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Nonlinear regression
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Intro: the limitations of linearity

Models that are built upon the linear effects of predictors, such as linear
models or generalized linear models, play a crucial and non-replaceable
role in the applications of statistics.

Linearity is always an approximation, which in many cases it leads to very
sensible results.

Yet, there are instances where linearity is too strong a limitation,
preventing the development of realistic models. That’s why nonlinear
models are important in statistics.
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Classes of nonlinear models

Whereas linear models (including also GLMs) are easy to characterize,
nonlinear models may be of several different types.

Some important instances, which do not certainly cover all the possibilities,
are:

• Models which are nonlinear in the predictors, belonging to the class of
semiparametric regression models, such as generalized additive
models (GAMs);

• Models which are nonlinear in the parameters, such as nonlinear
regression models, often based on some biological or physical model;

• Neural networks and their extension (such as the models used in
deep learning), which are again nonlinear in the parameters, but have
their own peculiarities and would deserve a specific treatment.

Here we focus on the models of the first class, and we introduce them with
a simple example.
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Semiparametric regression: an
introductory example
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An actuarial example: Automobile Bodily Injury Claims

Dataframe AutoBi in the R package insuranceData:
The data contains information about the claimant, attorney in-
volvement and the economic loss (LOSS, in thousands), among
other variables. We consider here a sample of n = 1,340 losses.

Main variables (after some transformations):

• ATTORNEY : The claimant is represented by an attorney (yes/no)
• CLMSEX : male/female
• MARITAL : married(M)/single (S)/widowed (W)/divorced (D)
• CLMINSUR : The driver of the claimant’s vehicle uninsured (yes/no)
• SEATBELT : The claimant was wearing a seatbelt/child restraint

(yes/no)
• CLMAGE : Claimant’s age
• AGECLASS : Claimant’s age split into five classes: (-18] / (18,26] /

(26,36] / (36,47] / (47+)
• LOSS : Claimant’s total economic loss (in thousands)
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AutoBi: Distribution of LOSS

• Severity refers to the amount of a claim.
• It is of interest to build a statistical model for predicting claim amount

in future policies based on a sample of claim amounts of past policies.
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AutoBi: Information about predictors
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AutoBi: Relation between predictors and log(LOSS)

yes no

−
4

0
4

ATTORNEY

lo
g(

au
to

bi
$L

O
S

S
)

male female
−

4
0

4

CLMSEX

lo
g(

au
to

bi
$L

O
S

S
)

M S W D

−
4

0
4

MARITAL

lo
g(

au
to

bi
$L

O
S

S
)

yes no

−
4

0
4

CLMINSUR

lo
g(

au
to

bi
$L

O
S

S
)

yes no

−
4

0
4

SEATBELT

lo
g(

au
to

bi
$L

O
S

S
)

1 2 3 4 5

−
4

0
4

AGECLASS

lo
g(

au
to

bi
$L

O
S

S
)

0 20 40 60 80

−
4

0
4

CLMAGE

10



AutoBi: Relation between predictors and log(LOSS)

Being represented by an attorney may be important
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Also other variables may matter, such as SEATBELT, MARITAL and
AGECLASS. On the contrary CLMSEX, CLMINSUR seem not to have a
marginal effect. The effect of CLMAGE is not clear.
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AutoBi: linear models

Based on the AIC, the following model is selected

Table 1: Fitting linear model: log(LOSS) ~ ATTORNEY + CLMAGE +
I(CLMAGEˆ2) + SEATBELT

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.22 0.14 -1.6 0.1
ATTORNEYno -1.4 0.072 -19 1.6e-67
CLMAGE 0.083 0.0075 11 6.1e-27

I(CLMAGEˆ2) -0.00091 9.5e-05 -9.5 1.1e-20
SEATBELTno 0.92 0.27 3.4 0.00059

The model has an R2 value of around 0.32, and the diagnostic plots (not
shown) do not highlight any serious flaw.
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More on the effect of age

CLMAGE (in what follows denoted as z) was introduced in the model with
three different specifications

1. As a linear term

yi = β0 + βzi + other covariates + εi

2. As a quadratic curve

yi = β0 + β1zi + β2z2
i + other covariates + εi

Other specifications could have been considered, such as

yi = β0 + β log zi + other covariates + εi

yi = β0 + β
√

zi + other covariates + εi

or any other function h(z);
3. as a discretized version, yet a different number of levels and/or

different boundaries for the categories could have been chosen.

Different choices could lead to different results and we can reasonably
explore a very restricted number of alternatives. 13



A different solution: nonlinear (semiparametric) regression

We would like to specify a model for CLMAGE which is at the same time

7→ simple, i.e. depending on a restricted number of parameters;

7→ flexible, i.e. capable of modelling a wide range of shapes.

One intuitive (naive) idea may be

yi = β0 + β1zi + β2z2
i + . . .+ βK zK

i + other + εi ,

since a polynomial function can approximate any shape if K is high
enough.

Leaving aside the issue of choosing K , this is a possible solution (which
may actually work) but is not very efficient due to the collinearity among
the covariates zk

i , k = 1, . . . ,K .

Luckily, we can keep the idea and make things work smoothly (and
efficiently) using an appropriate set of polynomial functions of z rather
than powers as above.

14



Some theory
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Semiparametric regression: basis representation

In semiparametric regression, the specification is

yi = β0 +
K∑

k=1
bkBk(zi) + other variables + εi

for a fixed set of known functions B1, . . . ,BK which is called a basis.

In other words, we seek a function describing the relationship between y
and z among those which can be written as

s(z) =
K∑

k=1
bkBk(z) .

For a suitable choice of the Bk(z) we can obtain very different shapes
using relatively few Bk(z), i.e. a low value of K , in an efficient manner.
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Semiparametric regression: basis representation

We do not discuss the choice of the basis set, since various possibilities
exist.

Below we depict a simple example (K = 6) based on B-splines, which
represent one of the most compelling choices.
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Semiparametric regression: estimation

Given the specification

yi = β0 +
p∑

j=1
βj xij +

K∑
k=1

bk Bk(zi) + εi

and being the function Bk(·) known, estimation may proceed as usual for
linear models.

Namely, we minimize with respect to both b and β the sum of squares

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij −
K∑

k=1
bkBk(zi)

)2
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Semiparametric regression: estimation

It may be convenient to define a new matrix

X̃ =

1 x11 . . . x1p B1(z1) . . . BK (z1)
...

...
...

...
1 xn1 . . . xnp B1(zn) . . . BK (zn)


and a new coefficient vector

β̃ =
[

β

b

]
,

then the sum of squares becomes

(y− X̃ β̃)> (y− X̃ β̃)
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AutoBi data: estimation

For two models including ATTORNEY, SEATBELT and different sets of
Bk(CLMAGE) functions, the estimated s(·) functions are
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A larger basis set (higher K ) leads to a less smooth estimated function.
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Smoothness of regression curve and choice of K

By changing the number of basis functions we estimate curves with
different degrees of smoothness.

The more basis functions are used

• the better the final curve fits the observations,
• the higher the uncertainty of the estimates (because there are more

coefficients to be estimated).

This is a bias-variance trade off, where more basis functions means less
bias but more variance and viceversa.

Choosing the optimal balance is part of the estimation procedure, as
discussed in the following.
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Quantifying the smoothness of the curve

Although changing the number of basis functions is a strategy to tune the
smoothness of the curve, it is not the optimal strategy.

We define a measure of the roughness of the s(·) function as

R(s)

which is null for a straight line (maximum smoothness) and increases as
the curve gets less smooth.

The roughness penalty can be expressed as a function of the coefficients
b. In particular, there exists a matrix G such that

R(b) = b> Gb

The specifics of G depends on the chosen basis.
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Penalized sum of squares

A convenient method to tune the smoothness of the estimated curve is
then fix the number of basis functions at a relatively large value, and then
penalize the sum of squares according to the roughness penalty: this is the
approach of smoothing splines.

We then define the penalized sum of squares as

(y− X̃ β̃)> (y− X̃ β̃) + λb> Gb

where λ > 0 is a tuning parameter.

This gives an estimated s(·) function which is smoother with higher values
of λ:

• if λ→∞ the fitted curve s(·) is a straight line.
• if λ = 0 no penalty is considered (the curve will be as wiggly as

allowed by the number of basis functions).

This procedure defines a regression curve for each value of λ.
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Choice of tuning parameter

The last step is to choose an optimal degree of smoothness of the
estimated curve, that is, an optimal λ.

This entails choosing the optimal bias-variance balance as outlined above
where a lower λ leads to

• a curve s(·) which better fits sample observations (smaller bias)
• a more uncertain estimate (larger variance)

The optimal balance can be found looking at the prediction error, that is
the error we make when we use the model to perform prediction on new
units.
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Degree of smoothness and predictive accuracy

If we measure the prediction error for the different models (as λ varies), we
generally get a picture such as
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The optimal λ is then the one where the minimum prediction error is
attained. As usual with likelihood methods, this can be obtained by cross
validation, or by less costly alternatives such as the Generalized Cross
Validation (GCV) criterion, which is similar to the AIC.
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AutoBi: optimal λ

Using the gam function in the mgcv package, The following curve for
log(LOSS) as a function of CLMAGE is obtained; note that the effect of age
is now conditional on the other predictors
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AutoBi: inference on the other coefficients

Inference for the coefficients is carried out similarly to the the linear case,
thus we have a coefficient table

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.3 0.05 25 3.8e-112
ATTORNEYno -1.4 0.072 -19 6e-69
SEATBELTno 0.9 0.27 3.4 0.00073

The b coefficients are usually not included in the table; an overall
significance test for the s(·) function may be reported instead

edf Ref.df F p-value

s(CLMAGE) 4.6 5.6 28 1.9e-29

The edf is the estimated degrees of freedom: the larger the number, the
more wiggly the fitted model, with values around 1 close to a linear effect. 27



Generalized Additive Models
(GAMs)
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GAMs: the basic ideas

Generalized Additive Models extend semiparametric regression in two
directions:

1. More than one nonlinear term: for linear regression with a dependent
variable Y and a set of predictor variables X1, . . . ,Xp, the model for
the i-th observation is

yi = β0 +
p∑

j=1
sj(xij) + other variables + εi ,

with one smooth term for each predictor, plus possibly other standard
(linear) terms. The specification is named additive since the various
nonlinear terms enter the specification in an additive fashion, with no
interaction effects.

(There are ways to introduce interactions, but they require some
non-trivial extensions.)
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GAMs: the basic ideas

2. Generalized response: like for GLMs, binary or count responses are
handled by a link function.

The nonlinear terms are introduced in the linear predictor, which now
becomes

ηi = β0 +
p∑

j=1
sj(xij) + other variables

The estimation proceeds by representing the smooth terms using a suitable
basis, and then maximizing the penalized log-likelihood to jointly
estimate the model coefficients and the basis coefficients

`(β,b)− λR(b) ,

where like before R(b) is a measure of roughness. The estimation is often
carried out using the backfitting algorithm, which updates one set of
coefficients at a time, though other possibilities exist.
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R lab: an example with binary data

As a simple example, we use the function gamSim from mgcv to generate a
binary data set from a model with four additive terms

dat <- gamSim(1, n = 400, dist = "binary", scale = .33)

## Gu & Wahba 4 term additive model

lr.fit <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3),
family = binomial,
data = dat, method = "REML")

Since we know the true model, we can compare it with the results.

31



Plot model components with truth overlaid in red
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R lab: model selection

lr.fit1 <- gam(y ~ s(x0) + s(x1) + s(x2), family = binomial,
data = dat, method = "REML")

lr.fit2 <- gam(y ~ s(x1) + s(x2), family = binomial,
data = dat, method = "REML")

AIC(lr.fit, lr.fit1, lr.fit2)

## df AIC
## lr.fit 14.876903 441.4780
## lr.fit1 13.853102 439.4980
## lr.fit2 9.996909 440.7629

33



Winding up

What we have seen is just a glimpse of a very large body of methods.

Indeed, the approach based on smoothing splines with a roughness penalty
is just one of several available in statistics. It has the strong advantage of
being extendable in several directions, to cover also more complex settings
for non-independent data.

Another approach worth mentioning is local polynomial regression,
which includes kernel smoothing as a special case. It covers a broad
range of applications as well, and it allows for robust versions, such the
method implemented in the lowess function for robust scatterplot
smoothing.
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