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GLM: introduction and basic ideas

• GLMs allow to extend classical normal linear models in many
directions:

• response variables can be assumed non-normal (including discrete
distributions or distributions with support [0, ∞));

• The mean and the variance of the response are assumed to vary
according to values of observed covariates

• The impact of covariates on the mean of the response is specified
according to a (possibly) non-linear function of a linear combination of
the covariates

• Main advantages are:
• Unification of seemingly different models: it makes easy to use,

understand and teach the techniques. Many of the standard ways of
thinking LM carry over to GLMs;

• Normal LMs, probit and logit models, log-linear models for
contingency tables, Poisson regression, some survival analysis models
are GLMs;

• A single general theory and a single general computational algorithm
can be developed for inference.
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A first example: Health Insurance coverage
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For a sample of 37 individuals we observe the age of any sample unit and whether
he/she owns a private health insurance. It seems that older units are more likely to own
a health insurance. For these data response variable Y can be assumed Bernoulli

1. Yi ∼ Bernoulli(h(xi )).

2. and a possibly non linear model can be specified for h(·) → [0, 1].
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A second example: A dose-response analysis

• Consider the data in the table below

dose 1.66 1.74 1.75 1.76 1.78 1.80 1.86 1.88
n. positive 3 9 23 30 46 54 59 58
n. of patients 59 60 62 56 63 59 62 60
proportion 0.051 0.150 0.371 0.536 0.730 0.915 0.951 0.967

• The data refer to 481 individuals who received a drug. For each dose
of the drug it has been observed if the individual had a positive
response or not.

• Since only 8 different doses have been considered we can obtain the
proportion of positive responses for each dose.

6



A second example: binomial response

clin <- read.table("dati/clintrial.txt", header=T)
prop=clin$num.positive/clin$number
plot(clin$dose, prop, ylim=c(-0.15,1.1),xlim=c(1.62,1.92),

ylab="dose of the drug", xlab="", cex.lab=.7)
par(mar=c(3.5,5.5,1,1)); abline(0,0);abline(1,0); abline(lm(prop~clin$dose))
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• The plot shows that the proportion of positive responses out of mi on trial
increases with the dose of the drug.

• A linear relationship is patently inappropriate. The data are proportions and their
values should lie in the [0,1] range

• Yi ∼ Binomial(mi , h(xi )). Specify a non linear model for h(·) → [0, 1].
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Count data: an example with medical examinations
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• Yi (number of examinations) can be assumed Poisson: Yi ∼ Poisson(µi ).
• We can assume that µi = h(x), i.e., it is a function of the covariate x .
• A linear specification is clearly inappropriate (also because it will predict negative

values). We should choose among functions that h(·) → [0, ∞).
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From LM to GLM

• Recall that Normal LMs, in matrix notation, are defined by

y = Xβ + ϵ

where
1. Yi ∼ N(µi , σ2), independent, where

µi = xT
i β and

xT
i is i−th row of X , i = 1, 2, . . . , n;

2. The density of Yi may be written as fY (yi ) = fϵ(yi − xT
i β) where

covariates xi appear through the linear predictor:

ηi =
p∑

j=1

xijβj = xT
i β;

• β and σ2 are unknown parameters.
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Introducing GLMs

GLMs generalize LMs by:

• Considering a class of model of the form

fY (y) = fϵ(y ; xT
i )

and xT
i still enters into the model through the linear predictor.

• errors can enter the model in more general form (not simply
additively).

• Existence of the mean E (Y ) = µ is assumed and µ is determined by
η that is related to it by a suitable function

g(E (Yi)) = g(µi) = ηi = xT
i β

g(·) is called the link function.
• in principle f could be any suitable density (or probability) function,

but a family of distributions plays a key role:

Yi are assumed to be (independent) measurements from a distribution with
density (probability) function from the exponential dispersion family.
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The exponential (dispersion) family

• A random variable Y belongs to exponential (dispersion) family if its
density (probability) function can be written as

f (Y ; θ, ϕ) = exp
{

Y θ − b(θ)
ϕ

+ c(Y , ϕ)
}

, (1)

θ and ϕ are unknown scalar parameters,
b(·) and c(·) > 0 are known functions and the domain of Y does not
depend on θ or ϕ.

We will denote this by Y ∼ EF (b(θ), ϕ).

• θ is called the natural or canonical parameter of the exponential
family.

• ϕ is called the dispersion parameter. It can be known in some cases.
When it is unknown, the family is more properly called the
exponential dispersion family.

• Many of the most common continuous and discrete distributions
belong to this family (i.e. Normal, Gamma, Poisson, Binomial, etc) 11



Example: Poisson

• As we already noted it is the basic choice when modelling count data
• if Y ∼ Poisson(λ), its probability function is

f (Y ; λ) = e−λλY

Y !
= exp{Y log λ − λ − log Y !} ,

for Y = 0, 1, . . . ,.
• This shows that it is a member of (1) where θ = log λ is the natural

parameter, ϕ = 1, b(θ) = λ = eθ and c(Y , ϕ) = − log Y !.
• We can write Y ∼ EF (eθ, 1).
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Binomial

• Standard distribution when modelling binary responses
• If Y ∼ Bin(n, π), its probability function is

f (Y ; π) =
( n

Y
)

πY (1 − π)n−Y

= exp{log
( n

Y
)

+ Y log π + (n − Y ) log(1 − π)}

= exp
{

Y log
π

1 − π
+ n log(1 − π) + log

( n
Y

)}
,

for Y = 0, 1, . . . , n.
• It belongs to (1) where θ = log π

1−π natural parameter, ϕ = 1,

b(θ) = −n log(1 − π)|
π= eθ

1+eθ

= n log(1 + eθ)

and c(Y , ϕ) = log
(n

Y
)
.

• Y ∼ EF (n log(1 + eθ), 1).
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Mean and variance for Exponential family

• The function b(·) is called the cumulant function and it is important in evaluating
and interpreting first moments of the distribution.

• by using identities related to derivatives of log-likelihood function:

E (ℓ∗(θ)) = E
( d

dθ
ℓ(θ; Y )

)
= 0

and

i(θ) = var (ℓ∗(θ)) = E (−ℓ∗∗(θ)) = E
(

−
d2

dθ2 ℓ(θ; Y )
)

,

under usual regularity assumptions.
If Y is a r.v. member of the exponential family, log-likelihood for θ is: it follows
that:

E
(Y − b′(θ)

ϕ

)
= 0 and E(Y ) = µ = b′(θ)

var
(Y − b′(θ)

ϕ

)
=

b′′(θ)
ϕ

⇒ var(Y ) = ϕb′′(θ)

Denote V (µ) = b′′(θ), we can write var(Y ) = ϕV (µ)

• The function V (µ) is the so called variance function since it indicates how the
variance depends on the mean of Y (GLM can be heteroscedastic). This becomes
clear if we recall that µ is related to θ, i.e., µ = b′(θ).
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Main example

Poisson
We have for a Poisson with mean λ

b(θ) = eθ and ϕ = 1 and E (Y ) = b′(θ) = eθ = λ .

var(Y ) = b′′(θ) = eθ = λ then V (µ) = µ

Binomial
We have for a Binomial with parameters (n, π)

b(θ) = n log(1+eθ), ϕ = 1 then E (Y ) = µ = b′(θ) = n eθ

1 + eθ
= nπ .

var(Y ) = b′′(θ) = n eθ

(1 + eθ)2 = nπ(1−π) and V (µ) = µ(1−µ)/n .
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The link function

• The second important step in specifying a GLM is the definition of
the function relating µi and the linear predictor ηi .

• It is assumed that the link between µi , the mean of Yi , and xT
i , the

covariate vector, is

g(µi) = ηi and ηi = xT
i β .

• g(·) is a known monotone and differentiable function. The function
g(·) is the link function between µi and ηi .

• the inverse function g(·)−1 = r(·) is also called the response function
• Covariates enter into the model by the linear predictor xT

i β, but the
µi and ηi are generally non linearly related.

• Appropriate choices of the link function are such that µi = g−1(ηi)
takes on values on the appropriate range.
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The canonical link

• A typical choice is to write directly the natural parameter θ as a linear
function of the covariates Formally,

η = g(µ) = g(b′(θ)) = θ ,

g(·) is then the inverse function of b′(·). This choice of the link
function is called canonical link.

• Some interesting properties derives from choosing a canonical link.
Moreover the canonical link is the default link used in many softwares
for estimation of GLMs (including R).
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GLM: Complete specification

• A parametric model for the response Yi and a given vector of
covariates x i , i = 1, 2, . . . , n.

A GLM includes the following components:
1. Error structure (or response distribution): Yi ∼ EF (b(θi ), ϕ),

independent, where
E(Yi ) = µi = b′(θi ), i = 1, 2, . . . , n;

2. linear predictor: ηi = xT
i β, x i is a vector of constants and β

a vector of unknown parameters;
3. Link function: It is defined a function g(·) such that

g(µi ) = ηi ⇔ µi = g−1(ηi ), i = 1, 2, . . . , n and then
E(Yi ) = g−1(xT

i β).
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Some GLMs

Normal Linear Regression model
The standard normal LM is a GLM. In this case

Yi ∼ N(xT
i β, σ2) , i = 1, 2, . . . , n

θi = ηi = µi : the canonical link function g(·) is the identity function.
We can equivalently write Yi ∼ N(µi , σ2) or Yi = µi + ϵi , where
ϵi ∼ N(0, σ2).

Poisson Regression
Let Yi ∼ Poisson(µi) , i = 1, 2, . . . , n, independent. Let’s look for a link
function g(·) such that g(µi) = xT

i β. A good choice could be the log
function since µi = exT

i β is positive.

The choice: µi = exT
i β = eηi

that is ηi = log µi defines the Poisson regression and the log link function
is also the canonical one since θi = ηi .
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Binomial Regression (binary response)

• In the simplest case we observe a binary response variable Y and we want to
study its dependence on a set of covariates x .

• An appropriate model is still a GLM, where an appropriate distributional
assumption is binomial. The goal is to study how probability of success varies with
x .

• When data are not grouped and yi is coded by 0 and 1 the behaviour of yi is
completely determined by πi = µi . Note that Y is a Bernoulli implying that
E(Y ) = µ = π and var(Y ) = π(1 − π).

• If data are grouped (i.e. more observation for any value of x) then the number of
successes Zi for a given x is Zi ∼ Bin(mi , πi )

• In this case Zi depend also on mi but we are still interested in modelling success
probability and to this aim it is more natural to use as a response the relative
frequency of success. These are scaled binomials and: Yi = Zi /mi

• It is still true that
E(Yi ) = µi = πi and var(Y ) = π(1−π)

mi
. (when estimating the model the known

weights mi should be taken into account)
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Link functions for binomial regression

• The parameter µi must vary within [0, 1].The link function can be
chosen among those functions with this property. A natural choice is
µi = Ψ(ηi) where ηi = xT

i β and Ψ(·) is a distribution function.
• The resulting link function is g(µ) = Ψ−1(µ) Usual choices for Ψ(·):

1. Ψ(η) = Φ(η), standard normal distribution function. This is the first
model proposed for binary response and it is known as probit
regression.

2. Ψ(η) = eη

1+eη , and

g(µ) = Ψ−1(µ) = log µ

1 − µ
.

This gives rise to the well known logit model or logistic regression.
3. Ψ(η) = 1 − exp(−eη), and g(µ) = Ψ−1(µ) = log{− log(1 − µ)}.

This link function is the “complementary log-log” (it is related to the
distribution function of a type-1 extreme value distribution.)
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Poisson regression: Medical examinations

etavis=c(20,22,27,31,33,37,41,44,49,51,50,50,53,52,55,58,60,55,59)
numvisite=c(1,3,4,5,4,8,12,10,13,23,21,18,32,30,20,27,32,17,20)
plot(etavis,numvisite,ylab="medical examinations",xlab="",cex.lab=.7,

cex.axis=.7)
abline(0,0); abline(lm(numvisite~etavis)); modpo=(glm(numvisite~etavis,poisson))
coepo=modpo$coefficients; curve(exp(coepo[1]+coepo[2]*x),col=4,add=T)
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• A linear regression would be inappropriate (also because it will predict negative
values)

• The blue curve seems to provide a better approximation 22



Logistic regression: Health Insurance coverage

sanitar <- read.table("dati/sanitar.txt", header=T); attach(sanitar)
plot(jitter(eta),sani,cex=1.5 ,xlim=c(15,75),ylim=c(-0.05,1.05),

ylab="health insurance (1=yes)",xlab="", cex.lab=.7, cex.axis=.7)
par(mar=c(4,6,1,1)); abline(0,0); abline(1,0)
modall=glm(sani~eta,family=binomial(logit)); coef=modall$coefficients
curve(exp(coef[1]+coef[2]*x)/(1+exp(coef[1]+coef[2]*x)), add=T,col=2)
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• It seems that older units are more likely to own a health insurance.
• The red curve displays the probability that a unit of a given age has insurance

policy 23



Logistic regression: A dose response model

clin <- read.table("dati/clintrial.txt", header=T)
attach(clin); prop=num.positive/number; num.negative=number-num.positive
plot(clin$dose, prop, ylim=c(-0.15,1.1),xlim=c(1.62,1.92),

ylab="prop of positive", xlab="",cex.lab=.7, cex.axis=.7)
par(mar=c(3.5,5.5,1,1)); abline(0,0);abline(1,0); abline(lm(prop~clin$dose))
mio=glm(cbind(num.positive,num.negative)~dose,binomial);coef=mio$coefficients
curve(exp(coef[1]+coef[2]*x)/(1+exp(coef[1]+coef[2]*x)), add=TRUE,col=2)

1.65 1.70 1.75 1.80 1.85 1.90

−
0.

2
0.

2
0.

6
1.

0

pr
op

 o
f p

os
iti

ve

• The curve represented by logistic regression is by far more appropriate to represent
the relationship between the two variables.

• We can select functions that behave similarly to represent this relationship.
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Inference
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Estimation of the parameters

• ML can be used since distributional assumptions on parameters are available (for
the normal LM it coincides with LS).

• A property of the exponential families is that they satisfy enough regularity
conditions to ensure that the MLE is given uniquely by the solution of the
likelihood equations.

• Let us recall some important features of GLM:

• g(µi ) = ηi = xT
i β ⇔ µi = g−1(xT

i β);
• µi = b′(θi ) ⇔ θi = (b′)−1(µi ) = (b′)−1(g−1(ηi ));
• var(Yi ) = ϕV (µi ), with V (µi ) = b′′(θi ).

• Assuming independence of (y1, . . . , yn), the log-likelihood ℓ(β, ϕ) is simply given
by

ℓ(β, ϕ) =
n∑

i=1

log f (yi ; θi , ϕ) =
n∑

i=1

ℓi (β, ϕ) =
n∑

i=1

{ yi θi − b(θi )
ϕ

+ c(yi , ϕ)
}

where θi is a function of β through

g(µi ) = g(b′(θi )) = ηi = xT
i β .
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Likelihood equations

• To obtain the MLE of β it is necessary to solve the likelihood equations:

∂ℓ

∂βj
=

n∑
i=1

∂ℓi
∂βj

= 0 for j = 1, 2, . . . , p.

• Let us compute

∂ℓi
∂βj

=
∂ℓi
∂ηi

∂ηi
∂βj

=
∂ℓi
∂θi

∂θi
∂µi

∂µi
∂βj

=
∂ℓi
∂θi

(
∂µi
∂θi

)−1 (
∂ηi
∂µi

)−1 ∂ηi
∂βj

,

• where the terms can be written as

∂ℓi
∂θi

=
yi − b′(θi )

ϕ
=

yi − µi
ϕ

,

∂µi
∂θi

= b′′(θi ) =
var(Yi )

ϕ
,

∂ηi
∂µi

= g ′(µi ) ,

∂ηi
∂βj

= xij .
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Likelihood equations

• Thus, we have

∂ℓi
∂βj

= yi − µi
ϕ

ϕ

var(Yi)
1

g ′(µi)
xij

= (yi − µi)xij
ϕV (µi)g ′(µi)

.

• The likelihood equations for β are then
n∑

i=1

(yi − µi)
V (µi)g ′(µi)

xij = 0,

j = 1, 2, . . . , p, where µi = g−1(xT
i β).

• Note that the MLE of β for a fixed value of ϕ, does not depend on ϕ

and coincides with the unconstrained MLE.
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Canonical link

• The use of the canonical link (ηi = g(µi ) = g(b′(θi )) = θi ) produces some
simplifications in the inference based on the log-likelihood ℓ(β, ϕ).

• With the canonical link, we have g ′(µi ) = 1/V (µi ) and the first derivative
reduces to

n∑
i=1

∂ℓi
∂βj

=
n∑

i=1

(yi − µi )xij

ϕV (µi )g ′(µi )
=

n∑
i=1

(yi − µi )xij

ϕ
.

• This result implies that the likelihood equations simplify and take the form
n∑

i=1

yi xij =
n∑

i=1

µi xij .

Using matrix notation, XT y = XT µ.
• These equations agree with the general structure of the likelihood equations in

exponential families: the observed value of the minimal sufficient statistic is
equated to its expectation.

• As regards the existence and uniqueness of the MLE of β, if the link is the
canonical one, the theory of exponential families applies.

• In general the likelihood equations for β are nonlinear and must be solved with
iterative methods. To this end, the expected Fisher information for β is useful.
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Fisher information

• Since β and ϕ are orthogonal, we can proceed as if ϕ were known and we can
focus only on β.

• Let us consider the second derivatives of ℓi :

−E
(

∂2ℓi
∂βj ∂βk

)
= E

(
∂ℓi
∂βj

∂ℓi
∂βk

)
= E

(( (Yi − µi )xij

ϕV (µi )g ′(µi )

) ( (Yi − µi )xik
ϕV (µi )g ′(µi )

))
=

xij xik
ϕ2(V (µi ))2(g ′(µi ))2 E

(
(Yi − µi )2

)
=

xij xik
ϕV (µi )(g ′(µi ))2 ,

which gives the (j, k)-element of the Fisher information matrix for β. Using matrix
notation,

i(β) =
XT WX

ϕ
,

with W = diag(w1, . . . , wn) and

wi =
1

V (µi )(g ′(µi ))2 ,

and X is the matrix of the explanatory variables. 30



Fisher information

• With the canonical link, the observed and the expected informations coincide and
have (j, k)-element

xij xikV (µi )
ϕ

.

In matrix form,

i(β) = j(β) =
XT VX

ϕ
,

with V = diag(V (µi )).
• Asymptotic normality of the MLE gives

β̂ ∼̇ Np(β, ϕ(XT WX)−1) ,

for large n.
• Therefore, a consistent estimate of the covariance matrix of β is

i(β̂) = ϕ(XT Ŵ X)−1, where Ŵ is the matrix W evaluated at β̂.
• If ϕ is unknown, it should be replaced by a consistent estimator, such as the MLE

or the estimator based on the method of moments.
• For normal distribution with identity link we have g(µ) = µ, so that g ′(µ) = 1.

Moreover, V (µ) = 1, ϕ = σ2 and µi = xT
i β. The likelihood equations are∑n

i=1
(yi −xT

i β)xij
σ2 = 0 that leads to usual LSE
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Some models

Normal Linear Model
We have g(µ) = µ, so that g ′(µ) = 1. Moreover, V (µ) = 1, ϕ = σ2 and µi = xT

i β.
The likelihood equations are

n∑
i=1

(yi − xT
i β)xij

σ2 = 0 j = 1, 2, . . . , p. .

Simplifying σ2 and using matrix notation, the above equations reduce to the usual LS
equations: XT (y − Xβ) = 0 or, equivalently,

XT Xβ = XT y that leads to β̂ = (XT X)−1XT y

Poisson regression
We have g(µ) = log µ, so that g ′(µ) = 1/µ. Moreover, V (µ) = µ, ϕ = 1 and
µi = xT

i β. The likelihood equations are
n∑

i=1

(yi − exT
i β)xij = 0 ,

which are generally nonlinear in β. In view of this, an explicit solution does not exist in
general.
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An iterative algorithm

• Likelihood equations for GLMs do not usually have explicit solutions.
They should be solved by iterative methods.

• For the GLM there exists the possibility to use a simple algorithm for
the solution of the likelihood equations: the MLEs of the parameter β

in the linear predictor can be obtained by iterative weighted least
squares.

• Starting with appropriate initial value β̂
(0)

and obtaining a sequence
β̂

(1)
, β̂

(2)
, . . . , using a rule to update β̂

(t+1)
with β̂

(t)
, until that the

value of
||β̂

(t+1)
− β̂

(t)
||

is sufficiently small (< ϵ).
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Newton-Raphson and Fisher scoring

• Let

ℓ∗ =
(

∂ℓ

∂β1
, . . . ,

∂ℓ

∂βp

)T

be the score vector. We want to solve the equation

ℓ∗ = ℓ∗(β) = 0 .

• The Newton-Raphson method is based on the updating rule at the
(t + 1)−th iteration

β̂
(t+1)

= β̂
(t)

+ (j(β̂
(t)

))−1ℓ
(t)
∗ , (2)

with ℓ
(t)
∗ = ℓ∗(β̂

(t)
).

• The observed information can be replaced by the expected Fisher
information i(β). This algorithm takes the name of Fisher scoring
method. This maintains the convergence of the algorithm and
simplifies the expressions (if the canonical link function is used, the
two expressions coincide).
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Developing the algorithm

Expression (2) is equivalent to

i(β̂
(t)

)β̂
(t+1)

= i(β̂
(t)

)β̂
(t)

+ ℓ
(t)
∗ .

Remember that the (j , k)-th element of i(β) is
n∑

i=1

xijxik
var(Yi)

(
∂µi
∂ηi

)2
,

which gives i(β) = XT WX
ϕ , with wii = 1

V (µi )

(
∂µi
∂ηi

)2
.

In view of this, the right hand term can be written as

(i (t))β̂
(t)

+ ℓ
(t)
∗

=
p∑

k=1

n∑
i=1

xijxik
var(Yi)

(
∂µi
∂ηi

)2
β̂

(t)
k +

n∑
i=1

(yi − µi)xij
var(Yi)

(
∂µi
∂ηi

)
= XT W (t)s(t) ,

35



Weighted Least Squares

• where s(t) is a vector with elements

s(t)
i =

p∑
k=1

xik β̂
(t)
k + (yi − µi)

(
∂µi
∂ηi

)
,

and all the involved quantities are evaluated at β̂.
• Therefore, it is possible to arrive to the expression

XT W (t)X β̂
(t+1)

= XT W (t)s(t) . (3)

• Clearly, the parameter ϕ simplifies.
• The above expression has the form of the normal equations for a LM

obtained with weighted least squares, except that the equation above
has to be solved iteratively because in general s and W depend on β.
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Iterative Weigthed Least Squares (IWLS)

• Indeed, the Newton-Raphson iteration is

β̂
(t+1)

= (XT W (t)X )−1XT W (t)s(t) . (4)

• Each iteration of the algorithm is equivalent to a weighted least
squares estimate, in which the adjusted dependent variable and the
weights depend on the fitted values, for which only current estimates
are available.

• The algorithm has two main steps:
1. Given β̂

(t), compute s(t) and W (t);
2. Obtain β̂

(t+1) through (4).

To start the algorithm a simple and convenient choice of the starting
values is s(0) = g(Yi) and W (0) equals to the identity matrix.
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Estimating the dispersion parameter ϕ

• For the LM, the estimation of β is independent from the value of the variance σ2.
A similar situation holds for the dispersion parameter ϕ in GLMs.

• Obviously, the MLE of ϕ, with β replaced by β̂, could be used.

• Also estimators based on the method of moments are often used for ϕ.

• Since var(Yi ) = ϕV (µi ) or, equivalently, since E((Yi −µi )2)
V (µi )

= ϕ if β is known, an
unbiased estimator of ϕ is

1
n

n∑
i=1

(yi − µi )2

V (µi )
.

If the expected values µi are replaced with their estimates based on β̂, then the
following adjusted consistent estimator is obtained

ϕ̂ =
1

n − p

n∑
i=1

(yi − µ̂i )2

V (µ̂i )
,

where
µ̂i = g−1(xT

i β̂) .
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Exploiting asymptotic normality of β̂

• For n large, the asymptotic distribution of the MLE is

β̂∼̇Np(β, [i(β̂)]−1) where i(β̂) = XT Ŵ X
ϕ

with Ŵ computed at β̂. The estimated asymptotic variances are the
diagonal elements of the matrix (XT Ŵ X )−1ϕ.

• Using the asymptotic distribution of β̂, a confidence interval for βj

with approximate level 1 − α is

β̂j ± z1−α/2

√
ϕ[(XT Ŵ X )−1]j,j .

• and the statistic β̂j√
ϕ[(XT Ŵ X)−1]j,j

can be used to test significance of a
single βj
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Model Evaluation
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Comparing nested models

• Let us start by considering two nested GLMs. Let denote the models
by MC and MR , such that MR ⊂ MC . Specifically, the current model
MC contains p parameters and the reduced model MR contains p0

parameters, where p > p0.
• Consider the following partition of β = (βMR , βMC ), where

βMR = (β1, . . . , βp0) and βMC = (βp0+1, . . . , βp). Suppose we want
to test the following hypothesis

H0 : βMC = 0 against H1 : βMC ̸= 0 .

• The criterion we will adopt to compare MC and MR is the likelihood
ratio

W = 2{ℓ(β̂) − ℓ(β̂MR)} .
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The deviance in LMs

• In normal LMs, with σ2 known, the likelihood ratio is a function of
the deviance (sum of square of residuals) D = SSE =

∑
i(yi − µ̂i)2 of

the two models. When comparing two nested models (MR ⊂ MC ),
the likelihood ratio criterion will lead to rejection of H0 for large
values of the following statistic

W = 2{ℓ(β̂) − ℓ(β̂MR)} = DMR − D
σ2 ,

where DMR = SSEH0 and D = SSE are sums of square of residuals in
the reduced and current models respectively.

• When H0 holds this statistic has a χ2
p−p0

distribution.
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LR test

• Like Normal LMs, we look for an interpretation of (log-)likelihood
ratio in GLMs so that the relationship between the two classes of
models is clear. It will help if we can define an analogous quantity as
deviance in LMs.

• Log-likelihood for a GLM is

ℓ(β) =
n∑

i=1
ℓi(β) ,

where
ℓi(β) = yiθi − b(θi)

ϕ
+ c(yi , ϕ) .

• With nested GLM, the statistic

W = 2{ℓ(β̂) − ℓ(β̂MR)}

is asymptotically distributed as a χ2
p−p0

when H0 holds.
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The saturated model

• Analogy with Normal LM can be kept by introducing likelihood associated to a
model where there are as many parameters as observations. This model will be
denoted as saturated or full.

• At the other extreme there is a model as simple as possible, i.e., a model where a
single parameter represents a common µ for all the yi

A “’good”’ model usually stands between these two extremes since a saturated model is
uniformative being unable to summarize data: it just repeats them in full, and a null
model is usually too simple to be useful. We should seek a balance between conflicting
goals of parsimony and goodness of fit.

• Saturated model is defined as:
7→ a GLM having the same distribution and link function of the current

model;
7→ but a number of parameter equal to n (or to the number of different

groups sharing the same x vector).
• We can evaluate likelihood function for the saturated model and the current

model at the value of the MLE obtained in both cases (θ̃ and θ̂ respectively). If
the current model fits the data, ℓ(θ̃) should be very similar to ℓ(θ̂). In case of a
poor fit then ℓ(θ̂) should be much smaller than ℓ(θ̃).
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The deviance in GLMs

• Formally, the quantity

D(y ; θ̂) = 2ϕ{ℓ(θ̃) − ℓ(θ̂)}

is called deviance function of the model and with
Di = 2{yi(θ̃i − θ̂i) − b(θ̃i) + b(θ̂i)} we have

D(y ; θ̂) =
n∑

i=1
Di (5)

Note that it is always non negative.
This quantity is small for good models and is large when the current model gives a poor
fit. Behaviour of deviance is equivalent to that of SSE in LMs.

• ℓ(θ̃) is the log-likelihood obtained by letting µi = b′(θi ) = yi (⇔ (∂ℓi /∂θi ) = 0),
so the saturated model has p = n parameters.

• The saturated model is useless but ℓ(θ̃) provides a benchmark to compare
log-likelihood of the current model.
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Example: Normal regression model

Since Normal LMs are GLMs with identity link functions we can show that
calculating the above defined deviance we give in this case the same result
obtained by standard theory for goodness of fit evaluation in Normal LMs.

• Yi ∼ N(µi , σ2), b′(θ) = θ2

2 , θ = µ = b′(θ) and ϕ = σ2.
• ℓ(θ) = − n

2 log σ2 − 1
2σ2

∑n
i=1(yi − µi)2

• For the saturated model µ̃i = yi , and

ℓ(θ̃) = −n
2 log σ2 .

• For the current model µ̂i = xT
i β̂, and

ℓ(θ̂) = −n
2 log σ2 − 1

2σ2

n∑
i=1

(yi − µ̂i)2

• Scaled deviance is

D(y ; θ̂) =
n∑

i=1

(yi − µ̂i)2

σ2

the same expression for SSE of the current model, divided by σ2. 46



Poisson

• Yi ∼ Poisson(µi), b(θi) = eµi = b′(θi), ϕ = 1, log µi = xT
i β

• ℓ(θ) =
∑n

i=1 yi log µi −
∑n

i=1 µi

• For the saturated model µ̃i = yi , and

ℓ(θ̃) =
n∑

i=1
yi log yi −

n∑
i=1

yi .

• For the current model log µ̂i = xT
i β̂, and

ℓ(θ̂) =
n∑

i=1
yi log µ̂i −

n∑
i=1

µ̂i .

• So deviance is D(y ; θ̂) = 2
(∑n

i=1 yi log yi
µ̂i

−
∑n

i=1 yi +
∑n

i=1 µ̂i

)
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Binomial

• Yi ∼ Bin(1, πi), con πi = Pr(Yi = 1) = E (Yi) = µi

• ℓ(θ) =
∑n

i=1 (yi log πi + (1 − yi) log(1 − πi))
• For the saturated model µ̃i = yi and

ℓ(θ̃) =
n∑

i=1
(yi log yi + (1 − yi) log(1 − yi)) .

• For the current model logit(µ̂i) = xT
i β̂ and

ℓ(θ̂) =
n∑

i=1
(yi log π̂i + (1 − yi) log(1 − π̂i)) .

• The deviance is

D(y ; θ̂) = 2
n∑

i=1

(
yi log yi

π̂i
+ (1 − yi) log 1 − yi

1 − π̂i

)
.
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Comparing nested models

• Considering two nested models MC and MR , likelihood ratio test is

W = 2
{

ℓ(β̂) − ℓ(β̂MR)
}

= D(Y , θ̂MR) − D(Y , θ̂)
ϕ

,

as n → ∞ it is distributed χ2
p−p0

when H0 holds.
• So to test if reduced model can be accepted we can compare

W = D(Y , θ̂MR) − D(Y , θ̂)
ϕ

with the quantiles of the distribution χ2
p−p0

. We reject H0 for large
values of the statistic (or for a small p-value).
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Residual Deviance

• It is important to note that since also deviance is defined as a function of the
difference arising from a log-likelihood ratio of two nested model one is tempted
to use the same criteria for evaluating if deviance of the current model is
significantly small. One can look if value of deviance is not large enough when
compared to a χ2

n−p .

• In this last case standard asymptotic theory could not work when the number of
parameter in the saturated model is not fixed as n goes to infinity.

Nonetheless the criterion could work when the number of parameters is fixed: this is, for
instance, the case of a binomial model for grouped data or a Poisson model with factors
as the only covariates (as it happens in log linear model from contingency tables).

• In some cases (the most notable being binomial and Poisson) the dispersion
parameter is fixed to 1.

• When dispersion parameter ϕ is not known another consistent estimate of it must
be considered

ϕ̂ =
D(Y , θ̂)
(n − p)

and under mild conditions the result stated above still works.
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Model selection

• Model selection strategies can exploit the tools defined above to explore which
combination of explanatory variables leads to a satisfactory model.

• So one can consider a stepwise backward search by starting with a model that
includes all the covariates and then consider a set of reduced sub models obtained
by removing certain variables (backward selection). In order to choose among
models, one can consider the sub-model obtained by deleting variables with a
large p-value.

• A forward search starts from the null model (usually the one including only the
intercept) and (groups of) variables are included if the p-values associated are
small.

• A combination of the two strategies can also be considered.

• To compare models also the well known criteria AIC and BIC can be used.
For instance, in this case AIC = −2ℓ(θ̂) + 2p where p is the number of
parameters of the model (when dispersion parameter is known) and one chooses
the model where AIC is smaller.
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Residuals in GLM

• Let us recall the basic ideas in using residual analysis in LMs:
• residuals are easily defined as the difference between the observed

datum and the estimated systematic part of the model: this step is
less natural in GLM.

• residuals tell us if there are symptoms of systematic differences
between observed and fitted values (i.e. plot of residuals against fitted
values, or against covariates)

• residuals help us recognizing discrepancies between few data and the
rest (ouliers detection, evaluation of leverage: hat matrix, case
deletion measures -Cook’s distance-, jacknife residuals, etc.)

• Some of these ideas can be generalized in GLMs.
• A straight extension of the concept of standardized residual is given by

rPi = Yi − µ̂i√
ϕ̂V (µ̂i)

, (6)

called Pearson residuals. The definition (6) resembles that for
residuals in LMs based on the estimation of the error term ϵi . 52



Deviance residuals

• Recall that in GLMs ϵi does not exist in general, so we can measure
the contribution of each observation to deviance. This is analogous to
LMs where SSE is defined as

SSE =
n∑

i=1
e2

i =
n∑

i=1
(Yi − xT

i β̂)2 ,

while in GLMs a similar quantity is the deviance. Recall that deviance
is defined as

D(y , θ̂) =
n∑

i=1
Di .

Large individual contributions to total deviance Di reflect data that
are not properly reproduced by the model. Let us define

rDi = sgn(yi − µ̂i)
√

Di ,

that is called deviance residual of the model.

For large n it is possible to show that rPi ≈ rDi .
Other residuals, such as Anscombe residuals, are also defined for GLMs. 53



Residual analysis

• Actually if the model is valid, residuals of any type, possibly scaled by
ϕ̂, will have a distribution that can be (loosely) approximated by a
N(0, 1). This suggest to use standard graphical tools, like

7→ normal probability plot of the residuals;
7→ plot of residuals against the fitted values Ŷi ;
7→ plot of residuals against explanatory variables

to check assumptions.
• It is also possible to generalize the Hat matrix H to check influence

and leverage of residuals. Recall that H in LMs is such that ŷ = Hy
and
H = X (XT X )−1XT .

• Generalized hat matrix is similarly obtained as
H = W 1

2 X (XT WX )−1XT W 1
2 where W is substituted by Ŵ .

• A generalization of the Cook’s distances is also possible.
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More on some specific GLMs
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Offset in Poisson regression/modelling rates

There are many cases where the observed counts should be interpreted as relative to
some baseline.

• The parameter λ of a Poisson regression model can be interpreted with reference
to a specific unit of time or space. And the number of cases yi in a process is
then Poisson(ei λ). λ is the rate of the process and ei is the exposure.

• Suppose we want to model the number of those with a specific disease within a
geographical area: this clearly depends on the rate and on the number of units
living in that area.

• One could then model the rate λi /ei . In this case

λi
ei

= exp(xT
i β̂) → log

(
λi
ei

)
= xT

i β̂ → log(λi ) = xT
i β̂ + log(ei )

• Then yi is again modelled as in Poisson regression by specifying its mean as
λi =exp(xT

i β̂) but also log(ei ) is introduced into the model.

• log(ei ) is included in the model as a deterministic predictor whose coefficient is
fixed to 1 and it is called the offset (in R is introduced in glm with the option
offset=log(....)).
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Overdispersed count data

• Poisson regression models in a GLM context imply that the dispersion
parameter is fixed to 1.

• Variance function is then functionally related to the mean function (it
is actually the same).

• For a Poisson model the standardized residuals are

zi = yi − µ̂i√
µ̂i

where µ̂i = exp(xT
i β̂)

• If the Poisson model holds the zi are approximately independent and
will have mean equal to 0 and variance equal to 1. Approximately∑n

i=1 z2
i is a χ2

n−k distribution if the model holds. This can be used
for detecting overdispertion.

• Considering a model for counts with overdispersion will be more
realistic in many practical cases.
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Logistic regression

Binomial regression with logit link is by far the most popular.
Some reasons are:

1. it is the canonical link
2. it can be interpreted as log-odds of probability of success
3. statistical analysis is simplified
4. appropriate for data collected in a retrospective study or when

oversampling one of the classes.

The last property deserves some more words since it could be relevant
when this model is used for classification (prediction).

It states that if we oversample one of the two classes (as typically done in
retrospective studies) the estimates of the βj (j = 1, 2, . . . , p − 1)
parameters are unchanged with the exception of the intercept β0.

This can bias, but in a predictable direction, the estimated probability of
success.
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Overdispersion in binomial regression

• Also in the case of Binomial regression the mean µ = np completely
defines the variance function v(µ) = np(1 − p).

• Also in this context data can appear to have more variance than
expected under binomial variation.

• Again, one can use standardized residuals to reveal this.
• The simplest and more common mechanism that gives rise to

overdispersion is clustering in the population. In the case of a
binomial response assume data are clustered and that cluster size k is
fixed. Since we have m individuals in the sample, there are m/k
clusters. Now if we assume that in each cluster the number of
successes Zi follows a Bi(k, πi) which varies across clusters, the
response Y = Z1 + Z2 + · · · + Zm/k .

Now let E(πi ) = π and var(πi ) = τ2π(1 − π) the mean and the variance of Y are equal
to E(Y ) = mπ and var(Y ) = mϕπ(1 − π), with ϕ = (1 + (m − 1)τ2).

• Note that overdispersion cannot arise in case of a Bernoulli model. Then this issue
should be taken into account only with grouped data.
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Quasi-likelihood

• For LMs the method of LS allows to obtain estimates of the regression parameters
without the specification of a probabilistic model.

• The method of LS requires only the specification of the relation between the
expected value of the response variable and the linear predictor, and the
specification of the variance of the error term, which is not related to the expected
value:

E(Yi ) = µi = ηi var(Yi ) = σ2

• Also for the GLMs it is possible to specify only these two relations (assuming that
the variance function V (µi ) is known).

• Indeed, the likelihood equation for β
n∑

i=1

yi − µi
V (µi )g ′(µi )

xij = 0 , j = 1, . . . , p ,

is an unbiased estimating equation provided that E(Yi ) = µi = g−1(ηi ).
• In other words, this means that the parametric assumption Yi ∼ EF (·, ϕ) could

not even be satisfied. Only the assumption about expectations is essential:
µi = E(Yi ) = g−1(ηi )

• The only distributional feature that must be known in order to calculate the
estimating equation is the variance function V (µ).
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Quasi-likelihood

• Under suitable regularity conditions, the likelihood equations for a
GLM give estimates for the coefficients β which maintain several
properties, also if the parametric assumptions of Yi are substituted
with weaker second order assumptions:

1. g(µi ) = g(E(Yi )) = ηi , i = 1, . . . , n
2. var(Yi ) = ϕV (µi ), i = 1, . . . , n
3. cov(Yi , Yj) = 0, if i ̸= j.

• The semi-parametric statistical model specified by assumptions 1–3 is
called quasi-likelihood model.

• If V (µ) = 1 and g(µ) = µ, the assumptions 1–3 match the usual
second order assumptions of the classical LM.

• On the other hand, if V (µ) = µ2 we obtain a multiplicative model,
Yi = µiϵi , with E (ϵi) = 1 and var(ϵi) = ϕ.
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Quasi-likelihood

• Gauss-Markov (BLUE) optimality of LS extends to quasi-likelihood
estimates and it has minimum asymptotic variance among estimating
equations that are linear (in Y ) and unbiased

• Indeed, the likelihood equation for β

q(y ; β) =
n∑

i=1
q(yi ; β) =

n∑
i=1

yi − µi
V (µi)g ′(µi)

xij = 0 , j = 1, . . . , p ,

behaves like a score vector. Specifically:

E (q(Y ; β)) = 0, and var(q(Y ; β)) = −E (∂q(Y ; β)/∂β) .

• Quasi likelihood estimators shares many properties of a proper
likelihood: the quasi-MLE β is asymptotically normal, the
quasi-likelihood ratio statistic has a null chi-squared distribution.
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Quasi-likelihood and overdispersion

• The assumptions 1–3 offer an increase in flexibility with respect to the
usual parametric specifications based, respectively, on the Poisson,
binomial or exponential distributions.

• In practice, there are situations in which the dispersion parameter
does not agree with the assumed exponential family.

• For example, for the binomial or Poisson distributions we have ϕ = 1,
but data could show agreement with ϕ > 1.

• In this case we have overdispersion, i.e. the variance of Y is greater
than its theoretical value, and it is more plausible to assume
var(Yi) = ϕV (µi), with ϕ > 1. For example, for proportions, it can
be assumed that var(Y ) = ϕnπ(1 − π) > nπ(1 − π), with ϕ > 1,
where nπ(1 − π) is the variance of a binomial distribution.

• In general, the quasi-likelihood approach allows to deal with
overdispersion problems: it is possible to specify var(Yi) so that there
is more variability with respect to the exponential family.

• The case of underdispersion, i.e. ϕ < 1, is less important in
applications, but can be dealt with by the QL model as well. 63



Using quasi-likelihood in glm

• When estimating a GLM by using quasi-likelihood one can use the same variance
function derived from a Binomial or from a Poisson model and using the canonical
link for those models. In R this leads to a specification of the family that is
called quasibinomial or quasipoisson.

• Estimates of the β are the same since the estimating equations do not change
• But standard errors of estimates will change since a value different from 1 is

estimated for ϕ. In quasipoisson one should take into account that variance is
modelled as Var(yi ) = ϕµi

• The parameter ϕ can be also estimated as

ϕ̂ =
1

n − p

∑ (yi − µ̂i )2

µ̂i

• In those cases also the Deviance of the model has to be corrected because it is
computed assuming ϕ = 1. The deviance reported has to be divided by ϕ̂

• Also the standardized residuals are different. E.g., for the Poisson:

zQL
i =

yi − µ̂i√
ϕ̂µ̂i

vs zGLM
i =

yi − µ̂i√
µ̂i
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Beyond GLMs

65



Negative binomial regression

• It is an alternative model that can be considered when data exhibits
overdispersion. Its probability function is

Pr(Z = z) =
(

z + k − 1
z

)
pk(1 − p)z z = 0, 1, . . .

where E (Z ) = k(1 − p)/p and Var(Z ) = k(1 − p)/p2.

• Interpretation: probability to observe z failures until the pre-specified
number of successes k is observed.

• Compared with Poisson
• since it has an extra parameter it proves to be more flexible
• mean is larger than variance and then it accommodates overdispersion
• Poisson is a limiting case of negative binomial (if p → 1 and k → 0

then kp → λ)
• Recall that negative binomial emerges as a mixture of Poisson when

each unit Y is Poisson with mean λ and λ are drown from a Gamma
distribution.
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Negative Binomial regression

• When building a model for Negative Binomial a different
parametrization is more appropriate, by defining Y = Z − k and
p = 1

1+α

•
Pr(Y = y) =

(
y + k − 1

k − 1

)
αy

(1 + α)y+k y = 0, 1, . . .

• Then
• E(Y ) = µ = kα

• Var(Y ) = kα + kα2 = µ + µ2/k

• and the following link can be used log α
1+α = log µ

k+µ

• Note that BiN is not a member of the EF. Then it is not a proper
GLM. Classical IWLS cannot be used as it is.

• In R a specific function has to be used: glm.nb(...) included in the
package MASS
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Zero inflated Poisson

• Zero inflation means that we have far more zeros than what would be expected for
a Poisson or BiN distribution

• Ignoring zero inflation can have two consequences:

• the estimated parameters and standard errors may be biased
• the excessive number of zeros can cause overdispersion

• A possible model hypotizes that the observed counts derive from a mixture of two
populations:

• for a part of the population (with probability p) Y can only be 0
• for the remaining part (with probability 1 − p) Y is distributed as a

Poisson or a BiN.
• Distribution of counts is then, in case of Poisson

P(yi = 0) = pi + (1 − pi )e−µi

P(yi = yi |yi > 0) = (1 − pi )
µyi

i eµi

yi !

• Covariates can be introduced, like in GLM, for modelling pi and µi
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