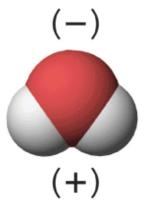
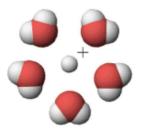
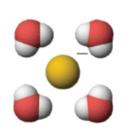

LA SOLUBILITA'

La solubilità rappresenta la quantità massima di soluto che si può sciogliere in un dato solvente ad una data temperatura.

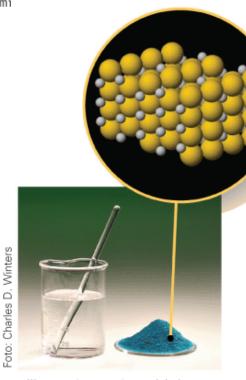
Quando in soluzione, ad una data temperatura, è stata sciolta la massima quantità possibile di soluto, si dice che la soluzione è satura.

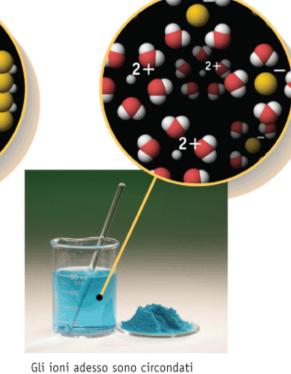

La solubilità rappresenta la concentrazione di soluto nella soluzione satura.


Solubilità = quantità in grammi di composto disciolto in un dato volume di soluzione (g/L)


LA SOLUBILITA': L'ACQUA COME SOLVENTE DEI COMPOSTI IONICI

Una molecola d'acqua ha un'estremità carica positivamente (gli atomi di idrogeno) e l'altra carica negativamente (l'atomo di ossigeno). Queste cariche permettono alle molecole d'acqua di interagire con gli ioni positivi e negativi nelle soluzioni acquose.




L'acqua che circonda un catione

L'acqua che circonda un anione

All'acqua viene aggiunto del cloruro di rame. Le interazioni tra l'acqua e gli ioni Cu²⁺ e Cl⁻ permettono la solubilizzazione del solido.

Gli ioni adesso sono circondati da molecole d'acqua.

LA SOLUBILITA': LINEE GUIDA

COMPOSTI SOLUBILI

Quasi tutti i sali di Na⁺, K⁺, NH₄⁺

Sali dei nitrati, NO₃⁻ clorati, ClO₃⁻ perclorati, ClO₄⁻ acetati, CH₃CO₂⁻

ECCEZIONI

Quasi tutti i sali di Cl-, Br-, I-

Alogenuri di Ag⁺, Hg₂²⁺, Pb²⁺

Composti contenenti F-

Fluoruri di Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺

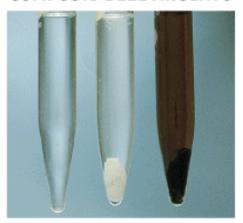
Sali dei solfati, SO₄²⁻

Solfati di Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺, Ag⁺

COMPOSTI INSOLUBILI

ECCEZIONI

La maggior parte dei carbonati, ${\rm CO_3}^{2-}$ fosfati, ${\rm PO_4}^{3-}$ ossalati, ${\rm C_2O_4}^{2-}$ cromati, ${\rm CrO_4}^{2-}$ solfuri, ${\rm S^{2-}}$


Sali di NH₄⁺ e dei cationi dei metalli alcalini

La maggior parte degli ossidi ed idrossidi dei metalli

Idrossidi di metalli alcalini e Ba(OH)2

LA SOLUBILITA': LINEE GUIDA

COMPOSTI DELL'ARGENTO

AgNO₃ AgCl AgOH

(a) I nitrati sono generalmente solubili, così come i cloruri (eccetto AgCl). Gli idrossidi sono generalmente insolubili.

SOLFURI

(NH4)2S CdS Sb2S3 PbS

(b) I solfuri sono generalmente insolubili (ad eccezione dei sali di NH₄* ed Na*).

IDROSSIDI

NaOH Ca(OH)2 Fe(OH)3 Ni(OH)2

(c) Gli idrossidi sono generalmente insolubili, eccetto quando il catione è un metallo del gruppo IA.

LA SOLUBILITA' IL PRODOTTO DI SOLUBILITA' Kps

Prodotto di solubilità

costante di equilibrio relativa all'equilibrio tra un sale indisciolto e i suoi ioni nella soluzione satura

BaSO₄ (s)
$$\longrightarrow$$
 Ba²⁺ (acq) + SO₄²⁻ (acq) $K_{ps} = [Ba^{2+}][SO_4^{2-}]$

$$Bi_2S_3$$
 (s) \longrightarrow 2 Bi^{3+} (acq) + 3 S^{2-} (acq) $K_{ps} = [Bi^{3+}]^2[S^{2-}]^3$

soluzione SATURA

Il prodotto di solubilità è costante a temperatura costante per una soluzione satura del composto ed è dato dal prodotto delle concentrazioni dei suoi ioni costituenti, ciascuna elevata all'esponente corrispondente al numero di ioni presenti nella formula del composto.

IL PRODOTTO DI SOLUBILITA' Kps

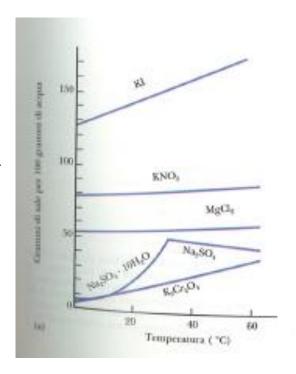
Tabella 16	ella 16.1 Costanti del prodotto di solubilità a 25 °C				
		$K_{\rm ps}$			K_{ps}
Acetati Bromuri	AgC ₂ H ₃ O ₂ AgBr Hg ₂ Br ₂	1.9×10^{-3} 5×10^{-13} 6×10^{-23}	Idrossidi	AI(OH) ₃ Ca(OH) ₂ Fe(OH) ₂	2×10^{-31} 4.0×10^{-6} 5×10^{-17}
Carbonati	PbBr ₂ Ag ₂ CO ₃	6.6×10^{-6} 8×10^{-12}		Fe(OH) ₃ Mg(OH) ₂	3×10^{-39} 6×10^{-12}
	BaCO ₃ CaCO ₃	2.6×10^{-9} 4.9×10^{-9}	la doni	TI(OH) ₃ Zn(OH) ₂	2×10^{-44} 4×10^{-17}
	MgCO ₃ PbCO ₃ SrCO ₃	6.8×10^{-6} 1×10^{-13} 5.6×10^{-10}	loduri	AgI Hg ₂ l ₂ Pbl ₂	1×10^{-16} 5×10^{-29} 8.4×10^{-9}
Cloruri	AgCI Hg ₂ Cl ₂ PbCl ₂	1.8×10^{-10} 1×10^{-18} 1.7×10^{-5}	Fosfati	Ag ₃ PO ₄ AIPO ₄ Ca ₃ (PO ₄) ₂	1×10^{-16} 1×10^{-20} 1×10^{-33}
Cromati	Ag ₂ CrO ₄ BaCrO ₄ PbCrO ₄	1×10^{-12} 1.2×10^{-10} 2×10^{-14}	Solfati	Mg ₃ (PO ₄) ₂ BaSO ₄ CaSO ₄	1×10^{-24} 1.1×10^{-10} 7.1×10^{-5}
Fluoruri	SrCrO ₄ BaF ₂ CaF ₂ MgF ₂ PbF ₂	3.6×10^{-5} 1.8×10^{-7} 1.5×10^{-10} 7×10^{-11} 7.1×10^{-7}		PbSO ₄ SrSO ₄	1.8×10^{-8} 3.4×10^{-7}

IL PRODOTTO DI SOLUBILITA' Kps

TABELLA 18.2 Alcuni comuni composti poco solubili e valore dei loro K_{ps}^*

Formula	Nome	K _{ps} (25 °C)	Nome comune/Uso
CaCO ₃	Carbonato di calcio	3.4×10^{-9}	Calcite, spato d'Islanda
MnCO ₃	Carbonato di Manganese(II)	2.3×10^{-11}	Rodocrosite (forma cristalli di colore rosa)
FeCO ₃	Carbonato di ferro(II)	3.1×10^{-11}	Siderite
CaF ₂	Floruro di calcio	5.3×10^{-11}	Fluorite (da cui si prepara HF ed altri fluoruri inorganici)
AgCl	Cloruro di argento	1.8×10^{-10}	Clorargite
AgBr	Bromuro di argento	5.4×10^{-13}	Usato in pellicole fotografiche
CaSO ₄	Solfato di calcio	4.9×10^{-5}	La forma idrata è comunemente chiamata gesso
BaSO ₄	Solfato di bario	1.1×10^{-10}	Barite (usata nei "fanghi di circolazione" delle trivellazioni e come componente di pitture)
SrS0 ₄	Solfato di stronzio	3.4×10^{-7}	Celestite
Ca(OH)₂	Idrossido di calcio	5.5×10^{-5}	Calce spenta

^{*} I valori in questa tavola sono derivati da Handbook od Chemistry di Lange, 15^a ed., NY, McGraw-Hill Publisher, New York, 1999. Ulteriori valori di K_{ps} sono riportati nell'Appendice J.


Dal valore del K_{ps} si può calcolare la solubilità del sale.

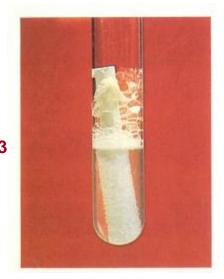
I FATTORI CHE INFLUENZANO LA SOLUBILITÀ

I fattori che influenzano la solubilità dei composti sono:

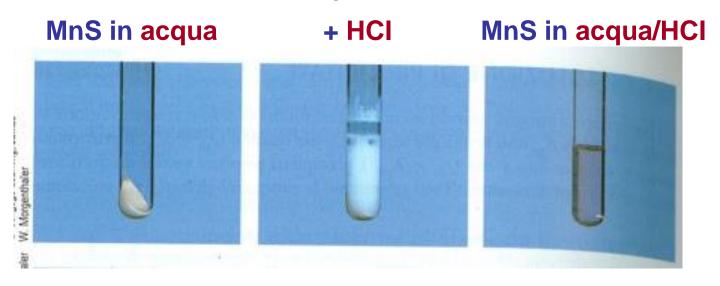
- ✓ La temperatura;
- ✓ La presenza di uno ione comune;
- ✓ II pH;
- ✓ La formazione di ioni complessi.

EFFETTO DELLA TEMPERATURA SULLA SOLUBILITÀ

CaCO₃ aragonite


EFFETTO DEL pH SULLA SOLUBILITÀ

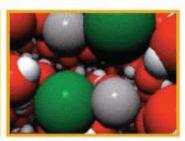
solubilizzazione dei precipitati


Idrolisi dell'anione del sale

Per aumentare la solubilità di un sale il cui anione è la base coniugata di un acido debole, si può aggiungere un acido forte.

Dissoluzione di CaCO₃ in presenza di HCI

Dissoluzione di MnS in presenza di HCI


LE REAZIONI DI PRECIPITAZIONE

Precipitazione di AgCI

(b) Inizialmente gli ioni argento Ag+ (colore argentato) e cloruro Cl-(verde) sono distanti tra loro.

(c) Ioni Ag⁺ e Cl⁻ si avvicinano e formano coppie di ioni.

(d) Man mano che più ioni Ag+ e Cl- si avvicinano tra loro, si forma un precipitato di AgCl.

(a) Pb(NO₃)₂ e K₂CrO₄ formano PbCrO₄ giallo insolubile e KNO₃ solubile.

PbS

(b) Pb(NO₃)₂ e (NH₄)₂S formano PbS nero insolubile e NH₄NO₃ solubile.

Fe(OH)₃

(c) FeCl₃ ed NaOH formano Fe(OH)₃ rosso insolubile ed NaCl solubile.

Ag₂CrO₄

(d) AgNO₃ e K₂CrO₄ formano Ag₂CrO₄ rosso insolubile e KNO₃ solubile.