

Coordination cages based on Pd(II) and banana shaped bis-pyridin ligands

Dr. Irene Regeni 3rd of December 2021

Clever Lab

Metal-mediated Self-Assembly

directed metal-ligand dative bonds allow control of geometry

"naked ions" with chelating ligands

P. Mal, B. Breiner, K. Rissanen, J. R. Nitschke, Science 2009, 324, 1697–1699

Organic Ligands

Pd(II) and banana shaped bis monodentate ligands

Molecular building blocks with reactive groups Larger supramolecular objects

- Dynamic equilibrium
- Thermodynamic product
- Reversible
- Defect Free

Principle of "Maximum Site Occupancy"

- when steric and electronic conditions allow, all metal binding sites will coordinate to the maximum possible number of offered ligand donor sites \rightarrow thermodynamically favored
- correct stoichiometry of metal ions and ligands
- smaller assemblies are entropically favored

cage"

Structure Relationships

D. Fujita, Y. Ueda, S. Sato, H. Yokoyama, N. Mizuno, T. Kumasaka, M. Fujita, Chem 2016, 1, 91–101. 6

Structure Relationships

Clever

Lab

2D simplification

S. Saha, I. Regeni, G. H. Clever, Coord. Chem. Rev. 2018, 374, 1

Host Guest Chemistry

Clever

Communications

Anion Recognition

DOI: 10.1002/anie.200902717

Inclusion of Anionic Guests inside a Molecular Cage with Palladium(II) Centers as Electrostatic Anchors**

Guido H. Clever, Shohei Tashiro, and Mitsuhiko Shionoya*

Cage formation

Cage forms quantitatively upon addition of appropriate amount of metal ion: L_4M_2

¹H DOSY NMR: Diffusion Ordered Spectroscopy

Idealized globular molecular size estimation using the Stokes-Einstein equation:

$$r = \frac{k \cdot T}{6 \cdot \pi \cdot \eta \cdot D}$$

With r = radius, k = Boltzmann const., T = Temp., η = dynamic viscosity of CD₃CN = 3.9 \cdot 10⁻⁴ Pa/s and D = Diffusion values estimated by the DOSY experiment: log[D_{ligand}] \approx - 9.15, log[D_{cage}] \approx - 9.30

The obtained radius of 1.1 nm for cage 6 correlates well with the values from the molecular model and the x-ray structure. 10

Cage formation

Mass Spectrometry Typical ESI-TOF spectra

z = 1/peak distance

In ESI mass spectra, one product often results in a series of peaks with different m/z.

The reason for this can be:

- different protonation grade
- different number off associated counter ions
- redox processes

Attention: not only the charge but also the mass of additional protons or counter ions has to be considered:

```
m/z [(Lig)<sub>4</sub>Pd<sub>2</sub>(BF<sub>4</sub>)<sub>2</sub>]<sup>2+</sup>
≠
2 x m/z [(Lig)<sub>4</sub>Pd<sub>2</sub>]<sup>4+</sup>
```

Cage formation

X-ray crystal structure

Host-Guest Interaction

Host = Self-assembled Coordination Cage

in polar solvent (MeCN)

Guest = Ferrocene Bis-sulfonate

Host-Guest Interaction

NMR titration

DOSY superposition of spectra of 1,1'-ferrocene bissulfonate @ Cage 6 (black: signals of cage, NBu_4^+ ; red: signals of encapsulated guest) and the free guest (green).

Evolution of coordination cages: Increasing the complexity

Heteroleptic coordination cages

a) narcissistic + b) integrative M c) statistical

Self-sorting possibilities

Established Strategies for integrative self-sorting

Coordination Sphere Engineering

Shape Complementarity

Asymmetric Ligand

Heteroleptic coordination cages

W. M. Bloch, G. H. Clever, et al. J. Am. Chem. Soc. 2016, 138, 13750–13755

Coal-Tar Dyes-based Coordination Cages and Helicates

Coal-Tar Dyes-based Coordination Cages and Helicates

Clever

Dye-based Helicates

Clever

Absorption Spectra of the Dye-based Assemblies

Cage solutions in DMSO. In the picture concentration of 0.7 mM of cage (2.8 mM ligand concentration)

[Pd₂(**MB-P**)₄]

 (\mathcal{M}) -[Pd₂(**MB-Q**)₄]

Chiral Induction from Small Molecule to Cage

