Classification and Regression trees

(Recursive partitioning)
M. Stefanucci

Fall 2021

University of Trieste

Regression Trees

Classification Trees

Regression Trees

Non-parametric regression models

- Non-parametric (or semi-parametric) regression modelling keeps the usual specification:

$$
y=g\left(x_{1}, \ldots, x_{p-1}, \epsilon\right)
$$

but relaxes the assumption of linearity, and replaces it with a much weaker assumption of a smooth g

- Pro's and con's
- \mapsto greater flexibility and potentially more accurate estimate of g
- \mapsto greater computation and often more difficult-to-interpret results: typically used for prediction, not interpretation
- Some examples of nonparametric regression models are:
- \mapsto Local Polynomial Regression
- \mapsto Kernel regression
- \mapsto Smoothing splines
- \mapsto (Generalized) Additive models
- \mapsto Decision (regression) trees

Step functions as approximators

- A simple, yet effective, way to approximate a generic function $f(x)$ is to use a step function, that is, a piecewise constant function
- In such a case, there are various choices to be made:
- where are the subdivision points to be placed?
- which value of y must be assigned to each interval?
- how many subdivisions of the x axis must be considered?
- The idea is to generalize the use of step functions to approximate (or predict) a response Y as function of some covariates.
- Note that Y could be of different nature: numeric, factor, count, ...

Step functions as a spline

- A step function actually is a spline of degree 0 . Assume we want to fit such a function to a simple set of data.
- Subdivision points are now the knots and their position should be chosen to reflect changes of the function $f(x)$ (for instance more knots where the function is steeper)
- In a given interval the value of the constant can be chosen to be an average of the level of the function itself
- The choice of the number of subdivisions is critical: any increase in the number of steps increases the quality of the approximation, and therefore we are led to think of infinite subdivisions.
- However, this is counter to the requirement to use a approximate representation using few parameters and therefore to adopt a finite number of subdivisions.

An introductory examples

- If y is quantitative a global approximation of y could be its mean. Or we can use a (regression) function $g(\cdot)$

An introductory examples

- Now consider a subdivison on X and approximate y with its local mean \hat{y}_{i} in the i-th interval and g is a piecewise constant function

The tree

Note that the value \hat{y}_{i} of the function g can be also described by the following tree

An introductory examples

- As the number of intervals increase, we could achieve a very accurate description of the data

An introductory examples

- As the number of intervals increase, we could achieve a very accurate description of the data (leading to overfitting)

Tree approximation

- Let's now consider a regression problem with continuous response Y and two covariates X_{1} and X_{2}. We want to estimate the generic regression curve $E(Y)=f\left(x_{1}, x_{2}\right)$.
- The idea is again to partition the space spanned by the covariates and to model Y with a different constant in each element of the partition
- we restrict attention to recursive binary partitions.
- First split the space into two regions, and model the response by the mean of Y in each region.
- variable and split-point are chosen in order to achieve the best fit.
- one or both of these regions are split into two more regions,
- the process is continued, until some stopping rule is applied.

A simple example of tree partitioning for two covariates

In the top right panel first split at $X_{1}=t_{1}$. Then the region $X_{1} \leq t_{1}$ is split at $X_{2}=t_{2}$ and the region $X_{1}>t_{1}$ is split at $X_{1}=t_{3}$. Finally, the region $X_{1}>t_{3}$ is split at $X_{2}=t_{4}$. The result of such a recursive buinary splitting is a partition into the five regions $R_{1}, R_{2}, \ldots, R_{5}$ shown in the figure.
-The corresponding regression model predicts Y with a constant c_{m} in region R_{m}, that is, $\hat{f}\left(X_{1}, X_{2}\right)=\sum_{m=1}^{5} c_{m} I\left\{\left(X_{1}, X_{2}\right) \in R_{m}\right\}$

- The sets R_{m} are rectangles, in the 2-dimensional space, with their edges parallel to the coordinate axes) and c_{1}, \ldots, c_{5} are constants. Note that the top left panel represents a
partition that cannot be obtained by recursive binary splitting

A regression tree

- More generally:
- we want estimate a regression curve $f\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ underlying the data by $\hat{f}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\sum_{m=1}^{M} c_{m} I\left\{\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in R_{m}\right\}$ where $I\left(x_{1}, x_{2}, \ldots, x_{p} \in R_{m}\right)$ is the indicator function of the set R_{m} (R_{m} are rectangles, in the p-dimensional sense, with their edges parallel to the coordinate axes) and c_{1}, \ldots, c_{M} are constants.
- Given an objective function such as the Deviance

$$
D=\sum_{i=1}^{n}\left(y_{i}-\hat{f}\left(x_{1 i}, x_{2 i}, \ldots, x_{p i}\right)\right)^{2}
$$

- the goal is to define a partition of the space of the covariates that minimizes D

Building the Regression tree

- this minimization, even if we fix the number of the elements of the partition, involves very complex computation
- a sub-optimal approach is considered using a step-by-step optimization: we construct a sequence of gradually more refined approximations and to each of these we minimize the deviance relative to the passage from the current approximation to the previous one
- It is not ensured that we get the global maximum. This procedure is called greedy-algorithm
- This operation is represented by a series of binary splits
- Each internal node represents a value query on one of the variables e.g. "Is $x_{3}>0.4$?". If the answer is 'Yes', go right, else go left.
- The terminal nodes are the decision nodes. Typically each terminal node is assigned a value, c_{h}, given by the arithmetic mean of the observed y_{i} having component $x_{j i}$ falling in this node.

Growing the tree

- Trees are grown using a random subset of the available data (the training data), by recursive splitting
- A terminal node g is split into the left and right daughters (g_{L} and g_{R}) that increase the split criterion

$$
D_{g}-D_{g_{L}}-D_{g_{R}}
$$

the most, where D is the deviance associated to a given node.

- To avoid the overfitting, a large tree T_{0} is grown and then pruned backward
- Indeed a tree with n leaves is equivalent to a polynomial regression of degree $n-1$
- detection of the variable X_{J} that achieve the best split at each node and which is the split point can be done very quickly and hence by scanning through all of the inputs
- Deviance can be adapted for dealing with a response that is a count or a duration

Pruning the tree

- Pruning criterion: cost of a subtree $T \in T_{0}$, is defined by

$$
C_{\alpha}(J)=\sum_{j=1}^{J} D_{j}+\alpha_{j}
$$

- Here the sum is over the terminal nodes of T, J is the number of terminal nodes in T and α is a cost-complexity parameter
- The choice of an optimal size is evaluated by cross-validation, or on a validation set.
- For each α the best subtree T_{α} is found via weakest link pruning
- Larger α gives smaller trees
- A best value $\hat{\alpha}$ is estimated via cross-validation (or on a validation set)
- Final chosen tree is $T_{\hat{\alpha}}$
- New observations are classified by passing their x down to a terminal node of the tree, and then using the relative c_{h}.

An example

The variable FACE refer to the amount of life insurance bought by the head of a household. We want to predict it by using "INCOME", number of household members, AGE, Education, etc. For illustration, a tree with maximum depth=2 is considered. Package rpart is used.

```
TL <- read.csv("TL.csv", header=TRUE, sep=",", row.names=1)
library(rpart)
attach(TL)
m2 <- rpart(FACE ~INCOME+MARSTAT+NUMHH+EDUCATION+AGE,
    control=rpart.control(maxdepth=2))
m2
## n= 275
##
## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 275 7.681561e+14 747581.5
## 2) INCOME< 187500 227 2.629158e+14 413511.5
## 4) EDUCATION< 15.5 128 1.075360e+14 239930.5 *
## 5) EDUCATION>=15.5 99 1.465367e+14 637939.4 *
## 3) INCOME>=187500 48 3.600986e+14 2327454.0
## 6) INCOME< 762500 37 1.905974e+14 1870751.0 *
## 7) INCOME>=762500 11 1.358255e+14 3863636.0 *
```


The tree

Regression trees: Advantages

- Logical simplicity and ease of 'communication' (particularly those with a non-quantitative background)
- The step function has a simple, compact mathematical formulation in terms of information to be stored
- Speed of computation and can take advantage of parallel calculation
- Can handle huge datasets
- Can handle mixed predictors: quantitative and factors
- Easy ignore redundant variables and automatically detects interactions among variables
- Handle missing data elegantly
- Small trees are easy to interpret

Regression trees: Disadvantages

- Instability of results: very sensitive to the insertion/changes in the sample
- Difficulty in upgrading: if more data arrive, they cannot be added to the already constructed tree; it is necessary to start again from the beginning.
- Difficulty of approximating some mathematically simple functions, particularly if they are steep,
- Statistical inference: formal procedures of statistical inference such as hypothesis testing, confidence intervals, and others are not available.
- (over?) emphasizes interactions
- large trees are hard to interpret
- prediction surface is not smooth

Dealing with missing data

- It is quite common to have observations with missing values for one or more input features. The usual approach in statistics is to impute (fill-in) the missing values in some way.
- However, the first issue in dealing with missing data is whether the missing data introduce a sample selection that can bias results of analyses.
- It is important consider if missing data arise by a
- Missing Completely at Random (MCAR) mechanism (no bias)
- Missing at Random (MAR) mechanism (possible bias if the dependence on missingness on some observed covariates are not recognized)
- Missing Not at Random (MNAR) mechanism (huge problems, likely to have non negligible bias)
- For the first, and possibly, the second case, in regression trees two approaches can be used when predictors have missing values:
- if it is categorical, add a specific category for missing values
- if it is continuous, use surrogate predictors to be used when observation is missing on the primary predictor.

Classification Trees

Classification Trees

- If the target (response) variable is a categorical variable taking values $1,2, \ldots, K$, the only changes needed in the tree algorithm pertain to the criteria for splitting nodes and possibly pruning the tree.
- In these cases the tree will be used for predicting the categorical response and this is labeled as a classification problem. And the tree is then a Classification tree.
- Also in this case a tree is a hierarchical structure formed by:
- root: the predictor space
- nodes:

1. internal: test an explanatory variable (and splits the predictor space)
2. terminal (leaf): assign a label class

- branches: corresponds to values of the explanatory variables
- A tree is constructed by repeated splits of the predictor space (root) into subregions (nodes). Each terminal region is associated with a prediction and their union form a partition of the predictor space.

Growing a classification tree

The following elements are needed

- A set of splits
- A goodness of split criterion
- A stop-splitting rule
- A rule for assigning every terminal node to a class
- Each split depends on the value of a single predictor x_{j} and depends on the nature of x_{j} :
- qualitative, with values in $\mathcal{L}=\left\{I_{1}, \ldots, I_{K}\right\}$: a split is any question as "is $x_{j} \in S_{\mathcal{L}}$?" with $S_{\mathcal{L}}$ a subset of \mathcal{L};
- quantitative, with range (a, b) : a split is any question as "is $x_{j} \leq s$?" with $a \leq s<b$
- Examples
- "Is the age of the subject not greater than 60?"
- "Is the weather cloudy or rainy?"
- At each step of the tree growing procedure, the best split is identified for each predictor and, among these, the best of the best is selected.

The goodness of split criterion

- The objective of classification tree construction is to finally obtain nodes that are as pure as possible, i.e., the split should send towards each branch observations of the same class
- It makes sense to consider good a split when it leads to a high reduction of impurity of the node (a high increase of the prediction/classification accuracy).
- Consider a node t for a two class classification problem, the two calsses of y have frequency $p(t)$ and $1-p(t)$. A natural impurity measure of a node t is, the so called Misclassification error:

$$
i(t)=1-\max (p(t),(1-p(t))
$$

- If the node is equipped with a split sending a proportion of p_{L} and p_{R} to the left and, respectively right, the gained reduction of impurity is:

$$
\Delta i(t)=i(t)-p_{L} i\left(t_{L}\right)-p_{R} i\left(t_{R}\right)
$$

- The best split is the split which maximizes the reduction of impurity
- Other measures of impurity could be used (Gini or Entropy based)

Impurity measures

More generally, for a given node m that defines a region R_{M} with N_{M} observations, $\hat{p}_{m k}$ is the observed proportion of cases in class k. The observation at the node will be classified in class $k(m)$ that is the class for which $\hat{p}_{m k}$ is larger. The following impurity measures can be defined:

- Misclassification error:

$$
\frac{1}{N_{M}} \sum_{i \in R_{m}} I\left(y_{i} \neq k(m)\right)=1-\hat{p}_{m k(m)}
$$

- Gini index (heterogeneity index):

$$
G=\sum_{k=1}^{K} \hat{p}_{m k}\left(1-\hat{p}_{m k}\right)
$$

- Entropy:

$$
H=-\sum_{k=1}^{K} \hat{p}_{m k} \log \hat{p}_{m k}
$$

Measures of impurity in two class problems

- for $K=2$, with p the observed proportion in the second class, these three measures are respectively:
- $1-\max (p, 1-p)$
- $2 p(1-p)=2\left(p-p^{2}\right)$
- $-p \log p-(1-p) \log (1-p)$

Avoiding overfitting

- If the overall accuracy is too low we may always make the tree growing further
- The flexibility of the trees would in principle allow for building a perfect classification rule
- A tree that perfectly fits the sample data probably overfits the data: useless for predicting new data, not used for training the tree!
- A useful practice is to evaluate the accuracy of the estimated tree on a test set (out-of-sample).
- Often for Regression and Classification trees the available data are randomly subdivided into three sets:
- the training set (to grow the tree)
- the validation set (to prune it)
- the test set (to evaluate it)
- Evaluation of the quality of the three can be achieved with usual tools for evaluating the prediction (classification) quality: Mean squared prediction errors, confusion matrices, ROC curves (see the R package 'caret)

An example of two class tree

We want to predict now if a life insurance policy is bougth using the same covariates

```
TL <- read.csv("TLbin.csv", header=TRUE, sep=",", row.names=1);
attach(TL); set.seed(4321); ind.train <- sample(1:500,300) ;
TL.train <- TL[ind.train,]; TL.test <- TL[-ind.train,]
tree <- rpart(FACEPOS~., data=TL.train); tree
## n= 300
##
# node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
# 1) root 300 136 B (0.5466667 0.4533333)
## 2) INCOME>=25500 235 90 B (0.6170213 0.3829787)
## 4) INCOME< 1155000 227 84 B (0.6299559 0.3700441)
## 8) INCOME>=109500 72 19 B (0.7361111 0.2638889) *
## 9) INCOME< 109500 155 65 B (0.5806452 0.4193548)
## 18) INCOME< 99000 145 58 B (0.6000000 0.4000000)
## 36) AGE>=30.5 122 45 B (0.6311475 0.3688525) *
## 37) AGE< 30.5 23 10 NB (0.4347826 0.5652174)
## 74) INCOME< 44000 14 5 B (0.6428571 0.3571429) *
## 75) INCOME>=44000 9 1 NB (0.1111111 0.8888889) *
## 19) INCOME>=99000 10 3 NB (0.3000000 0.7000000) *
## 5) INCOME>=1155000 8 2 NB (0.2500000 0.7500000) *
## 3) INCOME< 25500 65 19 NB (0.2923077 0.7076923) *
```


The tree

pred.test <-predict(tree, newdata=TL.test, type="class")
pred.test <-predict(tree, newdata=TL.test, type="class")
t <-table(TL.test\$FACEPOS, pred.test)
t

\#\#		pred.test	
\#\#		B NB	
\#\#	B	78	
\#	33		
\#	NB 49	40	

sum (diag (t))/sum(t)
\#\# [1] 0.59

MARS: Multivariate Adaptive Regression Splines

- MARS is an adaptive procedure for regression, and is well suited for high dimensional problems (i.e., a large number of inputs).
- It can be viewed as a generalization of stepwise linear regression or a modification of the CART. This latter approach for regression tree leads to smoother prediction surfaces
- A hybrid of MARS called PolyMARS specifically designed to handle classification problems has been also proposed
- MARS is a semi-parametric method that like CART uses a greedy algorithm and recursively adapt a curve to the regression surface
- At each step it is chosen a couple of basis functions recursively selecting the variable X that is most appropriate and the optimal position of the knot.

MARS

- MARS builds models of the form

$$
\hat{f}(x)=\sum_{i=1}^{k} c_{i} B_{i}(x)
$$

- The model is a weighted sum of basis functions $B_{i}(x)$. Each c_{i} is a constant coefficient.
- Each basis function $B_{i}(x)$ takes one of the following three forms:

1. a constant
2. a hinge function. A hinge function has the form $\max (0, x-$ const $)$ or $\max (0$, const $-x)$.
MARS automatically selects variables and values of those variables for knots of the hinge functions.
3. a product of two or more hinge functions. These basis functions can model interaction between two or more variables.

MARS

This is an example of a couple of Hinge functions

- Although they might seem quite different, the MARS and CART strategies actually have strong similarities.
- Suppose we take the CART procedure and make the following changes:
- Replace step functions by the piecewise linear basis functions $I(x-t>0)$ and $I(x-t \leq 0)$.
- When a model term is involved in a multiplication by a candidate term, it gets replaced by the interaction, and hence is not available for further interactions.
- With these changes, the MARS forward procedure is the same as the CART tree-growing algorithm.

An example

```
mod1=earth(V2~V1,data=x,nk=1)
plotmo(mod1,xlab="x",ylab="y", ylim=c(0,1.2)); points(x,pch=20)
```

V2 earth(V2~V1, data=x, nk=1)

An example

```
summary(mod1)
## Call: earth(formula=V2~V1, data=x, nk=1)
##
## coefficients
## (Intercept) 0.4279076
##
## Selected 1 of 1 terms, and 0 of 1 predictors
## Termination condition: Reached nk 1
## Importance: V1-unused
## Number of terms at each degree of interaction: 1 (intercept only model)
## GCV 0.04290529 RSS 1.202778 GRSq 0 RSq 0
```


An example

```
mod2=earth(V2~V1,data=x,nk=3)
plotmo(mod2,xlab="x",ylab="y"); points(x,pch=20)
```

V2 earth(V2~V1, data=x, nk=3)

An example

```
summary(mod2)
## Call: earth(formula=V2~V1, data=x, nk=3)
##
## coefficients
## (Intercept) 0.7476095
## h(0.176378-V1) -4.3458394
## h(V1-0.176378) -0.6146156
##
## Selected 3 of 3 terms, and 1 of 1 predictors
## Termination condition: Reached nk 3
## Importance: V1
## Number of terms at each degree of interaction: 1 2 (additive model)
## GCV 0.00632364 RSS 0.1317425 GRSq 0.852614 RSq 0.8904682
```

