
Ensemble methods
(Combining predictions)

M. Stefanucci
Fall 2021

University of Trieste

1



Ensemble methods

Learning with imbalanced data

2



Ensemble methods



Combining multiple predictions: Model averaging

• Classification trees can be simple, but often produce noisy (bushy)
and weak classifiers

• Bagging (Breiman, 1996): Fit many large trees to
bootstrap-resampled versions of the training data, and classify by
majority vote

• Boosting (Freund & Shapire, 1996): Fit many large or small trees to
reweighted versions of the training data. Classify by weighted majority
vote

• Random Forests (Breiman 1999): Fancier version of bagging.
• Note however that the idea of combining multiple predictions or

classifications can be used for any technique (i.e., logistic
classification, NN, etc.) and it is not limited to trees

• This idea is closely related with model averaging: a strategy for
model selection and evaluation of uncertainty in Bayesian analyses

3



Combining predictions (classifications)

• The idea is to combine the output of different learners for each data
point (y , x). This help when learners have complementary strengths.

• Suppose training data are available in the form of the p covariates
x = (x1, x2, . . . , xp) and the response is (target) is y . Let
ŷ1 = f1(x), . . . , ŷM = f1(x) be M different predictions (estimates,
“experts evaluations”) for the same data point.

• A simple combined vote takes their average

fcomb(x) = 1
M

M∑
m=1

fm(x)

In the classification setting for each class k we have a prediction f k
m(x , t)

equal to 0 or 1. Then

fcomb(x) = 1
M

M∑
m=1

f k
m(x)

for each class k and f k
comb(x , t) is the proportion of votes for class k. We

predict the class with the most number of votes (majority vote). 4



Bagging

• Bagging or bootstrap aggregation averages a given procedure over
many samples, to reduce its variance

• A natural way to reduce the variance and increase the prediction
accuracy of a statistical learning method is to take many training sets
from the population, build a separate prediction model using each
training set, and average the resulting predictions.

• Instead, we can
• bootstrap, by taking repeated samples from the same training data set
• use the b-th bootstrapped training set to get the prediction f̂ b(x) and
• average all the predictions, to obtain

f̂bag (x) = 1
B

B∑
b=1

f̂ b(x)

• This is called bagging. In classification problems it uses majority votes.
• Bagging can dramatically reduce the variance of unstable procedure (like trees),

leading to improved prediction.
• Bagging averages many trees, produces smoother decision boundaries, reduces the

variance, but can slightly increase bias 5



Out-of-bag

• Using random samples of observations allows the use of the
out-of-bag tool, for easy estimation of prediction errors.

• In each bootstrap sample, some of the data of the original training set
are excluded.

• On average, each bagged sample makes use of around two-thirds of
the observations

• The remaining one-third of the observations not used to fit a given
bagged tree are referred to as the out-of-bag (OOB) observations

• For each classifier f̂ b(x) the data of training set that are not in
sample can be used as a test set. This will give B/3 predictions for
the i-th observation.

• Estimate the misclassification error on these data outside the sample
used for the fit (out-of-bag), so avoiding cross-validation for large
data sets

6



Random Forest

• A quite popular refinement of bagging. Particularly when bagging
trees for which was originally developed. We will describe this version.

• At each tree split, a random sample of m features is drawn, and only
those m features are considered for splitting.

• Typically m = √p or log2p, where p is the number of features
(covariates)

• For each tree grown on a bootstrap sample, the error rate for
observations left out of the bootstrap sample is monitored
(out-of-bag)

• Random forests tries to improve on bagging by “de-correlating” the
trees, and reduce the variance.

• Each tree has the same expectation, so increasing the number of trees
does not alter the bias of bagging or random forests.

7



Variable importance

Random forests can be used to rank the importance of variables in a
regression or classification problem.

• For each tree grown in a random forest, calculate number of votes for
the correct class in out-of-bag data.

• Now perform random permutation (shuffling) of a predictor’s values
(let’s say variable-k) in the OOB data and then check the number of
votes for correct class.

• Subtract the number of votes for the correct class in the
variable-k-permuted data from the number of votes for the correct
class in the original OOB data.

• The average of this number over all trees in the forest is the raw
importance score for variable k. The score is normalized by taking the
standard deviation.

• Variables having large values for this score are ranked as more
important. It is because if building a current model without original
values of a variable gives worse prediction, it means the variable is
important.

8



Boosting

• Designed, initially, exclusively for classification problems

• Idea: Like bagging, but take unequal probability bootstrap samples.
Put more weight on observations that are misclassified, to make the
classifier work harder on those points. Invention of Freund e Schapire
(1997)

• Details

• Start with equal observation weights pi = 1/n
• At iteration t, draw a bootstrap sample with the current probabilities

p1, p2, . . . , pn, compute the classifier and et , the error rate of the
classifier on the original sample. Let βt = et/(1 − et)

• For those points that are classified correctly, decrease their
probabilities pi = piβt and normalize them

• Do this for many (say 1000) iterations.

9



Boosting

• At the end, take a weighted vote of the classifications, with weights
αt = log(1/βt) (more weight on classifiers with lower error).

• Boosting can improve bagging in many instances

Weighting decorrelates the trees, and focuses on regions missed by past
trees.

In the classification setting for each class k we have a prediction f k
m(x , t)

equal to 0 or 1. Then

fcomb(x) = 1
M

M∑
m=1

f k
m(x)

for each class k and f k
comb(x , t) is the proportion of votes for class k. We

predict the class with the most number of votes (majority vote).

10



Learning with imbalanced data



Classification with imbalanced datasets

• The problem of data imbalance emerges in supervised classification
problems and here we will only mention the (most relevant) case of binary
classification

• It is an issue that occurs when one of the two classes which represents the
target variable (usually also the class of main interest) is rare and then it is
much less represented then the other class in the dataset

• It is a situation encountered in many real word applications:
• in many fraud detection problems the number of observed frauds is

(luckily) a rare event
• when predicting the insolvency of a firm the event of failing in a given

year is not very frequent
• in medicine, many specific diseases in the population have usually a

very low frequency
• there are many examples where customers are very loyal and observing

customer churn is rare

11



Degree of imbalance

• The degree of imbalance for the response variable can be measured by
the imbalance ratio IR which is defined as the ratio between the cases
of the prevalent class divided by the number of data points in the rare
class. Saying that IR is 100 mean that for 1 data point in the rare
(positive) class there are 100 cases of the prevalent (negative) class.

• Actually any dataset presents a certain degree of imbalance, but the
severity of the problem for a two-class classification problem emerges
usually when the IR is at least larger than 10

• IR larger than 100 defines a strong imbalance
• IR larger than 1000 is an extremely skewed dataset (very strong

imbalance)
• In the two last cases dealing with the imbalance before bulding any

classification rule or machine learning algorithm cannot be avoided
• The size of the dataset also matters when defining the severity of the

problem

12



Why standard ML algorithms can fail with imbalanced
datasets?

• Standard classifiers such as logistic regression, Support Vector
Machine (SVM), classification tree or other ML algorithms are
suitable for balanced training sets.

• When facing imbalanced scenarios, these models often provide
suboptimal classification results, i.e., a good coverage of the majority
examples, whereas the minority examples are distorted

• The learning process often guided by global performance metrics such
as prediction accuracy induces a bias towards the majority class

• Rare minority examples may possibly be treated as noise by the
learning model.

• Many machine learning and statistical approaches have been
developed in the past two decades to cope with imbalanced data
classification, most of which have been based on three strategies: (i)
sample techniques, (ii) cost sensitive learning and (iii) possible
modification of the learning algorithm

13



Performance metrics in a two-class problems

• The quality of a learning algorithm is evaluated by looking at its
performance on test data.

• The simplest performance measures are based on comparison between the
predictions of the classifier and the true values (confusion matrix).

predicted
positive negative total

positive TP FN POS
Actual negative FP TN NEG

total PredPOS PredNEG N
• The simplest measure, accuracy (ACC) is defined as

ACC = TP + TN
N

• note that ACC cannot be used as a performance measure in imbalanced
dataset: a trivial classifier which always classify new cases into the majority
class will have an accuracy equal to the proportion of the majority class in
the sample

• If we have 0.1% of the sample of cases with a rare type of cancer, a (dull)
strategy which always predicts that you are free from the disease will
anyway obtain ACC equal to 99.9% 14



Other metrics and their use for imbalanced datasets

• True positive rate (recall or sensitivity) = TP
POS

• True negative rate (specificity) = TN
NEG

• Positive predictive value (precision) = TP
predPOS

• F1 = (1 + β2) precision·recall
(β2precision)+recall

β is often taken to be 1 (that is precision and recall have the same weight)

• Classification is obtained by setting a threshold for those methods
(logistic regression, trees) which estimate a score (probability) and
this threshold can be somewhat arbitrary and should be changed
appropriately when using some of the remedies for imbalance (such as
oversampling the rare class).

15



AUC (area under the ROC curve)

• AUC which does not depend on a given threshold is a most
appropriate measure for comparing performances with imbalanced
dataset.

• ROC (Receiver Operating Characteristics) measures the accuracy of a
classification prediction when prediction comes in form of a numerical
scoring (a probability).

• ROC Curve is obtained by plotting sensitivity versus specificity for
different thresholds. AUC measures the area under this curve and the
larger the better is the performance (for a perfect classifier AUC is 1).

• Note that ROC curve, and as a consequience AUC, can be very
unstable when the test dataset is small and imbalanced

16



Approaches to imbalanced data classification

• Preprocessing techniques (resampling and synthetic data generation)

Preprocessing is often performed before building learning model in order to
obtain balanced input data in building the classifier

• Cost-sensitive learning

• Specific modifications of classification algorithms for imbalanced
learning

17



(re)Sampling techniques: undersampling

• This strategy belongs to the first category of remedies: preprocessing
techniques

• The aim is to obtain a balanced sample (let’s say one of the classes
has no less than 30% of the cases, or even better the two classes are
made equivalent) for both the training and the test set.

• Undersampling:

this method reduces majority class. It consists in randomly selecting a
subset of observations (without replacement) from majority class to make
the data set balanced. This method can be very successfully used when
the data set is really huge. It can be improved on by adding strategy for
selecting the data most relevant for classification.

18



(re)Sampling techniques: oversampling

• It eliminates the harms of skewed distribution of the target by
multiplying new minority class samples. Data from the rare class are
re-sampled (with replacement) in order to balance the sample (note
that it can induce overfitting)

• Oversampling can also be achieved by generating new instances from
existing one.

• There are many methods specifically designed for generating new
synthetic data (data cloning) for the minority class. We will briefly
describe two of them:

• SMOTE (Chawla et al, 2002)
• ROSE (Menardi & Torelli, 2014)

• Hybrid methods: are a combination of the over-sampling method and
the under-sampling method.

19



ROSE: Random OverSampling Examples

• ROSE is aimed at oversampling the rare class by creating new
(syntetic) data points that are as similar as possible to the existing
(real) ones

• ROSE also suggests to under-sample the majority class (possibly by
cloning data with the same strategy)

• ROSE chooses a random point from the rare set and then a new
point is generated in the neighborhood according to a kernel function
(imagine to put a multivariate Gaussian distribution centered on the
point and select a new point from that Gaussian)

• The cloning method is formally based on a kernel density estimation
of the distribution of the predictor variables within the rare (or
sometimes also the prevalent) class. This turns out to be equivalent
to obtaining a smoothed bootstrap resampling scheme

20



ROSE: Random OverSampling Examples

• A package exists in R named ROSE. It can be also called directly
within the caret package. Recently a version of Rose has been made
also available within Scikit-learn in Python

• ROSE can also be used to undersample the prevalent class.
• A combination of undersampling and oversampling (possibly cloning

also data from the prevalent class) is sometimes useful
• Usually the test set is left unchanged. But the authors of ROSE

suggest that for a more stable estimate of some of the metrics (such
as AUC) also for the test set some new data can be cloned

21



SMOTE

• SMOTE is a popular method for data cloning.
• It generates new data in the rare class in order to obtain as many

cases as in the prevalent class.
• The generation of new cases happens by first selecting randomly a

case from the rare class and considering the K points which are closer
to this point.

• New points are generated selecting a random position along the line
connecting the selected point to one of the K neighbouring points

• There are many variants of SMOTE
• In R SMOTE is a function available within the R package DMwR. It

can be also called directly within the caret package. SMOTE and its
variants are availabel in Python Scikit-learn

22



Some practical issues

In real applications one has to choose:

1. when imbalance is a problem. Sometimes one can consider balancing the
training set even when IR is not larger than 4-5. With small data sets it
could be beneficial anyway. While in case of large (or huge datasets)
simple/naive strategies such as undersampling the prevalent class may give
good results

2. which method is most appropriate. This is a a matter of tastes. Usually,
considering alternative strategies and comparing the performances is
suggested. Any method has its merits and which is the more appropriate
depends on specific characteristics of the data

3. the nature of the predictors matters.

• SMOTE and ROSE work better when most of the predictors are
quantitative. With categorical predictors simple undersampling or
oversampling can be more appropriate.

• when applying ROSE some extra care is needed in the the case of mixed
variables (for instances zero inflated variables) or for limited variables.

23



Other remedies

1. Cost sensitive learning

In many cases the two errors have not the same importance. A different
cost can be associated to the two errors FP and FN and a higher value is
assigned to the most relevant error for the specific problem. The loss
function to be minimized for the algorithm will change accordingly and it
could help concentrating on predicting accurately the minority class

2. Modification of the standard algorithms

One of the most notable example is modification of boosting/bagging
procedures to account for data imbalance. Note that actually the use of
ensemble methods itself can alleviate the problem of data imbalance

24


	Ensemble methods
	Learning with imbalanced data

