
Classification and Regression trees
(Recursive partitioning)

M. Stefanucci
Fall 2021

University of Trieste

1

Regression Trees

Classification Trees

2

Regression Trees

3

Non-parametric regression models

• Non-parametric (or semi-parametric) regression modelling keeps the
usual specification:

y = g(x1, . . . , xp−1, ε)

but relaxes the assumption of linearity, and replaces it with a much
weaker assumption of a smooth g

• Pro’s and con’s
• 7→ greater flexibility and potentially more accurate estimate of g
• 7→ greater computation and often more difficult-to-interpret results:

typically used for prediction, not interpretation
• Some examples of nonparametric regression models are:

• 7→ Local Polynomial Regression
• 7→ Kernel regression
• 7→ Smoothing splines
• 7→ (Generalized) Additive models
• 7→ Decision (regression) trees

4

Step functions as approximators

• A simple, yet effective, way to approximate a generic function f (x) is
to use a step function, that is, a piecewise constant function

• In such a case, there are various choices to be made:
• where are the subdivision points to be placed?
• which value of y must be assigned to each interval?
• how many subdivisions of the x axis must be considered?

• The idea is to generalize the use of step functions to approximate (or
predict) a response Y as function of some covariates.

• Note that Y could be of different nature: numeric, factor, count, . . .

5

Step functions as a spline

• A step function actually is a spline of degree 0. Assume we want to
fit such a function to a simple set of data.

• Subdivision points are now the knots and their position should be
chosen to reflect changes of the function f (x) (for instance more
knots where the function is steeper)

• In a given interval the value of the constant can be chosen to be an
average of the level of the function itself

• The choice of the number of subdivisions is critical: any increase in
the number of steps increases the quality of the approximation, and
therefore we are led to think of infinite subdivisions.

• However, this is counter to the requirement to use a approximate
representation using few parameters and therefore to adopt a finite
number of subdivisions.

6

An introductory examples

• If y is quantitative a global approximation of y could be its mean. Or
we can use a (regression) function g(·)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

x

y

7

An introductory examples

• Now consider a subdivison on X and approximate y with its local
mean ŷi in the i-th interval and g is a piecewise constant function

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

x

y

8

The tree

Note that the value ŷi of the function g can be also described by the
following tree

X > 0.0724

X > 0.6133

Y

Y

N

N

 ŷ
1

 ŷ
2

 ŷ
3

9

An introductory examples

• As the number of intervals increase, we could achieve a very accurate
description of the data

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

x

y

10

An introductory examples

• As the number of intervals increase, we could achieve a very accurate
description of the data (leading to overfitting)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

x

y

11

Tree approximation

• Let’s now consider a regression problem with continuous response Y
and two covariates X1 and X2. We want to estimate the generic
regression curve E (Y) = f (x1, x2).

• The idea is again to partition the space spanned by the covariates and
to model Y with a different constant in each element of the partition

• we restrict attention to recursive binary partitions.
• First split the space into two regions, and model the response by the

mean of Y in each region.
• variable and split-point are chosen in order to achieve the best fit.
• one or both of these regions are split into two more regions,
• the process is continued, until some stopping rule is applied.

12

A simple example of tree partitioning for two covariates

In the top right panel first split at X1 = t1. Then the region X1 ≤ t1 is split at X2 = t2
and the region X1 > t1 is split at X1 = t3. Finally, the region X1 > t3 is split at X2 = t4.
The result of such a recursive buinary splitting is a partition into the five regions
R1, R2, . . . , R5 shown in the figure.

-The corresponding regression model predicts Y with a constant cm in region Rm, that
is, f̂ (X1, X2) =

∑5
m=1 cmI{(X1, X2) ∈ Rm}

- The sets Rm are rectangles, in the 2-dimensional space, with their edges parallel to the
coordinate axes) and c1, . . . , c5 are constants. Note that the top left panel represents a
partition that cannot be obtained by recursive binary splitting

13

A regression tree

• More generally:
• we want estimate a regression curve f (x1, x2, . . . , xp) underlying the

data by f̂ (x1, x2, . . . , xp) =
∑M

m=1 cmI{(x1, x2, . . . , xp) ∈ Rm}
where I(x1, x2, . . . , xp ∈ Rm) is the indicator function of the set Rm

(Rm are rectangles, in the p-dimensional sense, with their edges
parallel to the coordinate axes) and c1, . . . , cM are constants.

• Given an objective function such as the Deviance

D =
n∑

i=1

(yi − f̂ (x1i , x2i , . . . , xpi))2

• the goal is to define a partition of the space of the covariates that
minimizes D

14

Building the Regression tree

• this minimization, even if we fix the number of the elements of the
partition, involves very complex computation

• a sub-optimal approach is considered using a step-by-step
optimization: we construct a sequence of gradually more refined
approximations and to each of these we minimize the deviance relative
to the passage from the current approximation to the previous one

• It is not ensured that we get the global maximum. This procedure is
called greedy-algorithm

• This operation is represented by a series of binary splits
• Each internal node represents a value query on one of the variables –

e.g. “Is x3 > 0.4?”. If the answer is ‘Yes’, go right, else go left.
• The terminal nodes are the decision nodes. Typically each terminal

node is assigned a value, ch, given by the arithmetic mean of the
observed yi having component xji falling in this node.

15

Growing the tree

• Trees are grown using a random subset of the available data (the
training data), by recursive splitting

• A terminal node g is split into the left and right daughters (gL and
gR) that increase the split criterion

Dg − DgL − DgR

the most, where D is the deviance associated to a given node.
• To avoid the overfitting, a large tree T0 is grown and then pruned

backward
• Indeed a tree with n leaves is equivalent to a polynomial regression of

degree n − 1
• detection of the variable XJ that achieve the best split at each node

and which is the split point can be done very quickly and hence by
scanning through all of the inputs

• Deviance can be adapted for dealing with a response that is a count
or a duration

16

Pruning the tree

• Pruning criterion: cost of a subtree T ∈ T0, is defined by

Cα(J) =
J∑

j=1
Dj + αj

• Here the sum is over the terminal nodes of T , J is the number of
terminal nodes in T and α is a cost-complexity parameter

• The choice of an optimal size is evaluated by cross-validation, or on a
validation set.

• For each α the best subtree Tα is found via weakest link pruning
• Larger α gives smaller trees
• A best value α̂ is estimated via cross-validation (or on a validation

set)
• Final chosen tree is Tα̂

• New observations are classified by passing their x down to a terminal
node of the tree, and then using the relative ch .

17

An example

The variable FACE refer to the amount of life insurance bought by the head of a
household. We want to predict it by using “INCOME”, number of household members,
AGE, Education, etc. For illustration, a tree with maximum depth=2 is considered.
Package rpart is used.

TL <- read.csv("TL.csv", header=TRUE, sep=",", row.names=1)
library(rpart)
attach(TL)

m2 <- rpart(FACE~INCOME+MARSTAT+NUMHH+EDUCATION+AGE,
control=rpart.control(maxdepth=2))

m2

n= 275
##
node), split, n, deviance, yval
* denotes terminal node
##
1) root 275 7.681561e+14 747581.5
2) INCOME< 187500 227 2.629158e+14 413511.5
4) EDUCATION< 15.5 128 1.075360e+14 239930.5 *
5) EDUCATION>=15.5 99 1.465367e+14 637939.4 *
3) INCOME>=187500 48 3.600986e+14 2327454.0
6) INCOME< 762500 37 1.905974e+14 1870751.0 *
7) INCOME>=762500 11 1.358255e+14 3863636.0 *

18

The tree

|INCOME< 1.875e+05

EDUCATION< 15.5 INCOME< 7.625e+05

2.399e+05 6.379e+05
1.871e+06 3.864e+06

19

Regression trees: Advantages

• Logical simplicity and ease of ‘communication’ (particularly those
with a non-quantitative background)

• The step function has a simple, compact mathematical formulation in
terms of information to be stored

• Speed of computation and can take advantage of parallel calculation
• Can handle huge datasets
• Can handle mixed predictors: quantitative and factors
• Easy ignore redundant variables and automatically detects

interactions among variables
• Handle missing data elegantly
• Small trees are easy to interpret

20

Regression trees: Disadvantages

• Instability of results: very sensitive to the insertion/changes in the
sample

• Difficulty in upgrading: if more data arrive, they cannot be added to
the already constructed tree; it is necessary to start again from the
beginning.

• Difficulty of approximating some mathematically simple functions,
particularly if they are steep,

• Statistical inference: formal procedures of statistical inference such as
hypothesis testing, confidence intervals, and others are not available.

• (over?) emphasizes interactions
• large trees are hard to interpret
• prediction surface is not smooth

21

Dealing with missing data

• It is quite common to have observations with missing values for one
or more input features. The usual approach in statistics is to impute
(fill-in) the missing values in some way.

• However, the first issue in dealing with missing data is whether the
missing data introduce a sample selection that can bias results of
analyses.

• It is important consider if missing data arise by a
• Missing Completely at Random (MCAR) mechanism (no bias)
• Missing at Random (MAR) mechanism (possible bias if the

dependence on missingness on some observed covariates are not
recognized)

• Missing Not at Random (MNAR) mechanism (huge problems, likely to
have non negligible bias)

• For the first, and possibly, the second case, in regression trees two
approaches can be used when predictors have missing values:

• if it is categorical, add a specific category for missing values
• if it is continuous, use surrogate predictors to be used when

observation is missing on the primary predictor.
22

Classification Trees

23

Classification Trees

• If the target (response) variable is a categorical variable taking values
1, 2, . . . ,K , the only changes needed in the tree algorithm pertain to
the criteria for splitting nodes and possibly pruning the tree.

• In these cases the tree will be used for predicting the categorical
response and this is labeled as a classification problem. And the
tree is then a Classification tree.

• Also in this case a tree is a hierarchical structure formed by:
• root: the predictor space
• nodes:

1. internal: test an explanatory variable (and splits the predictor space)
2. terminal (leaf): assign a label class

• branches: corresponds to values of the explanatory variables

• A tree is constructed by repeated splits of the predictor space (root)
into subregions (nodes). Each terminal region is associated with a
prediction and their union form a partition of the predictor space.

24

Growing a classification tree

The following elements are needed

• A set of splits
• A goodness of split criterion
• A stop-splitting rule
• A rule for assigning every terminal node to a class
• Each split depends on the value of a single predictor xj and depends

on the nature of xj :
• qualitative, with values in L = {l1, . . . , lK}: a split is any question as

“is xj ∈ SL ?” with SL a subset of L;
• quantitative, with range (a, b): a split is any question as “is xj ≤ s?”

with a ≤ s < b
• Examples

• “Is the age of the subject not greater than 60?”
• “Is the weather cloudy or rainy?”

• At each step of the tree growing procedure, the best split is identified
for each predictor and, among these, the best of the best is selected.

25

The goodness of split criterion

• The objective of classification tree construction is to finally obtain
nodes that are as pure as possible, i.e., the split should send towards
each branch observations of the same class

• It makes sense to consider good a split when it leads to a high
reduction of impurity of the node (a high increase of the
prediction/classification accuracy).

• Consider a node t for a two class classification problem, the two
calsses of y have frequency p(t) and 1− p(t). A natural impurity
measure of a node t is, the so called Misclassification error:

i(t) = 1−max(p(t), (1− p(t))

• If the node is equipped with a split sending a proportion of pL and pR

to the left and, respectively right, the gained reduction of impurity is:

∆i(t) = i(t)− pLi(tL)− pR i(tR)

• The best split is the split which maximizes the reduction of impurity
• Other measures of impurity could be used (Gini or Entropy based) 26

Impurity measures

More generally, for a given node m that defines a region RM with NM

observations, p̂mk is the observed proportion of cases in class k. The
observation at the node will be classified in class k(m) that is the class for
which p̂mk is larger. The following impurity measures can be defined:

• Misclassification error:
1

NM

∑
i∈Rm

I(yi 6= k(m)) = 1− p̂mk(m)

• Gini index (heterogeneity index):

G =
K∑

k=1
p̂mk(1− p̂mk)

• Entropy:

H = −
K∑

k=1
p̂mk logp̂mk

27

Measures of impurity in two class problems

• for K = 2, with p the observed proportion in the second class, these
three measures are respectively:

• 1−max(p, 1− p)
• 2p(1− p) = 2(p − p2)
• −plogp − (1− p)log(1− p)

28

Avoiding overfitting

• If the overall accuracy is too low we may always make the tree
growing further

• The flexibility of the trees would in principle allow for building a
perfect classification rule

• A tree that perfectly fits the sample data probably overfits the data:
useless for predicting new data, not used for training the tree!

• A useful practice is to evaluate the accuracy of the estimated tree on
a test set (out-of-sample).

• Often for Regression and Classification trees the available data are
randomly subdivided into three sets:

• the training set (to grow the tree)
• the validation set (to prune it)
• the test set (to evaluate it)

• Evaluation of the quality of the three can be achieved with usual tools
for evaluating the prediction (classification) quality: Mean squared
prediction errors, confusion matrices, ROC curves (see the R package
‘caret) 29

An example of two class tree

We want to predict now if a life insurance policy is bougth using the same covariates

TL <- read.csv("TLbin.csv", header=TRUE, sep=",", row.names=1);
attach(TL); set.seed(4321); ind.train <- sample(1:500,300) ;
TL.train <- TL[ind.train,]; TL.test <- TL[-ind.train,]
tree <- rpart(FACEPOS~., data=TL.train); tree

n= 300
##
node), split, n, loss, yval, (yprob)
* denotes terminal node
##
1) root 300 136 B (0.5466667 0.4533333)
2) INCOME>=25500 235 90 B (0.6170213 0.3829787)
4) INCOME< 1155000 227 84 B (0.6299559 0.3700441)
8) INCOME>=109500 72 19 B (0.7361111 0.2638889) *
9) INCOME< 109500 155 65 B (0.5806452 0.4193548)
18) INCOME< 99000 145 58 B (0.6000000 0.4000000)
36) AGE>=30.5 122 45 B (0.6311475 0.3688525) *
37) AGE< 30.5 23 10 NB (0.4347826 0.5652174)
74) INCOME< 44000 14 5 B (0.6428571 0.3571429) *
75) INCOME>=44000 9 1 NB (0.1111111 0.8888889) *
19) INCOME>=99000 10 3 NB (0.3000000 0.7000000) *
5) INCOME>=1155000 8 2 NB (0.2500000 0.7500000) *
3) INCOME< 25500 65 19 NB (0.2923077 0.7076923) *

30

The tree
|

INCOME>=2.55e+04

INCOME< 1.155e+06
INCOME>=1.095e+05

INCOME< 9.9e+04
AGE>=30.5

INCOME< 4.4e+04B

B
B NB

NB

NB
NB

pred.test <-predict(tree, newdata=TL.test, type="class")
t <-table(TL.test$FACEPOS, pred.test)
t

pred.test
B NB
B 78 33
NB 49 40

sum(diag(t))/sum(t)

[1] 0.59
31

MARS: Multivariate Adaptive Regression Splines

• MARS is an adaptive procedure for regression, and is well suited for
high dimensional problems (i.e., a large number of inputs).

• It can be viewed as a generalization of stepwise linear regression or a
modification of the CART. This latter approach for regression tree
leads to smoother prediction surfaces

• A hybrid of MARS called PolyMARS specifically designed to handle
classification problems has been also proposed

• MARS is a semi-parametric method that like CART uses a greedy
algorithm and recursively adapt a curve to the regression surface

• At each step it is chosen a couple of basis functions recursively
selecting the variable X that is most appropriate and the optimal
position of the knot.

32

MARS

• MARS builds models of the form

f̂ (x) =
k∑

i=1
ciBi (x)

• The model is a weighted sum of basis functions Bi (x). Each ci is a
constant coefficient.

• Each basis function Bi (x) takes one of the following three forms:
1. a constant
2. a hinge function. A hinge function has the form

max(0, x − const) or max(0, const − x).
MARS automatically selects variables and values of those variables for
knots of the hinge functions.

3. a product of two or more hinge functions. These basis functions can
model interaction between two or more variables.

33

MARS

This is an example of a couple of Hinge functions

• Although they might seem quite different, the MARS and CART strategies
actually have strong similarities.

• Suppose we take the CART procedure and make the following changes:
• Replace step functions by the piecewise linear basis functions

I(x − t > 0) and I(x − t ≤ 0).
• When a model term is involved in a multiplication by a candidate

term, it gets replaced by the interaction, and hence is not available for
further interactions.

• With these changes, the MARS forward procedure is the same as the
CART tree-growing algorithm.

34

An example

mod1=earth(V2~V1,data=x,nk=1)
plotmo(mod1,xlab="x",ylab="y", ylim=c(0,1.2)); points(x,pch=20)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2 V1

x

y

intercept−only model

V2 earth(V2~V1, data=x, nk=1)

35

An example

summary(mod1)

Call: earth(formula=V2~V1, data=x, nk=1)
##
coefficients
(Intercept) 0.4279076
##
Selected 1 of 1 terms, and 0 of 1 predictors
Termination condition: Reached nk 1
Importance: V1-unused
Number of terms at each degree of interaction: 1 (intercept only model)
GCV 0.04290529 RSS 1.202778 GRSq 0 RSq 0

36

An example

mod2=earth(V2~V1,data=x,nk=3)
plotmo(mod2,xlab="x",ylab="y"); points(x,pch=20)

0.0 0.2 0.4 0.6 0.8 1.0

0.
1

0.
3

0.
5

0.
7

 V1

x

y

V2 earth(V2~V1, data=x, nk=3)

37

An example

summary(mod2)

Call: earth(formula=V2~V1, data=x, nk=3)
##
coefficients
(Intercept) 0.7476095
h(0.176378-V1) -4.3458394
h(V1-0.176378) -0.6146156
##
Selected 3 of 3 terms, and 1 of 1 predictors
Termination condition: Reached nk 3
Importance: V1
Number of terms at each degree of interaction: 1 2 (additive model)
GCV 0.00632364 RSS 0.1317425 GRSq 0.852614 RSq 0.8904682

38

	Regression Trees
	Classification Trees

