Corso di GEOMETRIA - Prova scritta A.A. 2020/2021 - 8 febbraio 2021 Prof. Valentina Beorchia

Cognome	Nome

(1) (5 punti) Si dia la definizione di prodotto scalare su uno spazio vettoriale rea	(1)	(5 ·	punti)	Si	dia	la	definizione	di	prodotto	scalare su	uno	spazio	vettoriale	rea	ıle
---	----	---	-------------	--------	----	-----	----	-------------	----	----------	------------	-----	--------	------------	-----	-----

Si enunci e si dimostri la diseguaglianza di Cauchy - Schwarz e si dia la definizione di angolo convesso tra vettori non nulli.

$$f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_1 - x_3 \end{pmatrix}.$$

(a) (2 punti) Si scriva la matrice $A=M_{\mathcal{E}}^{\mathcal{E}}(f)$ di f nella base canonica \mathcal{E} di \mathbb{R}^3 .

(b) (3 punti) Si determinino la dimensioni di $\ker f$ e $\operatorname{Im} f$ e delle loro basi.

(c) **(1 punti)** Si determini, motivando la risposta, la dimensione e una base dell'immagine f(r) della retta r di equazioni parametriche

$$r: \begin{cases} x_1 = 2t \\ x_2 = (\sqrt{5} - 1)t \\ x_3 = (3 - \sqrt{5})t \end{cases}$$

(d) (3 punti) Si dica, motivando la risposta, se la retta r del punto sopra è formata da autovettori per f oppure no.

(3) Si consideri la matrice simmetrica

$$B = \left(\begin{array}{ccc} 0 & 3 & 0 \\ 3 & 3 & -3 \\ 0 & -3 & 0 \end{array}\right).$$

• (3 punti) Si determini il polinomio caratteristico di $L_B:\mathbb{R}^3 \to \mathbb{R}^3$ e il suo spettro.

• (4 punti) Si trovi una base ortonormale \mathcal{B} di autovettori per L_B .

• (3 punti) Si scrivano le matrici di passaggio dalla base canonica \mathcal{E} di \mathbb{R}^3 alla base \mathcal{B} e dalla base \mathcal{B} alla base \mathcal{E} .

$$r: \left\{ \begin{array}{ll} x+y+z & =3 \\ x-y-z & =-1 \end{array} \right. \quad s_a: \left\{ \begin{array}{ll} x-z & =1 \\ y+z & =a \end{array} \right.$$

- si dimostri che r ed s_a non sono mai parallele;
- si determini il valore di a per cui r ed s_a risultano incidenti.

• (4 punti) Si determini un'equazione cartesiana del piano L passante per il punto (1,1,1) e ortogonale alla retta

$$r: \begin{cases} x = 1+t \\ y = -2+3t \\ z = -3+t \end{cases}$$