout : OUT std_logic);

END dff_asynch;

ARCHITECTURE synth OF dff_asynch IS
BEGIN

PROCESS(reset, clock)
BEGIN
IF (reset = ‘1’) THEN

dout <= ‘0’;
ELSEIF (clock’EVENT) AND (clock = ‘1’) THEN

dout <= din;
END IF;

END PROCESS;
END synth;

The ENTITY statement now has an extra input, the reset port, which
is used to asynchronously reset the D flip-flop. Notice that reset and
clock are in the process sensitivity list and cause the process to be eval-
uated. If an event occurs on signals clock or reset, the statements inside
the process are executed.

First, signal reset is tested to see if it has an active value (‘1’). If active,
the output of the flip-flop is reset to ‘0’. If reset is not active (‘0’), then
the clock signal is tested for a rising edge. If signal clock has a rising
edge, then input din is assigned as the new flip-flop output.

The fact that the reset signal is tested first in the IF statement gives
the reset signal a higher priority than the clock signal. Also, because the
reset signal is tested outside of the test for a clock edge, the reset signal
is asynchronous to the clock.

The Leonardo synthesis tool produces a D flip-flop with an asynchronous
reset input, as shown in Figure 10-7. The resulting design has an extra
inverter (IVP component) in the circuit because the only flip-flop macro
that would match the functionality required had a reset input that was
active low.

QD

>

din

clock

reset

R

S
dout

Figure 10-7
The Leonardo
Synthesis Tool
Produces a
D Flip-Flop.

261VHDL Synthesis

Asynchronous Preset and Clear
Is it possible to describe a flip-flop with an asynchronous preset and
clear? As an attempt, we can use the same technique as in the asyn-
chronous reset example. The following example illustrates an attempt to
describe a flip-flop with an asynchronous preset and clear inputs:

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
ENTITY dff_pc IS

PORT(preset, clear, clock, din : IN std_logic;
PORT(dout : OUT std_logic);

END dff_pc;

ARCHITECTURE synth OF dff_pc IS
BEGIN
PROCESS(preset, clear, clock)

BEGIN
IF (preset = ‘1’) THEN

dout <= ‘1’;

ELSEIF (clear = ‘1’) THEN
dout <= ‘0’;

ELSEIF (clock’EVENT) AND (clock = ‘1’) THEN
dout <= din;

END IF;
END PROCESS;

END synth;

The entity contains a preset signal that sets the value of the flip-flop
to a ‘1’, a clear signal that sets the value of the flip-flop to a ‘0’, and the
normal clock and din ports used for the clocked D flip-flop operation. The
architecture contains a single process statement with a single IF state-
ment to describe the flip-flop behavior. The IF statement assigns a ‘1’ to
the output for a ‘1’ value on the preset input and a ‘0’ to the output
for a ‘1’ on the clear input. Otherwise, the clock input is checked for a
rising edge, and the din value is clocked to the output dout.

What does the output of the synthesis process produce for this VHDL
input? The output is shown in Figure 10-8. We were expecting the output
of the synthesis tool in which the design preset input was connected to
the preset input of the flip-flop, and the design clear input was con-
nected to the clear input of the flip-flop. The output from the synthesis
tool is a design in which the design preset and clear inputs are sepa-
rated from the flip-flop preset and clear inputs by some logic.

Chapter Ten262

This logic circuitry performs a prioritization of the preset signal with
respect to the clear signal. Because the preset signal occurs before the
clear signal in the IF statement, the preset signal is tested before the
clear signal. If the preset signal is active, the flip-flop presets regard-
less of the state of the clear input. Effectively, the preset signal has a
higher priority than the clear signal. There is currently no way to write
a VHDL description to generate a design in which the preset and clear
inputs have the same priority.

More Complex Sequential
Statements
The next example is a more complex sequential design of a 4-bit counter.
This example makes use of a two-process description style. This style works
very well for some synthesis tools, producing very good synthesis results.

Each process has a particular function. One process is clocked and the
other is not. The clocked process is used to maintain the present state of the
counter, while the unclocked process calculates the next state of the counter.

Following is an example of a counter written in this way:

USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;
PACKAGE count_types IS

SUBTYPE bit4 IS std_logic_vector(3 DOWNTO 0);

dout

clock

din

clear

preset

S
D

>

R

Q

in [0]

in [1]
out

outin

Figure 10-8
Output of synthesis
process.

263VHDL Synthesis

END count_types;

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;
USE WORK.count_types.ALL;
ENTITY count IS

PORT(clock, load, clear : IN std_logic;
din : IN bit4;
dout : INOUT bit4);

END count;

ARCHITECTURE synth OF count IS
SIGNAL count_val : bit4;

BEGIN
PROCESS(load, clear, din, dout)
BEGIN
IF (load = ‘1’) THEN

count_val <= din;
ELSEIF (clear = ‘1’) THEN

count_val <= “0000”;
ELSE

count_val <= dout + “0001”;
END IF;

END PROCESS;

PROCESS
BEGIN
WAIT UNTIL clock’EVENT and clock = ‘1’;

dout <= count_val;
END PROCESS;

END synth;

The description contains a package that defines a 4-bit range that
causes the synthesis tools to generate a 4-bit counter. Changing the size of
the range causes the synthesis tools to generate different-sized counters.
By using a constrained universal integer range, the model can take ad-
vantage of the built-in arithmetic operators for type universal integer. The
other alternative is to define a type that is 4 bits wide and then create a
package that overloads the arithmetic operators for the 4-bit type.

The entity contains a clock input port to clock the counter, a load
input port that allows the counter to be synchronously loaded, a clear
input port that synchronously clears the counter, a din input port that
allows values to be loaded into the counter, and an output port dout that
presents the current value of the counter to the outside world.

The architecture for the counter contains two processes. The process
labeled synch is the process that maintains the current state of the

Chapter Ten264

counter. It is the process that is clocked by the clock and transfers the new
calculated output count_val to the current output dout.

The other process contains a single IF statement that determines
whether the counter is being loaded, cleared, or is counting up.

A sample synthesized output is shown in Figure 10-9. In this example,
the generated results are as expected. The left side of the schematic shows
the inputs to the counter; the right side of the schematic has the counter
output. Notice that the design contains four flip-flops (FDSR1), exactly as
specified. Also, notice that the logic generated for the counter is very
small. This design was optimized for area; thus, the number of levels of
logic are probably higher than a design optimized for speed.

Four-Bit Shifter

Another sequential example is a 4-bit shifter. This shifter can be loaded
with a value and can be shifted left or right one bit at a time. Following
is the model for the shifter:

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
PACKAGE shift_types IS

SUBTYPE bit4 IS std_logic_vector(3 downto 0);
END shift_types;

USE WORK.shift_types.ALL;
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
ENTITY shifter IS

PORT(din : IN bit4;
clk, load, left_right : IN std_logic;
dout : INOUT bit4);

END shifter;

ARCHITECTURE synth OF shifter IS
SIGNAL shift_val : bit4;

BEGIN
nxt: PROCESS(load, left_right, din, dout)
BEGIN
IF (load = ‘1’) THEN

shift_val <= din;
ELSEIF (left_right = ‘0’) THEN

shift_val(2 downto 0) <= dout(3 downto 1);
shift_val(3) <= ‘0’;

ELSE
shift_val(3 downto 1) <= dout(2 downto 0);

Figure 10-9
A Sample Synthesized
Output.

shift_val(0) <= ‘0’;
END IF;

END PROCESS;

current: PROCESS
BEGIN
WAIT UNTIL clk’EVENT AND clk = ‘1’;

dout <= shift_val;
END PROCESS;

END synth;

The 4-bit type used for the input and output of the shifter is declared
in package shift_types. This package is used by entity shifter to de-
clare ports din and dout. Ports clk, load, and left_right are std_logic
signals used to control the functions of the shifter.

265VHDL Synthesis

Chapter Ten266

The architecture is organized similarly to the last example, with two
processes used to describe the functionality of the architecture. One process
keeps track of the current value of the shifter, and the other calculates
the next value based on the last value and the control inputs.

Process current is used to keep track of the current value of the shifter.
It is a process that has a single WAIT statement and a single signal assign-
ment statement. When the clk signal has a rising edge occur, the signal
assignment statement is activated and the next calculated value of the
shifter (shift_val) is written to the signal that holds the current state of
the shifter (dout).

Process nxt is used to calculate the next value of shift_val to be
written into dout. Load is the highest priority input and, if equal to ‘1’,
causes shift_val to receive the value of din. Otherwise, signal
left_right is tested to see if the shifter is shifting left or right. Because
this shifter does not contain a carryin or carryout, ‘0’ values are
written into the bits whose value has been shifted over. (A good exercise
is to write a shifter that contains a carryin and carryout.)

The synthesis tool produces a schematic for this input description as
shown in Figure 10-10. By counting the flip-flops (FDSR1) on the page, it
can be seen that this is indeed a 4-bit shifter.

State Machine Example
The next example is a simple state machine used to control a voicemail
system. (This example does not represent any real system in use and is
necessarily simple to make it easier to fit in the book.) The voicemail
controller allows the user to send messages, review messages, save
messages, and erase messages. A state diagram showing the possible
state transitions is shown in Figure 10-11.

The normal starting state is state main. From main, the user can select
whether to review messages or send messages. To get to the Review menu,
the user presses the 1 key on the touch-tone phone. To select the Send
Message menu, the user presses the 2 key on the touch-tone phone. After
the user has selected either of these options, further menu options allow the
user to perform other functions such as Save and Erase. For instance, if
the user first selects the Review menu by pressing key 1, then pressing key
2 allows the user to save a reviewed message when reviewing is complete.

Following is the VHDL description for the voicemail controller:

267VHDL Synthesis

PACKAGE vm_pack IS
TYPE t_vm_state IS (main_st, review_st, repeat_st,
TYPE t_vm_state IS (save_st,
TYPE t_vm_state IS (erase_st, send_st,
TYPE t_vm_state IS (address_st, record_st,
TYPE t_vm_state IS (begin_rec_st, message_st);
TYPE t_key IS (‘0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,
TYPE t_key IS (’*’,’#’);

END vm_pack;

USE WORK.vm_pack.ALL;
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
ENTITY control IS

PORT(clk : in std_logic;
PORT(key : in t_key;

Figure 10-10
The Synthesis Tool
Produces a Schematic.

1 3

2

Review

Save EraseRepeat

Main

Send

Address

Record

Begin
Record

Record
Message

1

#
#

2

#

5

#

Figure 10-11
State Transition
Diagram for
Voicemail Controller.

PORT(play, recrd, erase, save, address
: out std_logic);

END control;

ARCHITECTURE synth OF control IS
SIGNAL next_state, current_state :

t_vm_state;
BEGIN

Chapter Ten268

269VHDL Synthesis

PROCESS(current_state, key)
BEGIN
play <= ‘0’;
save <= ‘0’;
erase <= ‘0’;
recrd <= ‘0’;
address <= ‘0’;

CASE current_state IS
WHEN main_st =>

IF (key = ‘1’) THEN
next_state <= review_st;

ELSEIF (key = ‘2’) THEN
next_state <= send_st;

ELSE
next_state <= main_st;

END IF;

WHEN review_st =>
IF (key = ‘1’) THEN

next_state <= repeat_st;
ELSEIF (key = ‘2’) THEN

next_state <= save_st;
ELSEIF (key = ‘3’) THEN

next_state <= erase_st;
ELSEIF (key = ‘#’) THEN

next_state <= main_st;
ELSE

next_state <= review_st;
END IF;

WHEN repeat_st =>
play <= ‘1’;
next_state <= review_st;

WHEN save_st =>
save <= ‘1’;
next_state <= review_st;

WHEN erase_st =>
erase <= ‘1’;
next_state <= review_st;

WHEN send_st =>
next_state <= address_st;

WHEN address_st =>
address <= ‘1’;
IF (key = ‘#’) THEN

next_state <= record_st;
ELSE

next_state <= address_st;

Chapter Ten270

END IF;

WHEN record_st =>
IF (key = ‘5’) THEN

next_state <= begin_rec_st;
ELSE

next_state <= record_st;
END IF;

WHEN begin_rec_st =>
recrd <= ‘1’;
next_state <= message_st;

WHEN message_st =>
recrd <= ‘1’;
IF (key = ‘#’) THEN

next_state <= send_st;
ELSE

next_state <= message_st;
END IF;

END CASE;
END PROCESS;

PROCESS
BEGIN
WAIT UNTIL clk = ‘1’ AND clk’EVENT;

current_state <= next_state;
END PROCESS;

END synth;

Package vm_types contains the type declarations for the state values
and keys allowed by the voicemail controller. Notice that the states are all
named something meaningful as opposed to S1, S2, S3, and so on. This
makes the model much more readable.

This package is used by the entity to declare local signals and the key
input port. The entity only has one input, the key input, which represents
the possible key values from a touch-tone phone keypad. All of the other
ports of the entity are output ports (except clk) and are used to control
the voicemail system operations.

This model uses the two-process style to describe the operation of the
state machine. This style is very useful for describing state machines as
one process represents the current state register, and the other process
represents the next state logic.

The next state process starts by initializing all of the output signals to
‘0’. The reason for this is to provide the synthesis tool with a default value
to assign the signal if the signal was not assigned in the CASE statement.

271VHDL Synthesis

The rest of the next state process consists of one CASE statement. This
CASE statement describes the action to occur based on the current state
of the state machine and any inputs that affect the state machine. The
condition that the CASE statement keys from is the current state. The state
machine can be placed in a different state depending on the inputs that
are being tested by the current state. For instance, if the current state is
main_st, when the key input is ‘1’, the next state is review_st; when
the key input is ‘2’, the next state is send_st.

When this description is synthesized using the Leonardo synthesis tool,
the schematic shown in Figure 10-12 is generated. The key and clk inputs
are shown coming into the left side of the schematic and outputs save,
recrd, address, erase, and play are shown coming out of the right side
of the schematic. Intermixed in the design are the state flip-flops that
are used to hold the current state of the voicemail controller and the
logic used to generate the next state of the controller. This type of output
is indicative of state machine descriptions.

Figure 10-12
Generated Using the
Leonardo Synthesis
Tool.

Chapter Ten272

SUMMARY

In this chapter, we looked at a number of different VHDL synthesis exam-
ples. They ranged from simple gate level descriptions to more complex
examples that contained state machines. In the next few chapters, we look
at a more complex example that requires a number of state machines, and
we follow the process from start to finish.

