Scienza dei Materiali

Dislocazioni



Difetti lineari (1-dimensionali): Dislocazioni

Termodinamicamente instabili

Imperfezioni del reticolo localizzate lungo una linea
Termodinamicamente non stabili

Perturbano localmente la simmetria del reticolo

ali (deformazione plastica)
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Dislocazione a spigolo (edge dislocation)




Dislocazione a vite (screw dislocation)
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Dislocazione mista
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Piano di scorrimento e vettore di Burgers

Glide plane
(slip plane)

Piano di scorrimento

Vettore di Burgers ortogonale Vettore di Burgers parallelo alla
alla dislocazione dislocazione



Scorrimento: Meccanismo Deformazione Plastica
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Scorrimento: Meccanismo Deformazione Plastica
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Su quali piani e in quali direzioni e piu facile
che avvenga lo scorrimento?

(«sistemi di scorrimento»)

* Piani ad alta densita atomica superficiale
* Direzioni ad alta densita atomica lineare
* Elevata distanza interplanare

* Piccolo vettore di scorrimento



Identificare sistemi di scorrimento: FCC Identificare sistemi di scorrimento : BCC




TABLE 4-1 m Slip planes and directions in metallic structures

Crystal Structure Slip Plane Slip Direction
BCC metals {110} (111
{112}

{123}
FCC metals {111} {1103
HCP metals {0001} {100
{1120} Sop <1103
{1GIG}}ND’[& or <1120%
{1011}
MgO, NaCl (ionic) {110} {110
Silicon (covalent) {111} <1103

MNote: These planes are active in some metals and alloys or at elevated

lemperalures.
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- A line imperfection in a crystalline material.

Screw dislocation - A dislocation produced by skewing a
crystal so that one atomic plane produces a spiral ramp
about the dislocation.

- A dislocation introduced into the
crystal by adding an “extra half plane” of atoms.

Mixed dislocation - A dislocation that contains partly
edge components and partly screw components.

- Deformation of a metallic material by the
movement of dislocations through the crystal.



Example: Burgers Vector Calculation

Calculate the length of the Burgers vector in copper.

Figure 4.10 (a)
Burgers vector for
FCC copper. (b) The
atom locations on a
(110) plane in a BCC
unit cell (for
example 4.8 and 4.9,
respectively)

[110]
(a) (b)

15



Copper has an FCC crystal structure. The lattice parameter of
copper (Cu) is 0.36151 nm. The close-packed directions, or the directions
of the Burgers vector, are of the form(110)The repeat distance along the
directions is one-half the face diagonal, since lattice points are logatey at
corners and centers of faces [Figure 4.10(a)].

Face diagonal = v2ap = (v/2)(0.36151) = 0.51125 nm

The length of the Burgers vector, or the repeat distance, is:

b=1/2(0.51125 nm) =0.25563 nm



. 4
Figure 4.12 Optical image of etch pits in silicon carbide (SiC). The
etch pits correspond to intersection points of pure edge dislocations
with Burgers vector a/3 (1120)and the dislocation line direction
along [0001] (perpendicular to the etched surface). Lines of etch pits
represent low angle grain boundaries (Courtesy of Dr. Marek
Skowronski, Carnegie Mellon University.)
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Figure 4.13 Electron photomicrographs of dislocations in Ti;Al: (a) Dislocation pileups
(x26,500). (b) Micrograph at x 100 showing slip lines and grain boundaries in Al.
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Resolved Shear Stress

T = o COS A COS ¢ Legge di Schmid
w L
Cc= Ag
Normal o THF V2 F
to slip \Fr = Fcosh Bislocat 1
islocation
plane : F,=FcosA
: Slip
‘ direction .
Shear stress Slip
_F, plane
T, = 'Z'

Original material

oL

Material after
plastic deformation




TABLE 4-2 W Summary of factors affecting slip in metallic structures

Factor FCC BCC HCP G > 1.633)
Critical resolved 50-100 5,000-10,000 50-1004
shear stress (psi)
Number of slip 12 48 3P
systems
Cross-slip Can occur Can occur Cannot occurb
summary of Ductile Strong Relatively brittle
properties

4 For slip on basal planes.
b By alloying or heating to elevated temperatures, additional slip systems are active in HCP metals,
permitting cross-slip to occur and thereby improving ductility.

31



DISLOCATIONS AND PLASTICITY

Defects in solids are above the simple 0 dimensionality:
* 1D defects = dislocations
» 2D defects = surfaces. grain boundaries Ao

This is the
They are all accompanied by energy and configuration plastic region.

changes. Here. we look at plasticity.

Q: What happens in the solid?

A: Internal flow, something like:

Q: Surely breaking bonds over an entire surface mvolves an enormous barrier?
107

lbond=1 el : 1Im” =10*° bonds — 10l =10J — e ™ =0

A: in reality, only one bond at the time 1s broken. this is along a dislocation line-defect.



DISLOCATION AND PLASTICITY

The Burgers circuit Extra plane
START /.

A crystal with an “edge” dislocation = an
extra plane (but there 1s no unique such
plane for the same dislocation!).

The Burgers circuit, clockwise, must be
completed by T~ . the Burgers Vector.

Note: an incomplete Burgers circuit 1s
sufficient. but not necessary. for dislocations
to exist 1nside the loop — the sum of their b
vectors could be zero!

In edge dislocations the
Burgers vector is
perpendicular to the
dislocation line.

—
Note: the top moved only by b.
while the dislocation moved
across the entire length of the solid




ENERGY OF A DISLOCATION

To summarise. in a dislocation loop:

the handedness (or chirality) varies along the line (it’s a Jlocal, physical property).

the / vector 1s invariant it’s a global. topological property (but its sign has no physical
meaning. since choosing the opposite orientation for the dislocation will reverse b ).

dislocation

line _, ascrew dislocation can be modelled as a cylinder: after a

1P “chemical zone” of radius r.. the lattice 1s displaced by ..
parallel to dislocation line.
at all distances 7 from the dislocation line, the lattice is
slipped by 4. The "‘cylindric_q'l crust” of radius » and
thickness dr 1s slipped by || : it’s shear!!

To see that shearing in going on. we “unroll” the cvlinder:

shear angle

dry * ] y
./'(:ﬁ\\:_ =—_---= ;;] ﬁ‘/ The elastic energy density 1s: C. =G
1 1 > _ 1 ' -
1 E=EU£=5'4‘4£ =EGI_92 6:1_9‘
= b/2m~




ENERGY OF A DISLOCATION

Total energy of the cylindrical crust:

(™7 o (7

R . 2 \

L1 b 1 R
L= [ SG-—dr- Gb” In| 4L ]
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2ar Ly

F(Em’dr]-lG( b ]
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where the (double!) infinity of the integral 1s avoided because:

1) R,,< o asevery sample must have a finite size

2) R > 0 where the atomistic structure kinks in. in the chemical zone. at a distance
from the line » = | b |. the elastic approximation holds no more

R E 2 l: .'t‘ ' y
Ifweset In|—L =47 we get —| =Gb elastic energy
f / T per unit length

this has the dimension of a fension: a force trying to keep the dislocation line straight to
minimise 1ts overall energy cost

_ o E i _
Suppose G -100GPa: |b|-1A => (7) =10"-107° =10"J /m
EL

Note that this is still ~10%° J/4. so for every atom along the dislocation line we have = eV
of elastic energy =2 this is bigger than the chemical energy. usually. This rough estimate

suggests that the dislocation energy is mostly elastic



FORCE ON THE DISLOCATION

Q: what “pushes” the dislocations?

A: the applied external stresses. of course. In fact “dislocation™ means plasticity

(plastic deformation) typically occurring as a response to applied stress
I

dislocation 7’ ? T Sliding caused by a shear stress T (it’s

line the common name for {}'47576).

7-(a-l)= Shear Force

displacement A0
7-(a-1)- AQ = AL Work made by the external stress

— =1 a " AQ = Work per unit of dislocation length

< /

i a .
_ r - - - "
Note: for 4O = b = the dislocation has moved across the entire
—————— — solid! so:
AL - _ = . : :
= f+a with [ = {force per unit length on the dislocation

= - | } l=7-b f =T1h | force exerted on the dislocation line
(orthogonal to it, per unit length)




FORCE ON THE DISLOCATION

Q: what happens in the case of screw dislocations?

A dislocation [
line y i; > The displacement to the left of a surface (a-d/)

corresponds to an external work
la-di-t]b=AL
AL

: —— = Work per unit of dislocation length
< - a
I
AL
so in this case — = f - dl
{} a
a = f=1D

dl The same result as before!

¥

This relation 1s valid in every case: in general. the force P
per unit length. orthogonal to the dislocation line 1s \ /

}’.
| =1b

~ |




THE DISLOCATION MOTION

The motion normally happens via the “kink™ mechanism:

— A 1T = - __ 1 _ = -

;

dislocation line with kink pair the two kinks diffuse away the dislocation has moved up

-
Note that an edge dislocation has a fixed slip plane. identified by the line and b.
However the screw dislocation does not!

So an edge dislocation cannot normally change slip plane: in the presence of impurities
the dislocation could be blocked. However they can “climb™!

arriving dislocations Ve Impurity obstacle dislocation
— / O0QOO0O0 dmbs 5900000
1 1L 1Al ocoQooo "W oqzooo
000000 4§ ©6 O®GO6
/ "0 0706 O 0 0 0O
dislocations get S O O 0 OO0 O 0 O 0O

stacked here

This atom can move away (if a “vacancy™ arrives, e.g.) enabling dislocation
climb. It’s slow. however. as it has to wait for the vacancy diffusion



DISLOCATION PINNING

This may happen when a dislocation hits an impurity or defect located his path:

Wwe compare two effects:

1) 27smi?=  Pull back: sum of the two
tension components opposing
T the motion of the dislocation
T = Gb* (as seen before)
2) aPUSH FORWARD: t?tal effect of the external forces:

dx-th-sma(x)= [dl-D=1bl
‘!T si a(x) -! T

>  2-Gb’-sin¥=1'b-1

Equilibrium tension

the maximum occurs _ 2-Gb| Ccritical Tension
for sm&=1;:0%=72 T = ] (before the vielding)
: - . N
clearly bigger for closer defects! Note: the (/1) ratio lowers
r T 10 the t_ for large [. This is
Example: [f =lum=10"m 2-107-10 =2-10"P crucial in “heat treatments™
b=10"m .= 10°¢ - a designed to control the
=20 MPa istributi
1 G - 100GPa \ distribution of /. y,




ELASTIC STRESS FIELD

compression

Emitted by a dislocation. The shape of this
elastic stress field helps to understand the

interaction between dislocation. For an edge

tension
Dislocation we have:

1
sl
Stress values G Pa

Different from the cylindric case, it’s not only a function of 7 — \/x* + +*
but the “long range” part is still o « 1/ in simple cases.



ELASTIC STRESS FIELD

e.g.: yaxis (x=0.y) ‘ Gy o, == Vv ivi=l/y=1r

J_ Ox =0y note: & *1/7 as well => %E‘(_T o iz

o, =0 T 7

The elastic energy associated with distance ris o 1/r. causing a logarithmic divergence

G
xr R ] -
_ o, -0,=0 —" by symmetry
—L l o, =l/x=1r

it 1s possible to divide the scheme in octants and plot as arrows the sign of all components.

Shear

(x=y),(x=-y): The shear components change sign.

(x=0),(y=0): The compressive components change sign.

Y, P

' (x,y)—=(x.—y)
(x.3) = (=x.) I Ow-9 reversed
0,,.0, unvaried P O,  unvaried

O,,  reversed .






INTERACTION BETWEEN DISLOCATIONS

Parallel dislocations

1

Overlap principle: E = Eg "€ with O <& (remember: 0 = Q £)

1) overlap (sum. at first order) of the two elastic strain fields = but the energy

varies

2) the stress 1s therefore the sum of the two stresses )
uadratically!

j— o

O

Dislocations of the same sign
(e.g.. same slip plane) repel
each other

- =

O

Dislocations of opposite
sign attract each other.

O O

With this geometry they attract each other!

notice the similarity with the interaction of electric dipoles. However here the position can change, but not
the orientation (as the orientation of b and the dislocation line are fixed)



INTERACTION BETWEEN DISLOCATIONS

If the two edge dislocations don’t have the same slip plane. shear forces will try to
minimize the ela stic ener E} cost

The force has tobe Fz=0 for { =0
L(}= _,TJ/Z
The correct e:{pression turns out to be:

EJ.
@\/G) ‘F‘ (@t b -sin(21%)
r
where bl -bz reproduces the correct sign

\ for parallel dislocations  F = (|, by~ b,
,

Note: parallel screw dislocations cannot involve  Fgz =0
d,: sx f < supposing a couple of forces as shown, + )

d;: sx
| A O an observer looking t the system from the LA @
/ Opposite side would see still two sx dislocations. N
‘ d)! SX  but an opposite (clockwise) force couple. dy: sx *

" : his is because the chirality of screw dislocations
=> F. =0 it’s not possible. "
G E; Ep is invariant under rotations by 180°)
X

Sowe have only F, = C —% !l (radial part not derived here)
.



DISLOCATION GENERATION
THE FRANK-READ SOURCE

we start from the example already seen.

—_—

seen from above: _| Edge Clearly. b is a topological invariant
l for closed Burgers circuit enclosing
J’ the dislocation.

4N b 'Jl We next consider a synunetric system, with
Screw Dx the top-central part slipped forward

/}' J’ Edge the semi-loop start with a dx screw
dislocation on the left. and ends with a sx
x - screw dislocation on the right. with a
Screw Dx Screw Sx pure-edge section in the front

oriented line

The invariance of » implies that on left the dislocation
1s dx ( 5 -1 < (). while on the rightis sx ( 577> 0).
y ¢; Note once more that the sx or dx chirality are physical,
b /) local. properties of the dislocation. » it’s a global
b plane n property.In the middle section ( 5 - = () there is no

[ Note: All the ¢, circuits are clc-ckwise] chirality and the dislocation 1s pure edge.

respect the orientation of the line. => The systems has a “mirror plane symmetry”




DISLOCATION GENERATION
THE FRANK - READ SOURCE

These are the 4 evolution steps of a
pinned dislocation. At the end of
each 4™ step. all external loop
widen. and the mechanism keeps

_ ~ iterating. emitting concentric
o 0 ¥ dislocation loops which enable
plastic behaviour

\/

Here there are two mirror symmetric screw dislocation
sections with the same »: one 1s sx. the other 1s dx. The
opposite chirality implies that they attract each other.
The local reaction decays into tow new separate
branches: a large loop and a new (*"0™") source section.

Frank — Read source



PARTIAL DISLOCATIONS

Partial dislocations occur in different materials (e.g.. covalent and metallic).
Up to now A & to the direct lattice (the Burgers circuit 1s composed only by lattice sites).

but Eg o« Gh: SO if we could write b = E_}; + 52‘ and create two “partial”
dislocations. able to separate. this will be energetically favourable.

; > =
e.g. if 0?0 =0 Q D,b,, bare all direct lattice vectors: then clearly:
o’‘’o ‘0 o

all the dislocations b = 251 & R decay in two dislocations with vector 51 :

Once the minimum b ER is reached. further decomposing becomes harder.

b-b b L A 2 32,42
but, if ﬁ = cosi?<1 b i.e.: for angles > > b >b’ +b,
. i - — —
' (bl+bz)z=blz+bzz+23)1'f)2
This situation arises in the FCC lattices on the (111) plane: >0
(111} .

A




PARTIAL DISLOCATIONS

Now, the vector b that connects two B lattice sites is HER. a good Burgers vector

C — —

Bl-mm-- => -—-
A 7

lf—

However there 1s another way:

b= +b, )
where b, goes from a B site to a C site and b,
returns from a C site back to a B site.

B
T B C
e.g.: bl "A=2>B i B
- C A
B>C B C } “Stacking fault”
C>A 2 f;
B B
A A
i—

this way. two A planes see each other across the C plane in the stacking fault region



PARTIAL DISLOCATIONS

perfect lattice

translated by partial dislocatio
seen from {’3___
far away: Stacking fault
partial dislocation
perfect lattice E’l 1

. : : 1 .
The two partial dislocations repeal each other with a force «— (per unit length).
r

The stacking fault costs y*r*/=E where y[ Joule/m? ] is its energy cost per m?
d E b, - 52 gives an equilibrium distance r
- = —_— - o . EL) 1 aq*
a1 y = restoring “force” =>  C r =7 which determines the typical lateral
dimension of the stacking fault.

Note: A screw dislocation doesn’t have preferential slip plane. but. if it decays into two
partial dislocations + stacking fault, 1t becomes “committed™ to a slip plane.
Thus. cross-slipping to a new plane becomes problematic!



Partial Dislocations in HCP

Burgers vector belongs to direct lattice Decomposition of Burgers vector — less energy required

ABCABC | ABCABC
A “B" type (111) plane ABCABC | ACAC | ABCABC
"A” type (111) plane - T SF .

Uy

Partial dislocation fing__

The vector b, represents the unit Burgers vector “*[101] 2 ,
However, there is a "simpler” path. = ! S o



Stacking Faults




PARTIAL DISLOCATIONS

It’s possible to develop a “Burgers vectors algebra™:

Take @ as a FCC lattice constant. with nearest neighbours
connected b}'ﬂ [101] =D (cf. picture on left)
2

This 1s true everywhere. e.g.. on the (111) plane ,

the vectors lying on the (111) plane a, =2[011
I 2 l’

can be obtained as differences:

for example: a, —d; = E[Dl 1]
2 (both —= long)
G —53=§[110] 2T

2

the bisector between two atomic positions of the (111) plane.

eg [011] and[110] is[121]

= [121]



PARTIAL DISLOCATIONS

-

So the reaction of formation of two partial dislocation, 1n this case, 1s: E; _ g 5
2 =T
— —- - a — a — . — a —
b — b +b, Z[011]—S[121]+—=[112]
2 §) 6 =~ -
MOTEOVeT: » 42 b b
pPr=""0="0
bl =b’="—-(1+4+1)="— > b’ +b ='_=:'_=g;2[ obvious as
b7 36 6 T 32 =120
-a, =[110] 4 —

2

Front of the
dislocation [ T 1 0]

Stacking fault
/ 1 plane

/ by | [112]

Parfial (edge)
didlocations

Right
partial

This 1s the situation with

D tilted by 60° from the
dislocation line (so this
1s a mixed dislocation.
neither pure screw nor
pure edge)




LOMER - COTTRELL LOCK

we next need two (111) glide planes. e.g..[111 ] and
| 11 1]. hosting two systems of dislocations.

we consider the elementary tetrahedron ABCD and
observe that in both planes if is possible to build a system
with the dislocation line [110] = BC

- _ —_—
b =ﬁX2+[][}1] AB

Stacking fault (1) =% b =a/6:[1 12]

b, —af6-[211]

~ —
b =ﬂ/2+[{)_1 1] BD

b = a/6-[121]

If we write the reaction between the two 5 dislocations. we obtain: - bz =af6-[112]

AB+BD = AD <> %[1(}T]+§[01 1]= %[1 10] anewb vector L BC

(a good edge dislocation)
However. the reaction occurs between the two front partial dislocations in the two planes:

%[ET T]+ %[T21]= ﬂ[llliil] this is of the same kind. but it is not a lattice vector!

ara7l]. @ afl, .= a a
So. the total reaction is: E[IU 1]+ 5[01 1] = E[l 12]+E[1 lﬂ]+ E[l 12]
a [1 10] 1s not a good Burgers vector: neither a lattice, nor a good partial vector.
6

The system is locked: sessile dislocation => work hardening

Stacking fault (2) <




