Where are we?

Green et al.: Solar Cell Efficiency Tables (Version 53), Progress in PV: Research and Applications 2018

Best Research-Cell Efficiencies

Photovoltaic technologies: state of the art

1. Commercial technologies

Technical evolution and growth potential

Crystalline silicon modules

Crystalline silicon modules

- Techno-economic positioning -

New silicon-based commercial technologies: «Black» silicon

€/kWh reduction driver: higher efficiency at constant cost

New silicon-based commercial technologies: Bifacial technology

€/kWh reduction driver: higher collection area at constant cost

€/kWh reduction driver: lower manufacturing cost at constant efficiency

Best Research-Cell Efficiencies

Technical evolution and growth potential

Silicon costs money and energy

Thin film technology

- Based on materials with better light absorption properties-

Thin film technology: CIGS, a-SI, CdTe

CdTe:

• First Solar, inc.

CIGS:

- Solar Frontier, inc.
- Solibro, GmbH
- Miasolé, ltd.
- ... (several global companies)...

a-Si

- Sharp, inc.
- Sunerg, srl

Thin film technology: aesthetics, building integration, reduction of installation cost

Thin film technology: CIGS, a-SI, CdTe - cost comparison with silicon-based modules -

FIGURE 6.2: SOLAR PV MODULE COST LEARNING CURVE FOR CRYSTALLINE SILICON AND THIN-FILM

SOURCE: BASED ON DATA FROM EPIA AND PHOTOVOLTAIC TECHNOLOGY PLATFORM, 2011; LIEBREICH, 2011; SOLOGICO, 2012 AND IRENA ANALYSIS.

Best Research-Cell Efficiencies

Technical evolution and growth potential

Thin film PV modules

- Techno-economic positioning -

Impact of Thin Film Technology is Dropping

Data: from 2000 to 2010: Navigant; from 2011: IHS. Graph: PSE GmbH 2018

Basic working principle of a PV cell - an electron's perspective -

Multijunction («tandem») cells

- A more efficient use of the solar radiation -

Best Research-Cell Efficiencies

Multijunction cells

- Techno-economic positioning -

Photovoltaic technologies: state of the art

2. Frontier technologies

Dye Sensitized Solar Cell - DSSC

Fotosintesi

Fotosintesi artificiale

Fotosintesi artificiale

Assemblaggio gerarchico per un migliore assorbimento

Dye Sensitized Solar Cell (DSSC) Graetzel Cell

conducting

substrate

Best Research-Cell Efficiencies

Organic photovoltaics - OPV

Why Organic Cells?

- •Low cost
- High thoughput production

•Flexibility

Physics of Organic Solar Cells

Best Research-Cell Efficiencies

DSSC e OPV

- Techno-economic positioning -

Photovoltaic technologies: state of the art

3. Beyond the frontier - nanotechnology

Best Research-Cell Efficiencies

Enhancement potential

Nanotechnology and PV: Why?

 Morphologic advantages: nanometric structures have a lot of surface area (*e.g. DSSC*)

- The optoelectronic properties of materials are dominated by phenomena occurring at the nanoscale → we need to engineer the nanostructure of materials
- Nanoscale phenomena are governed by quantum mechanics → nanomaterials can exploit untapped physics at the macroscale (e.g. intermediate band)

Thermalization of electrons: wasted energy!

Nanotech and Photovoltaics:

- Better use of high-energy photons: MEG (Multiple Exciton Generation) -

A. Nozik, M. Beard, NREL

Using High Energy Photons: Hot Electron Extraction

PV Kamat, Nature Chemistry 2 p809 (2010) A. Pandey, P. Guyot-Sionnest*, J. Phys. Chem. Lett. 1 p45–47 (2010) JA McGuire et al., ACS Nano 4, p6087 (2010)

Low energy photons are lost

()

Energy

Beyond the single junction limit

- Intermediate Band Materials: Using Low Energy Phonons-

Making an Intermediate Band Material

Quantum dots embedded in a semiconductor

Assemblying Quantum Dots into Colloidal Solid Films

From a Colloidal Solid to a Dense Nanostructured Film

Use Core/Shell Nanocrystals

Thermal Treatment

Materials System Selection

E=0

Goldbery Yu.A. *Handbook Series on Semiconductor Parameters*, vol.1, M. Levinshtein, S. Rumyantsev and M. Shur, ed., World Scientific, London, 1996.

RK Swank, Phys. Rev. 153, 844 (1967)

S. Adachi, Properties of Grup IV, III-V and II-VI Semiconductors, Wiley 2005

Materials System Selection: Energy Level Alignment

Materials System Selection: Energy Level Alignment

Intermediate Band Materials: Evidence of Upconversion

- Exploiting low-energy photons: Intermediate Electronic Band-

etre

rc0

strato n

strato p

PU

State of the Art and Founding Idea

(e.g. PCBM)

ABSORBTION

Quantum dot + Fullerene Hybrid: CdSe@C61

CdSe@C6: Synthesis via Capping Exchange

Cacovich, Lughi et al., J. Phys 622, 2014

Photoluminescence Quenching in CdSe@C61

Cacovich, Lughi et al., J. Phys 622, 2014

Absorption of P3HT:CdSe@C61 blend

Cacovich, Lughi et al., J. Phys 622, 2014

Cacovich, Lughi et al., J. Phys 622, 2014

P3HT:CdSe@C61 blend

GOOD DISPERSION !!!

I-V Characteristic

The latest frontier Perovskite-based solar cells

- Most promising thin film technology (high efficiency)
- Cheap, high-throughput manufacturing

The latest frontier Perovskite-based solar cells

Sensitized perovskite solar cell

c) hv e e e e r type contact

Thin-film perovskite solar cell

Best Research-Cell Efficiencies

Enhancement potential

Next-generation solar cells

- Techno-economic positioning -

Concluding Remarks

- The cost reduction of the PV-kWh enabled attainment of grid parity in many Countries
- Most of the cost reduction has been driven by the economies of scale
- Nevertheless, technological innovation and breakthroughs are still important
- Current technologies have shown incremental, marginal improvements
- «Emerging» technologies such as Organic PV and DSSC need to prove robustness. They will hardly play a role in power generation
- The newest technologies (perovskites, quantum dot-based) have the chance to be a real breakthrough by combining high efficiency and extremely low cost