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The Zeno's paradox in quantum theory 
B. Misra and E. C. G. Sudarshan* 

Center for Particle Theory. University of Texas at Austin. Austin. Texas 78712 
(Received 24 February 1976) 

We seek a quantum-theoretic expression for the probability that an unstable particle prepared initially in a 
well defined state p will be found to decay sometime during a given interval. It is argued that probabilities 
like this which pertain to continuous monitoring possess operational meaning. A simple natural approach 
to this problem leads to the conclusion that an unstable particle which is continuously observed to see 
whether it decays will never be found to decay! Since recording the track of an unstable particle (which 
can be distinguished from its decay products) approximately realizes such continuous observations, the 
above conclusion seems to pose a paradox which we call Zeno's paradox in quantum theory. The relation 
of this result to that of some previous works and its implications and possible resolutions are briefly 
discussed. The mathematical transcription of the above-mentioned conclusion is a structure theorem 
concerning semigroups. Although special cases of this theorem are known, the general formulation and 
the proof given here are believed to be new. We also note that the known "no-go" theorem concerning 
the semigroup law for the reduced evolution of any physical system (including decaying systems) is 
subSllmed under our theorem as a direct corollary. 

1. INTRODUCTION 

The object of this paper is to discuss a seemingly 
paradoxical result in quantum theory concerning tem­
poral evolution of a dynamical system under continuous 
observation during a period of time. For reasons that 
will become clear shortly we call this complex of de­
ductions Zeno's paradox in quantum theory. 

Let us consider schematically the theory of an un­
stable quantum system. Naturally the states corre­
sponding to the decay products also should be included 
in the space of all states which we take to be a Hilbert 
space H. Let us denote the (orthogonal) prOjection onto 
the subspace spanned by the undecayed (unstable) states 
of the system by E. This projection E thus represents 
the observable that corresponds to the "yes-no experi­
ment" for determining whether the system is in an un­
decayed state or in a decayed state. The evolution in 
time of the states of the total system will be described 
by a unitary group U(t) '" exp(- iHt) labeled by the real 
time parameter t. In this setting the quantity 

q(t) =Tr[pU*(t) EU(t)] (1) 

is interpreted as the probability, at the instant t, for 
finding the system undecayed when at time 0 it was pre­
pared in the state p. Correspondingly, the probability 
that, at the instant t, the system will be found to have 
decayed is the complementary quantity 

p(t) = 1 - q(t) = Tr[ pU* (t) E lU(t)], 

All these are, of course, standard. 

Quantum theory, in fact, provides an unambiguous 
algorithm for computing the probability distributions 

(2) 

of time, given the knowledge of the initial state of the 
of) time, given the knowledge of the initial state of the 
same system and its law of time evolution. Expressions 
(1) and (2) are only particular instances of this well­
known algorithm. 

In contrast to the above-mentioned probabilities 
which refer to a specified instant of time we may con-
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Sider the following probabilities for which quantum 
theory has no ready expressions: 

(1) The probability that the system prepared in the 
undecayed state p at time 0 is found to decay sometime 
during the interval ~ = [0, d. We denote this by P(O, t; pl. 

(2) The probability Q(O, t; p) that no decay is found 
throughout the interval ~ when the initial state of the 
system was known to be p. 

(3) The probability that the system prepared initially 
in the state p will be found to be undecayed throughout 
[0, t1] "'~, but found to decay sometime during the sub­
sequent period [tl' tJ '" ~2' 0 < t1 < t. We denote this by 
R(O, '1' t; p). 

It is important to distinguish the probabilities 
Q(O, t; p) from q(l) since there is the temptation to iden­
tify them [and hence also P(O, t; p) with p(t)]. 1 The prob­
ability q(t), however, refers to outcomes of measure­
ment of E at the time t, the system being left unobserved 
after the initial state preparation until t. 

The operational meaning (if any!) of the probabilities 
P, Q, R on the other hand is to be found in terms of the 
outcomes of continuously ongoing measurement of E 
during the entire interval of time~. The notion of such 
continuously ongoing observations (or, equivalently, 
measurements) is obviously an idealization. 

We may consider the process of continuing observa­
tion as the limiting case of successions of (practically) 
instantaneous measurements (of E) as the intervals be­
tween successive measurements approach zero. Since 
there does not seem to be any principle, internal to 
quantum theory, that forbids the duration of a single 
measurement or the dead time between successive 
measurements from being arbitrarily small, the pro­
cess of continuous observation seems to be an admissi­
ble process in quantum theory. 

It may be argued, however, that what are measurable 
or not are governed not only by the fundamental princi­
ples of quantum theory but also by the actual constituents 
of the real world and their interactions. 
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The concept of continuous observation would indeed 
be bereft of any physical meaning if it could be estab­
lished that the fundamental constituents of the real world 
and the interaction between them are such as to exclude 
the possibility of arbitrarily frequent observations. But, 
on the one hand, we cannot claim as final our present 
knowledge of the constituents and interactions of the 
real world. On the other hand, to agree that there is a 
limitation on the frequency of observation amounts to 
claiming the existence of an elementary and indivisible 
unit of time. Though the existence of an elementary 
interval of time is an exciting possibility, it is not part 
of the currently accepted and tested physical theories. 

We, thus, feel that the notion of continuous observa­
tion should be accepted, at least for the present, as 
physically meaningful and quantum theory should be 
pressed to yield an answer to questions relating the 
probabilities pertaining to such observations. 

Continuous observation processes seem to be realized 
in practice also, at least apprOXimately, by the tracks of 
unstable charged particles in bubble chambers and other 
detecting media. The observation of the track amounts 
practically to a more or less continuous monitoring of 
the existence of the unstable particle and thus a mea­
surement of E during the period of the particle's flight 
through the detection chamber. We are therefore led to 
accept as operationally meaningful the P(D, l;p), Q(D, t;p), 
and R(O, ft, t;p). To be a complete theory, quantum 
theory must provide an algorithm for computing these 
probabilities. 

In the next section we describe what appears to be 
the natural approach to determining quantum-theoretic 
expressions for these probabilities. Our investigation 
leads to the paradoxical result mentioned at the begin­
ning of this section: An unstable particle observed con­
tinuously whether it has decayed or not will never be 
found to decay! Since this evokes the famous paradox of 
Zeno denying the possibility of motion to a flying arrow, 
we call this result the Zeno's paradox in quantum theory 

In fact, if E is taken to be the projection to the set 
of localized states of a particle (or, a quantum arrow) 
in a given region D of space, then one concludes that 
the particle will never be found to arrive in a disjoint 
region D' provided it is continuously observed whether 
it has entered D' or not: The" arrow" cannot move to 
where it is not! 

This result acquires an even more picturesque and 
paradoxical formulation when it is applied to the "hell­
ish contraption" considered in the Schrodinger's cat 
paradox. 2 It may be recalled that the contraption con­
sists of an unstable (quantum) particle placed in a box 
equipped with an efficient counter and a cat inside a 
steel chamber. If the particle decays, the counter 
triggers and, in its turn, activates a tiny hammer which 
breaks a container of cyanide in the steel chamber. 
Monitoring the vital functions of the cat amounts to ob­
serving if the particle has decayed or not. In view of 
the Zeno's paradox formulated above, should we con­
clude that the particle will never decay? Will the cat 
escape the cruel death awaiting it, against which it has 
no defense, provided its vital signs are constantly 
watched with loving care? 
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The mathematical transcription of Zeno's paradox is 
a structure theorem concerning a class of strongly con­
tinuous semigroups. This theorem is formulated and 
proved in Sec. 3 of this paper and may possess some in­
trinsic interest apart from its application in the present 
context of a theory of continuous observation. As a by­
product of this investigation we find that the known re­
sult3 concerning the incompatibility of the semibounded­
ness of the Hamiltonian H with the requirement that 
E exp(iHt) E form a strictly contractive semigroup can 
be subsumed under the above- mentioned theorem as 
one of its direct corOllaries. 

Some of the implications and possible resolutions of 
the quantum Zeno's paradox will be briefly discussed in 
the concluding section of the paper. 

Finally it may be mentioned that the conclusion called 
here the Zeno's paradox in quantum theory has been 
noted in some previous works, 4_6 but the present 
analysis of the problem is carried out in a more general 
and mathematically rigorous setting than the previous 
works. This, we feel, is not merely a dispensable 
luxury, but is necessary to locate the preCise assump­
tions on which the "Zeno's paradox" rests. 

2. QUANTUM THEORETICAL EXPRESSIONS FOR 
P(O, t;p) AND RELATED PROBABILITIES 

The three probability functions P, Q, R introduced 
in the previous section relate to the results of continu­
ous observation throughout an interval of time. By 
their very definitions they must obey the relations 

P(O, t; p) + Q(O, t; p) = 1 

and 

R(O, tt, t;p) = Q(a, tt; p) pea, t - it; Pt), 

where Pt is the state in which the system (prepared 
initially in the state p) finds itself at tt after being con­
tinuously observed and found to be undecayed throughout 
[a, tt). We may therefore concentrate our attention on 
calculating Q and Pt. 

We start with the system in the state p and make a 
series of n + 1 measurements, which are idealized to be 
instantaneous, at times a, tin, 2t/n, .•• , (n - 1)t/n, and 
t. We seek the probability Q(~, n;p) that it be found 
undecayed in each of these measurements. It is natural 
to assume that Q(~;p)=Q(O,t;p) can be evaluated as 
the limit of Q(~, n; p) when n - "", provided the limit 
exists. 

Let us denote by pen, i) the state in which the system 
finds itself after the (n + 1) measurements at 0, tin, 
2t/n, •.• , t and being found to be undecayed in each of 
these measurements. Now, according to the orthodox 
theory of measurement, if a measurement of E on the 
system is carried out yielding the result "yes" (that is, 
"undecayed"), then the state of the system collapses to 
a new (unnormalizedl) state p' of the form 

p' =6 AjpA, (3) , 
with 

6 Aj A,=E. , 
B. Misra and E.C.G. Sudarshan 
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The collapsed state p' given by (3) is, in general, not 
uniquely determined by the measured observable E and 
the observed outcome but depends also on the details of 
the measuring apparatus. This circumstance is re­
flected in the nonuniqueness of the operators AJ satis­
fying (4). 

The mapping (3) of the density matrices is very 
closely related to the "completely positive maps" de­
fined by 

p-L; V"pV!=A(V,,)p, 
" 

The "state collapse" caused by "nonselective" measure­
ments of E is described by such maps. They will be 
considered in a future publication in the context of re­
peated and continuous nonselective measurements. 

Quantum theory envisages also the possibility of 
ideal measurements under which the collapse of the 
state proceeds according to the simple law 

p - p' = EpE (5) 

when the measurement of E on the state p yields the 
result "undecayed." 

The considerations of this paper will be restricted 
to such ideal measurements only, since in such cases 
we can exploit the positive definiteness of the 
Hamiltonian in a direct manner. If we were to consider 
the more general collapses (3) we would have to pro­
ceed more indirectly using the von Neumann-Liouville 
generator which is however not positive definite. The 
study of the probabilities Q(~, p), etc. would then in­
volve new technical problems obscuring the essentials 
of Zeno's paradox. We plan to present the study of the 
more general situation in a subsequent paper. 1 

Accordingly, to determine pen, t) we allow the system 
to collapse at each measurement according to (5) but at 
the intervening time intervals it undergoes the usual 
Schrodinger time development. The (unnormalized) 
state pen, t) is then easily seen to be 

pen, t) = Tn(t) pT!(t), 

where 

Tn(t) = [EV(t/n) E]" 

"" [E exp(- iHt/n) E] n. 

Moreover, it is also easy to show that the standard 
interpretation of the quantum theoretical formalism 
entails the formula 

(6) 

(7) 

(8) 

In fact, (8) is a special case of a more general formula 
for the probability connections between several succes­
sive observations. 8 It is important, however, to bear 
in mind that the general formula discussed in8 [and, a 
fortiori, formula (8)] holds only under the assumption 
that the successive measurements under consideration 
are ideal in the sense described above. For nonideal 
successive measurements these formulas do not yield 
correct probability connections. 
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Returning to ideal measurements we have to proceed 
to the limit for n - 00. We define 

pet) = s-lim pen, f), (9) 
n~ .. 

(10) 

provided the limits on the right-hand side exist. Hence, 
if the limit 

s-lim Tn(t) "" s-lim [EU(t/n) E] n = T(t) 
n_1IO n .. ., 

exists for t>- 0, then we may make the identification 

pet) = {Tr[T(t) pT *(t)W1 • T(t) pT *(t) (11) 

for the resultant (normalized) state obtained as a result 
of continuous observation and verification that the sys­
tem remained undecayed throughout the interval. The 
probability Q(~; p) for this outcome is given by 

Q(~; p) = lim Tr[Tn(t) pT!(f)] 
n~" 

= Tr[ pT* (t) T(l)]. (12) 

Once Q(~; p) is obtained in this manner we may calcu­
late P(~; p) to be 

P(~; p) =Tr[ p(I - T*(t» T(O]. (13) 

For a given group V(l) of time-evolution the existence 
of the operator T(t) for t ~ 0 imposes a nontrivial 
restriction on the projection E. This restriction may be 
viewed as a necessary condition in order that the ob­
servable represented by E admits a continuous ideal 
measurement, 

It is known9 that the operators T(t) (if they exist) form 
a strongly continuous semigroup for l> O. The continuity 
of T(l) at t = 0 does not generally follow from the 
existence of T(t), but on physical grounds, we shall as­
sume it; 

s-lim T(t)=E. (14) 
t ~ 0+ 

This condition expresses the essentially desirable re­
quirement that the probability Q(~; p) given by (12) ap­
proaches the probability Tr( pEl as t - 0+ that the sys­
tem is undecayed initially. 

To prove the existence of T(t) and its continuity at 
the origin, (14), in specific examples of physical inter­
est poses nontrivial mathematical problems. We hope 
to consider these in a subsequent paper. 

3. ZENO'S PARADOX IN QUANTUM THEORY 

In the preceding section we arrived at formula (13) 
for the probability P(~; p) that the system prepared 
initially in the undecayed state p will be observed to 
decay sometime during the interval ~ = [0, t]. Despite 
the natural derivation of (13) we now show that the 
probability P(~; p) vanishes for all finite intervals ~ 
provided that the initial state was undecayed, 

Tr(pE) = 1. (15) 

Weare thus led to the paradOxical conclusion that an 
unstable particle will not decay as long as it is kept 
under continuous observation as to whether it decays 
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or not. The mathematical transcription of this state­
ment is the following theorem. 

Theorem 1: Let U (t) == exp( - iHt) , t real, designate a 
strongly continuous one-parameter group of unitary 
operators in the (separable) Hilbert space H. Let E 
denote an orthogonal projection in H. Assume that: 

(i) The self-adjoint generator H of the group U(t) is 
semibounded. 

(ii) There exists an (antiunitary) operator 8 such that 

8E8-1 =E, 

8U(t) 8-1 =U(- t) for all t. 

(iii) s-lim" _ 00 [EU (tin) E)" == T(t) exists for all t ~ 0. 

(iv) s-lim,,_o.T(t)=E. 

Then s-lim,,_oo[EU(tln)E)"==T(t) exists for all real t 
and possesses the following properties: 

(a) The function t - T(t) is strongly continuous and 
for all real t and s satisfies the semigroup law: 

T(t) T(s) = T(t + s), 

(b) and 

T*(t) = T(- t). 

Remarks: (1) The conclusions of the theorem imply 
the relation: 

T* (t) T(t) = E for all realt (16) 

so that P(~;p)=Tr[p(I-E»)=O for all p satisfying (15). 

(2) With 8 interpreted as the time-reversal (or CPT) 
operation, the assumption (ii) of the theorem turns out 
to be only a weak version of T or CPT invariance of the 
theory. Moreover it should be noted that assumption 
(iii) is used only once in the proof for concluding the 
existence of the strong limit (iii) for t < ° as well. 

(3) It is easy to give a relatively elementary proof 
of the theorem under the additional assumption that E 
is a one-dimensional projection onto a vector in the 
domain of Ho The theorem is also known to hold in the 
special case that H = - v2 and E is given by 

(EI/i)(x) =X(x) I/i(x), I/iE L2(R3), 

where X is the characteristic function of a (suitably 
smooth) region of R3. 10 Theorem 1 generalizes this re­
sult to arbitrary semibounded H and arbitrary 
projection E. 

(4) The semiboundedness of H is necessary: Consider 
the following counterexample. Let V(t) be the operator 
family 

(V(t)I/i)=I/i(x-i), I/iEL2(R). 

Let E be defined by 

{ 
I/i(x) 

(EI/i)(x) = ° x-'So, 
x> 0. 

It is then easy to verify that 

EV(t) EV(s) E = EV(t + s) E 

for all t, s ~ 0, so that 
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s-lim [EV(tln) E)" = EV(t) E = T(t) 
"_00 

for all t ~ 0, but 

T*(t) T(t) =EV(t*) EV(t) E 

=V*(t)EV(t)*E for all t>O. 

Thus the conclusion of the theorem is violated, though 
the assumptions in its formulation except the semi­
boundedness of the self-adjoint generator V(t) are met. 
[Strictly speaking, assumption (ii) about the existence 
of 8 is also not satisfied, but it was necessary only to 
prove the existence of T(- t) and T(- t) is trivially veri­
fied to exist in the present example. ] 

We now turn to the 

Proof of Theorem 1: The existence of 

T(t) == s-lim [EU(tln) E]' (17) ._00 

for all real t follows immediately from the assumed 
existence of T(t) for positive t and assumption (ii). In 
fact for t ~ 0 

T(- t) == s-lim [EU(- tin) E]' ,_00 

= s-lim 8[EU(tln) E]' 8-1 ._00 

= 8T(t) 8-1• (18) 

To prove assertion (b) we observe that 

[EU(- tin) E]' = ([EU(tln) E] "}* 

- T*(t) weakly as n - co. 

On the other hand, 

[EU(- tin) E)" - T(- t) strongly as n _00. 

The assertion (b) follows immediately. 

It remains to prove (a), especially assertion (16). 
Let us make a slight notational change and write 

W(t) == T(- t) = s-lim [E exp(iHtln) E)". (19) ._00 

The statement (a) can be transcribed into a correspond­
ing statement on W(t). We shall also assume, without 
loss of generality, that H is self-adjoint and positive. 

For convenience in exposition we shall break up the 
proof of statement (a) into the following three lemmas: 

Lemma 1: Let H be a positive self-adjoint operator 
of the Hilbert space H and let F.(z) be the operator­
valued function defined by 

F.(z) == [E exp(iHzln) E)'. (20) 

Then 

(1) F.(z) is defined and continuous (in the strong 
operator topology) for all complex z with Imz ~ 0 and it 
is ho[omorphic in the open upper half-plane Imz > O. 

(2) The function F.(z) has the integral representation 

F.(z) = (z2+.Z")21°O F.(t) 0 
1rt _00 (t + i)2(t _ z) dt, Imz> . 

B. Misra and E.C.G. Sudarshan 
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(3) 

1 f" Fn(t)dt - 0 Imz < O. 
21Ti _ .. (t+i)2(t-Z)-' 

(22) 

Proof of Lemma 1: The assertion (1) follows from 
the positive self-adjointness of H and its proof is 
standard. To prove assertion (2) we start with Cauchy's 
integral formula for the function Fn(z)/(z + i)2 which is 
holomorphic in the open upper half-plane, 

F (z) __ 1_! Fn(z') , 
(z + i)2 - 21Ti (z' + i)2(z' _ z) dz, Imz> 0, 

c 

where C is any simple closed rectifiable contour en­
closing the point z and contained entirely in the open 
upper half-plane. A similar integral representation 
holds of course for the holomorphic function F n(z) itself. 
But with the choice we have made the integrand vanishes 
faster than Iz'1-1 as Iz'l - 00, Hence if we choose the 
closed contour C to be the axis running from - 00 + iE 
to + 00 + iE and an infinite semicircle we could rewrite 
the contour integral as an open line integral 

Fn(t + iE) (21 ') 

Imz > E> O. 

The (operator) norm of this integrand is dominated by 
the integrable function 

(1 + f)-l 0 (Imz - EO)"l 

for all E with 0 ~ E < EO < Imz. Moreover, 

s-lim Fn(t + iE) = Fn(t). 
~ .. 0+ 

Hence the conditions for the application of Lebesgue's 
dominated convergence theorem for operator-valued 
integrals l1 are met and (21') goes over to the desired 
representation (21) in the limit E - 0+. The relation (22) 
is similarly obtained from the vanishing of the contour 
integral 

1 f Fn(z') d ' f 0 
21Ti (Z'+i)2(z'-Z) z or Imz< . 

c 

Lemma 2: With the same notation as in Lemma 1 let 
us assume that 

Wet) = s-limFn(t) = S-lim [E exp(iHt/n) El n 
n .. tO 1'1" tIO 

exists for all real t. Then: 

(1) W(z) = s-liIDn_ .. Fn(z) exists for all z with Imz> O. 

(2) The function W(z) is holomorphic in the open upper 
half-plane and satisfies the semigroup composition law 

(23) 

(3) There exists a nonnegative and self-adjoint opera­
tor B and a projection G such that 

GB=BG=B, 

and 

W(z) =:: G exp(iBz) G, Imz> O. (24) 
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Proof of Lemma 2: To prove (1) we start with the 
representation (21) for Fn(z). By assumption, Wet) 
= s-limn _ .. F n(t) for all real t and 

II (t + ~>"2~: _ z) II ~ (~I::: )1-
1 

for all n. 

We can therefore apply again the Lebesgue theorem on 
dominated convergence and conclude that 

W(z) = s-limFn(z) 
n- .. 

exists and has the representation 

(z + i)2 f" Wet) 
W(Z)=~ (f+i)2(t-Z) dt, Imz>O. (25) 

_ .. 
From the well known Vitali's theorem l1 we can conclude 
that W(z) is holomorphic in the open upper half-plane. 

To prove the semigroup property of W(z) we show 
first that this law holds for pure imaginary values, 

W(is) W(it) = W(i(t + s» 

for all positive t and s. 

To this end, first consider the case where f and s are 
rationally related so that there exist positive integers 
p, q for which 

s + t s t 
r( p + q) = rp = rq 

for all integers r. For such s, t we can deduce 

which, in the limit r - 00 yields 

W(i(t + s» = W(is) W(il). 

Once this is established for rationally related positive 
sand t by continuity it can be extended to all positive s 
and t. Since W(is) is holomorphic it is, a fortiori, con­
tinuous for s> O. 

To prove assertion (3) we observe that the operators 

W(is) = s-lim [E exp(- Hs/n) El n 

1'1 .~ ... 

form a semigroup of self-adjoint operators for s> O. 
According to a well known structure theorem for such 
semigroups12 there exists a self-adjoint nonnegative 
operator B and a projection G such that 

BG=GB=B 

and 

W(is) = G exp(- Bs) G, s> O. 

The function z - G exp(iBz) G is holomorphic in the open 
upper half-plane and assumes the same values W(is) as 
the holomorphic function W(z) for z = is (s> 0). The 
uniqueness of holomorphic functions, then, immediate­
ly establishes the representation (24). The semigroup 
property (23) for zl' z2 in the open upper half-plane 
follows from (24) and the commutativity of G and B. 
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Lemma 3: Under the assumptions of Lemma 2, we 
have the weak limit for operators along the real axis 

w-lim W(s + i11);: W(s) for almost all real s. (26) 
~. o. 

Proof of Lemma 3: To obtain this weak limit let us 
start from the integral representation (25) rewritten in 
the form 

. _(s+i+i11)2 f'" W(t) 
W(s+z11)- 27Ti (t+i)2(t-s-i1)) dt, 11> O. 

.'" 
On the other hand, from (22) and the Lesbegue domi­
nated convergence theorem 

o = (s + i + i11 )2 f~ W(t) dt 
27Ti .'" (t+i)2(t-s+i1)) , 11>0. 

Therefore, 

. (s + i + i11 )2 f'" W(t) 1) 
W(S+Z11)= 1T .", (t+i)2 (t_S)2+ 112 dt. 

For any two vectors zJ;, cf> in H we may write 

(zJ;, W(s +i11) cf» 

_ (s + i + i11)2 f~ (zJ;, W(t) cf» 11 
- 7T (t+i)2 (t_s)2+ 112

dt• 
.~ 

Since the quantity (zJ;, W(t) cf»/(t + i)2 considered as a 
function of t is integrable, it follows that 

lim (zJ;, W(s + i'ry) cf» = (zJ;, W(s) cf» (27) 
TJ~ 0+ 

for almost all s. 

To complete the assertion of Lemma 3 a technical 
difficulty is to be resolved. For a given pair zJ;, cf> of 
vectors, the assertion (29) has been shown to hold for 
almost all s. The exceptional set (of measure zero) 
where this result may not hold may appear to depend on 
the pair zJ;, cf> chosen. To show that there is at most a 
single null set outside which (27) holds for all pairs 
zJ;, cf> we proceed as follows: Let f) be a countable dense 
subset of the separable Hilbert space H and let N be 
the union of the countable family of exceptional null 
sets corresponding to all pairs zJ;, cf> with zJ; E f), cf> E f). 
This set IV is a set of measure zero and the weak 
limit (26) holds everywhere outside this set for zJ;, cf> in 
f), but then (27) will hold in the complement of N for 
all pairs zJ;, cf> not necessarily in f). In fact, writing 

A(s, 11) = W(s + i11) - W(s) 

we may obtain 

(zJ;,A(s, 11) cf» = (zJ; - zJ;n, A(s, 11) cf» + (zJ;n, A(s, n)(cf> - cf>n» 

+ (zJ;n, A(s, 11) cf>n)' 

We see that for s outside the exceptional set N the first 
two terms on the right-hand side tend to zero as n _00, 
since we may choose 

s-lim zJ;n = zJ;, s-lim cf>n = cf>. 
PI .. to ,. ... 

The third term, by hypothesis, goes to zero as 11 - O. 
since zJ;n, cf>n are chosen to lie in f). (The proof of this 
lemma incorporates a suggestion due to K. Sinha.] 
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The proof of assertion (a) of the theorem may now be 
easily completed by combining the conclusions of the 
preceding lemmas, 

W(s) = w-lim W(s + i1) = w-lim G exp(iB(s + i11)] G 
" .. 0. 1J .. 0+ 

= G exp(iBs) G for almost all real s. (24') 

Thus W(s) l¥*(s) = G for almost all real s. According to 
assumption (iv) in the statement of Theorem 1, 

w-lim W(s) W*(s)=w-lim T(- s) T*(- s) 
s .. o+ s-o+ 

=w-lim T*(s) T(s) =E. 
s .. 0+ 

Thus G=E and we may rewrite (24) in the form 

W(s)=Eexp(iBs)E for almost all s, 

EB=BE=B. 

(28) 

(29) 

But we can now strengthen this relation for W(s) to read 

W(s) = E exp(iBs) E for all s (30) 

in view of the strong continuity of W(s). Combining (29) 
and (30) we immediately deduce the validity of 
assertion (a). 

Although not of primary interest for the discussion 
in this paper, we recall the known result3 that if His 
semibounded, the operators EU(t) E cannot form a 
semigroup for t>-- 0 except in the event of E commuting 
with U(t) for all real t. We may subsume this result 
as a corollary to Theorem 1. 

Corollary: Let the self-adjoint operator H be semi­
bounded, let E be an orthogonal projection and let U(t) 
stand for exp(- iHt). If {EU(t) E It >-- O} form a semigroup, 
then 

EU(t)=U(t)E for all real t. (31) 

Proof: The semigroup property for EU(t) E, i. e., the 
relation 

EU(t)EU(s)E=EU(t+s)E for all real s,t (32) 

will imply 

EU(t)EU*(t)E=E for all real t (32') 

and hence 

E ~ U(t) EU* (t) for all real t. 

Multiplying this equation from the left by U(- t) and the 
right by U*(- t) will yield 

U(- t)EU*(- t) ~E for all real t. 

Together these two inequalities imply 

E = U(t) EU*(t) for all real t 

or, equivalently, 

EU(t)=U(t)E for all real t. 

The proof of the corollary is thus reduced to the 
proof of (32) or (32'). 

Since the operators EU(t) E are assumed to form 
a semigroup for t>-- 0 and [EU(t) E]* =EU(- t) E, for all 
positive integers n and all real t we have 

(EU(t/n) E]n = EU(f) E. 
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Hence 

s-lim[EU(t/n) E]" = EU(t) E = T(t) 
"~ .. 

exists for all real t and all the assumptions of Theorem 
1 are verified, except for (ii). But as we have pointed 
out, this assumption itself was needed for the sole 
purpose of guaranteeing the existence of T(t) for all 
real t. Thus we can safely conclude that Theorem 1 ap­
plies in this case also and hence (32) holds for all real 
I and s. 

4. CONCLUDING DISCUSSION 

What conclusions must we draw from Zeno's paradox 
in quantum theory? Is it a curious but innocent mathe­
matical result or does it have something to say about 
the foundation of quantum theory? Does it, for exam­
ple, urge us to have a principle in the formulation of 
quantum theory that forbids the continuous observation 
of an observable that is not a constant of motion? 

The answer to the first two questions appears to de­
pend on whether it is operationally meaningful to seek 
the probability that the particle makes a transition from 
a preassigned subspace of states EH to the orthogonal 
subspace E~H sometime during a given period of time. 
We have endeavored to present arguments that such 
probabilities possess operational meaning in terms of 
the outcome of successive (in the limit, continuous) 
measurements of an appropriate quantum mechanical 
observable. If this is accepted, it follows that to be a 
complete theory quantum mechanics must provide an 
algorithm for computing these probabilities. The quan­
tum Zeno's paradox shows that the seemingly natural 
approach to this problem discussed in the preceding 
sections leads to bizarre and physically unacceptable 
answers. We thus lack a trustworthy quantum-theoretic 
algorithm for computing such probabilities. Until such 
a trustworthy algorithm is developed the completeness 
of quantum theory must remain in doubt. 

The lack of a trustworthy quantum-theoretic algorithm 
for probabilities like pea, ti p) is intimately connected 
with the difficulties involved in defining an operator of 
"arrival time" (or, more generally, "time of transi­
tion") in quantum theory. 4 Let us briefly discuss this 
problem in the context of the "time of decay" of an un­
stable particle. 

From the definition of P(O, ti p) it must have the 
following properties: 

(i) P(O, ti p) ;" ° for all t;" ° 
(ii) P(O, ti p);" P(D, si p) for t;" s 

(iii) P(O, ti p) -1 for t - 00 

(iv) P(O, ti p) - Tr[ pE~] for t - 0 •. 

(33) 

In addition, P(O, ti p) may be assumed to be continuous 
as a function of t. If we were to succeed in finding a 
formula 

P(D, Ii p) = Tr[ pB(O, t)], 

then the operator B(O, t) would have the following 
properties: 
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(34) 

(i) B(O, t);" 0, 

(ii)B(O,t)pB(O,s), tps, 

(iii) B(O, t) - I (strongly), t _00, 
(iv) B(O, t) - E~ (strongly), t - 0., 

(v) B(O, t) is a strongly continuous function of t. 

The family B'(O, t) =EB(O, t) E restricted to the sub­
space EH of the (unstable) undecayed states will then 
form a "generalized resolution of the identity" (GRI). 
Unlike the more familiar (projection-valued) resolution 
of the identity, a GRI does not necessarily determine 
a densely defined operator, but under some mild addi­
tional assumptions (which we need not specify explicitly 
here) the GRI B'(O, t) will determine a Hermitian (though 
not necessarily self-adjoint) operator T so that 

(1/!, T1/!) = J Id(1/!, B'(O, t) 1/!) for all1/!E[J (T). (35) 

The operator T thus defined may then be interpreted 
as the operator of "time of decay." 

Conversely, if there exists a positive Hermitian 
"time of decay" operator T associated with the subspace 
EH of undecayed states and B'(O, t) denotes a GRI asso­
ciated with it, then through (33) we may define the prob­
ability P(O, ti p) which may be interpreted as the prob­
ability that the system prepared initially in the (unde­
cayed) state p will be found to decay sometime during 
the interval [0, t]. 

Looked at from this point of view, the Zeno's paradox 
thus strengthens and sharpens the pessimistic conclu­
sion of Allcock4 and others concerning the possibility 
of introducing an observable of "arrival time" in quan­
tum theory. We must emphasize that in our study here, 
the conclusion is not based on certain a priori, but 
questionable, assumptions about Ti such, for instance, 
as the assumption that T be "canonically conjugate" to 
the Hamiltonian, or that T be a self-adjoint operator in 
the Hilbert space. In the literature such requirements 
were implicitly or explicitly placed on T. 

We have so far supposed that it is operationally mean­
ingful to ask about probabilities such as P(O, t; p) and 
Q(O, t; pl. We have also taken the stance that the ob­
served tracks of unstable particles in a bubble chamber 
or photographic emulsion is in contradiction with the 
conclusion we have called Zeno's paradox in quantum 
theory. It is, however, possible to adopt one of the 
following attitudes: 

(1) Probabilities such as P(O, t; p) have no operational 
meaning: There is a fundamental principle in quantum 
theory that denies the possibility of continuous 
observation. 

Since so far no such principle has been derived from 
or incorporated into quantum theory, this is not a 
satisfactory way of resolving the paradox at the present 
time. 

(2) Zeno's paradox is based on the assumption that the 
continuous measurements are ideal measurements. But 
measurements (or, observations) involved in the re­
cording of the track of an unstable particle in a detect­
ing medium are nonideal in the sense of (3). 
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This is a tenable view and it would deny the validity 
of Theorem 1 as stated and proved in this paper. It has 
the somewhat unsettling side effect that P(O, t; p) and 
hence the "observed lifetime" of an unstable particle 
is not a property of the particle (and its Hamiltonian) 
only, but depends on the details of the observation 
process. At the present time we have no indication that 
this is so. 

(3) The record of the track of a particle is not a con­
tinuous observation that the particle has not decayed, 
but only a discrete sequence of such observations; while 
Zeno's paradox obtains only in the limit of continuous 
observations. 

While this is tenable, the sufficiently repeated moni­
toring of the particle should again lengthen the life­
time. There is, however, no indication that the life­
time of a (charged) unstable particle (say, a muon) is 
appreciably increased in the process of its track forma­
tion through bubble chamber. To shed additional light 
on this question a quantitative investigation of the effect 
of repeated monitoring on the lifetime of particles (in 
specific models) is in progress. 13 

(4) Natural though it seems, it is wrong to assume 
that the temporal evolution of a quantum system under 
continuing observation can be described by a linear 
operator of time-evolution such as T(t). It can be de­
scribed only in terms of a persistent interaction between 
the quantum system and the classical measuring ap­
paratus. When this is done the quantum Zeno's paradox 
will either disappear or if it survives, at least, it will 
be understandable as the drastic change in the behavior 
of the quantum system caused by its continuous inter­
action with a classical measuring apparatus. 

This pOint of view is at present only a program since 
there is no standard and detailed theory for the actual 
coupling between quantum systems with classical mea­
suring apparatus. A beginning in this direction is made 
in a forthcoming paper. 14 

Having been forced into such unusual points of view 
by the quantum Zeno's paradox one is prompted to draw 
also some parallels between it and certain empirical 
findings in the study of human awareness. We shall 
present such close parallels between the quantum Zeno's 
paradox and the findings of sensory deprivation and 
other experiments pertaining to the study of conscious­
ness in a separate publication. 

In conclUSion, it seems to us that the problems posed 
by Zeno's paradox have no clean cut resolution at the 
present time and deserve further discussions. It may 
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also be reemphasized that the probabilities such as 
Q(A; 1/, p) [or Q(A; p)J that pertain to the outcomes of 
successive measurements (or continuous measure­
ments) depend on the law according to which "state 
collapses" occur at the time of measurements. Thus 
one may say that the "collapse of state vector" caused 
by measurement, which has haunted the foundation of 
quantum mechanics like an invisible ghost becomes visi­
ble through probabilities such as Q(A; 1/, p), etc. The 
probabilities pertaining to the outcomes of several suc­
cessive (as well as continuous) measurements there­
fore deserve further theoretical as well as experimental 
study than they have received so far. 
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