Si determinino le espansioni in serie bilatera centrata in z=0 per la funzione $\frac{1}{z(z-1)(z-i)}$ nelle regioni 0<|z|<1 e |z|>1.

Soluzione: Cominciamo da 0 < |z| < 1. Il coefficiente c_n di z^n nella serie di Taylor che converge in questa corona è dato dall'integrale su un cerchio centrato in z = 0 di raggio < 1, orientato in senso antiorario, di

$$\frac{1}{2\pi i} \frac{1}{z^{n+1}} \frac{1}{z(z-1)(z-i)} = \frac{1}{2\pi i} \frac{1}{z^{n+2}(z-1)(z-i)} . \tag{1}$$

Per $n \leq -2$, questa funzione è analitica all'interno del cammino di integrazione, dunque $c_n = 0$ per $n \leq -2$. Per $n \geq -1$ invece, usando Cauchy, deformiamo il cammino a un cerchio di raggio R > 1, più due cerchi in senso orario intorno a z = 1 e z = i. Chiamando questi tre cammini rispettivamente γ_R , $-\gamma_1$ e $-\gamma_i$ (in modo che γ_1 e γ_i siano orientati in senso orario). Otteniamo

$$c_n = \frac{1}{2\pi i} \left(\oint_{\gamma_R} - \oint_{\gamma_1} - \oint_{\gamma_i} \right) \frac{1}{z^{n+2}(z-1)(z-i)} .$$

Per l'integrale su γ_R usiamo la stima

$$\left| \frac{1}{2\pi i} \oint_{\gamma_R} \frac{1}{z^{n+2}(z-1)(z-i)} \right| \le 2\pi R \times \frac{1}{2\pi} \frac{1}{R^{n+4}} (1 + \mathcal{O}(R^{-1})) , \text{ per } R \to +\infty . \tag{2}$$

Pertanto dato che $n \ge -1$ e che per Cauchy possiamo liberamente prendere il limite $R \to +\infty$ senza modificare l'integrale, otteniamo che il contributo su γ_R è zero. D'altra parte la formula integrale di Cauchy (a posteriori, anche il teorema dei residui) ci dice che:

$$\frac{1}{2\pi i} \oint_{\gamma_1} \frac{1}{z^{n+2}(z-1)(z-i)} = \frac{1}{1-i} ,$$

$$\frac{1}{2\pi i} \oint_{\gamma_i} \frac{1}{z^{n+2}(z-1)(z-i)} = \frac{1}{(i)^{n+2}(i-1)} = \frac{(-i)^n}{1-i} .$$
(3)

Quindi in definitiva nella regione 0 < |z| < 1 otteniamo

$$c_n = \begin{cases} 0 & , \text{ per } n \le -2\\ \frac{1}{i-1}(1+(-i)^n) & , \text{ per } n \ge -1 \end{cases}.$$

Consideriamo ora |z| > 1. In questo caso il coefficiente c_n è calcolato da un integrale della stessa funzione (1) ma stavolta su un cerchio contenuto nella nuova corona che ci interessa, ovvero un cerchio centrato nell'origine e di raggio R > 1. Possiamo chiamare questo cammino γ_R come abbiamo fatto sopra, e varrà per $|c_n|$ la stima fatta in (2). Visto che per Cauchy possiamo

liberamente prendere il limite $R \to +\infty$ senza modficare l'integrale, ne concludiamo che stavolta per $n \geq -2$ i coefficienti c_n sono nulli. Rimangono da calcolare i coefficienti c_n con $n \leq -3$. In questo caso deformiamo il cammino ad avere un raggio più piccolo fino a farlo diventare la somma di tre contributi: un cerchio γ_0 attorno a z=0 di raggio <1, un cerchio γ_1 attorno a z=1, e un cerchio γ_i attorno a z=i, tutti e tre orientati in senso orario. Dunque

$$c_n = \frac{1}{2\pi i} \left(\oint_{\gamma_0} + \oint_{\gamma_1} + \oint_{\gamma_i} \right) \frac{1}{z^{n+2}(z-1)(z-i)} .$$

L'integrale su γ_0 fa zero perchè siamo nel caso $n \leq -3$ e la funzione è analitica al suo interno per questo range di n. Per gli integrali su γ_1 e γ_i abbiamo invece esattamente gli stessi risultati di sopra in eq. (3). Dunque per |z| > 1 otteniamo

$$c_n = \begin{cases} 0 & , \text{ per } n \ge -2\\ \frac{1}{1-i}(1+(-i)^n) & , \text{ per } n \le -3 . \end{cases}$$