Cancer Immunotherapy (2)

Adaptive Cell Transfer Therapy

Adoptive cell therapy (ACT) is a treatment that uses a cancer patient's own T lymphocytes with anti-tumor activity, expanded in vitro and reinfused into the patient with cancer.

Adaptive Cell Transfer Therapy

• **TIL** (Tumor infiltration T-lymphocytes therapy)

TIL

The first paper to demonstrate the regression of cancer using TIL for the immunotherapy of patients with metastatic melanoma.

Rosenberg, S. A.et al.Use of tumor infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. Preliminary report. **N. Engl. J. Med. 319, 1676–1680 (1988).**

TIL

Target therapy with Tumor specific T cells

- -Cancer: Melanoma
- Autologous tumor infiltrating lymphocytes (TILs); "Live drug"

Advantages

- High response rate (>50%),
- Long-term remission,
- Less toxic & gentler to the patient

Limitation:

- Extraction of TILs,
- Cell manufacturing

Induction of a T-response against tumor

Abbas et al: Cellular and Molecular Immunology, Updated 6th Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

Low number of TIL

Adaptive Cell Transfer Therapy

- **TIL** (Tumor infiltration T-lymphocytes therapy)
- **TCR** (T-cell receptor therapy)

TCR

TCR complex :TCR, CD3, ζ

ITAM: immunoreceptor tyrosine-based activation motif

TCR

The first paper demonstrating the adoptive cell transfer of lymphocytes transduced with a retrovirus encoding TCRs that recognize a cancer antigen can mediate anti-tumour responses in patients with metastatic melanoma.

Morgan, R. A.et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. **Science 314, 126–129 (2006).**

Abbas et al: Cellular and Molecular Immunology, Updated 6th Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

HLA-restricted response – tumor escape

Tumor escape (4)

\cdot Some tumor cells reduce the expression of MHC I

Abbas et al: Cellular and Molecular Immunology, Updated 6th Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved Any possibility to design an immunotherapeutic approach able to work independently from class I MHC?

Bispecific T-Cell Engaging (BiTE) Antibody

Blinatumumab

Source: L. L. Brunton, B. A. Chabner, B. C. Knollmann: Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 12ed. www.accesspharmacy.com Copyright

McGraw-Hill Education. All rights reserved.

Structure and function of blinatumomab. A. The structural features of blinatumomab (MT103, AMG103) arise from monoclonal antibodies (mAbs) directed against CD19 and CD3. Single-chain antibodies are constructed from the light and heavy variable immunoglobulin domains (VL and VH) for each protein and connected using a long amino acid linker (Gly_4Ser_1)₃.^{4, 12} Two single-chain antibodies are joined using a short amino acid linker (Gly_4Ser_1)₃.^{4, 12} Two single-chain antibodies are joined using a short amino acid linker (Gly_4Ser_1)₁.³¹ B. Aggregation of T and B cells in the presence of blinatumomab. A cytotoxic T lymphocyte (blue) is associated with chronic lymphocytic leukemia cells (pink).¹⁴ The EpCAM BiTE MT110 can facilitate T-lymphocyte interaction with solid tumor cells, which have high expression levels of the EpCAM antigen (e.g., pancreatic cancer cells³²).

Induction of a T-response against tumor

Figure 1C. Confocal microscope image displaying a cytolytic synapse between a tumor cell (with large Hoechst stained nucleus) and T cell (with small Hoechst stained nucleus and green signal recognizing CD45) in the presence of BiTE. Cytolytic synapse represented by activated PKC0 labeling (red) on T cell at tumor cell interface (courtesy of Luis Borges, Laura Smith, Padma Narayanan, and Sue Ludmann at Amgen).

Limit of BsAb (BITE)

- Molecular weight (have to be low MW)
- Manufacturing (purification)
- Number of TIL

Adaptive Cell Transfer Therapy

- **TIL** (Tumor infiltration T-lymphocytes therapy)
- **TCR** (T-cell receptor therapy)
- **CAR-T** (Chimeric antigen receptor T-cell therapy)

CAR-T

CAR-T cells have to recognize tumor cells independently of their expression of human leukocyte antigen (HLA) molecules, tumors that escape conventional T cells by down-regulating HLA and/or mutating components of the antigen processing machinery can be eliminated.

CAR-T

CARs consist of fusion molecules and are typically comprised of:

- an extracellular single chain variable fragment (scFv) of a monoclonal antibody (mAb) <u>specific for a surface molecule</u> <u>on the tumor cell</u>,
- 2. a spacer domain that provides flexibility and optimizes T cell and target cell engagement,
- 3. a transmembrane domain,
- 4. signaling modules that trigger T cell effector functions.

Michael et al, Designing chimeric antigen receptors to effectively and safely target tumors. Current Opinion in Immunology 2015

CAR-T

Generation of a tumor targeted chimeric antigen receptor (CAR)

(??why a retrovirus??)

Generation of TAA-targeted T cells for treatment of Cancer

Induction of a T-response against tumor

Cathepsins (blue) LFA-1 (green) Talin (red)

Abbas et al: Cellular and Molecular Immunology, Updated 6th Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

T-cell response independent from the expression of MHC, CD80/86, etc

Challenges of CAR-T

1. Target selection

CAR-T cells: target selection

Target	CAR	Cancer	Objective response
CD19	CAR:CD28-CD3ζ	Lymphoma and CLL	N=7: 1CR, 5 PR & 1SD
	CAR:CD137-CD3 ζ	ALL	2CR
	CAR:CD28-CD3ζ	ALL	5CR
CD20	CAR:CD137-CD28-CD3ζ	NHL	N=3: 1PR, 2NED
CEA	CAR-CD3ζ (1st gen)	Colorectal & breast	N=7: minor responses in two patients
GD2	CAR-CD3ζ (1st gen)	Neuroblastoma	N=19: 3CR
ERBB2	CAR:CD28-CD137-CD3ζ	Colorectal cancer	N=1, patient died

Kershaw et. al. Nature Reviews Cancer, 2013

TRANSMEMBRANE DOMAIN

The transmembrane domain traverses the cell membrane, anchors the CAR to the cell surface, and connects the extracellular domain to the intracellular signaling domain, thus impacting expression of the CAR on the cell surface.²

COSTIMULATORY DOMAIN

The costimulatory domain is derived from the intracellular signaling domains of costimulatory proteins, such as CD28 and 4-1BB, that enhance cytokine production.^{1, 3}

T CELL

TARGET ELEMENT

The single-chain variable fragment (scFv) is expressed on the surface of a CAR T cell and confers antigen specificity. The scFv is derived from the portion of an antibody that specifically recognizes a target protein.^{2, 4}

SPACER

The spacer connects the extracellular targeting element to the transmembrane domain and affects CAR function and scFv flexibility.⁴

SIGNALING DOMAIN

The CD3 zeta domain is derived from the intracellular signaling portion of the T cell receptor, which mediates downstream signaling during T cell activation.^{3, 4}

	About Us <u>The Scienc</u>	<u>ce</u> Our Pipeline	Patients Work at Juno	
	Our Platform	CAR Technology	TCR Technology	Contact Us
NHL				+
NHL	. CD19 : JCAR014 Combin			+
Pedi	iatric ALL CD22 : JCAR01			+
NHL				+
Mult	i ple Myeloma BCMA (Ph			+
AML	. WT1 : JTCR016 (Phase 1/			+
NSC	LC, Mesothelioma WT1:			+
Pedi	iatric Neuroblastoma L1C	AM : JCAR023 (Phase 1		+
Ova	rian MUC16 : JCAR020 (P			+
NSC	LC, Breast ROR1 : JCARO			+
Lung	g Cancer LeY (Phase 1)			+

CAR-T cells: target/Ab selection

Fig. 2 Types of multiple targeting programmable CARs. (A) Tag specific immune receptor targeting the biotinylated tumor Ag through the Avidin-Biotin mechanism. (B) Anti-tag specific immune receptor targeting the FITC labeled tumor Ag via the interaction between FITC and anti-FITC ScFv. (C) Bi-specific immune receptor attaching to CD20 Ag by engaging the folate receptor and tumor antigen through the bi-specific antibody. (D) ADCC mediated receptor performing ADCC mechanism via the interaction between CD16gRIIIa receptor and Fc-IgG. (E) Tandem-CAR-T cell with two different ScFvs on a single receptor chain. (F) Dual-CAR-T Cell with two separate CARs expressing two various ScFvs. (G) TRUCK cell armored with transcription factor to produce cytokines. (H) Physiological CAR with the capability of antigen recognition based on ligand receptor. (I) SUPRA CAR with two split structures includes the antigenbinding domain (zipFV) and function domain (zipCAR). (J) SynNotch CAR with two separate portions includes antigen A-specific SynNotch receptor and antigen B-specific CAR. (K) split CAR with programmable mechanism exerted by split structure assembling through the small molecule (created by Esmaeilzadeh et al.)

Tahmasebi, et al.

Clinical and Translational Oncology

2020

CAR-T cells: target selection

able I Clinical trial studies of multi-targeted and programmable CAR-1	able 1	eted and programmable CAR-T	cells
--	--------	-----------------------------	-------

	0 1 0			
itudy	CAR type	Target antigen	Cancer type	References
Beijing, China	Universal CAR-T cell	CD19	Leukemia, lymphoma	NCT03166878
Jenan, China		CD19	ALL-NHL	NCT03229876
Jew York, USA		CD123	AML	NCT03190278
JSA, UK, Belgium		CD19	Children ALL	NCT02808442
France, Spain		CD19	Adult ALL	NCT02746952
JSA, UK, Belgium		CD123	BPDCN	NCT03203369
France, Spain				
Iouston, Texas, USA				
Beijing, China	Multi targeted CAR-T cell	CD19-CD20	Leukemia, lymphoma	NCT03097770
Beijing, China	-	CD19-CD20/D22	Leukemia, lymphoma	NCT03398967
/ilwaukee, WI, USA		CD19-CD20	CLL/SLL/NHL	NCT03019055
eattle, WA, USA		CD19-CD22	Leukemia, lymphoma	NCT03330691
Bethesda, MD, USA		CD19-CD22	Leukemia, lymphoma	NCT03448393
Gi'an, China		CD19-CD22	Lymphoma	NCT03593109
Shanghai, China		CD19-CD22	Lymphoma	NCT03468153
ondon, Manchester		CD19-CD22	Lymphoma	NCT03287817
k Newcastle, UK		CD19-CD22	Lymphoma	NCT03233854
alo Alto, CA, USA		CD19-CD22	Leukemia	NCT03241940
alo Alto, CA, USA		CD19–CD22	Leukemia	NCT03614858
Suzhou, China				

CAR Chimeric antigen receptor, CD cluster of differentiation, ALL acute lymphocytic leukemia, NHL non-Hodgkin lymphoma, AML acute myeloid leukemia, BPDCN blastic plasmacytoid dendritic cell neoplasm, CLL chronic lymphocytic leukemia, SLL small lymphocytic lymphoma

 Table 2
 Pre-Clinical studies

 of multi-targeted and
 programmable CAR-T cells

S

Study	CAR type	Target antigen	Cancer type	References
Urbanska et al., 2012	Universal	EpCAM-Meso-FRa	Ovarian cancer	[69]
Cartellieri et al., 2016	Universal	CD33-CD123	AML	[72]
Chen et al., 2017	Universal	CD20	MCL	[94]
Kim et al., 2015	Universal	FRa	Malignant tumors	[70]
Zah et al., 2016	Tandem	CD19-CD20	Lymphoma	[46]
Ruella et al., 2016	Tandem	CD19-CD123	Leukemia	[44]
Li et al., 2018	Tandem	CD19-CD133	MLL	[47]
Schneider et al., 2017	Tandem	CD19-CD20	Lymphoma	[45]
Grada et al., 2013	Tandem	HER2–CD19	B cell malignancy	[41]
Qin et al., 2018	Tandem	CD19-CD22	ALL	[48]
Hegde et al., 2016	Tandem	HER2 -IL13Ra2	Glioblastoma	[43]
Wilkie et al., 2012	Dual	ErbB2-MUC1	Breast	[34]
Lanitis et al., 2013	Dual	Meso-FRa	Ovarian	[38]
Kloss et al., 2013	Dual	PSMA-CD19	Prostate	[36]
Anurathapan et al., 2013	Dual	MUC1–PSCA	Pancreatic	[33]
Jiang et al., 2018	Dual	EGFR-EGFRvIII	Glioblastoma	[95]
Cho et al., 2018	SUPRA	HER2-Meso-Axl	Breast	[<mark>61</mark>]
Roybal et al., 2016	SynNotch	CD19-Meso-GFP	Leukemia	[58]
Roybal et al., 2016	SynNotch	CD19-HER2-GFP	Leukemia	[56]
Morsut et al., 2016	SynNotch	CD19-GFP	Lymphoma	[55]
Srivastava et al., 2019	SynNotch	EpCAM-ROR1	Breast cancer	[59]
Wu et al., 2015	On switch	CD19	Leukemia	[96]
Juillerat et al., 2016	On switch	CD19	Leukemia	[97]
Cao et al., 2016	On switch	HER2	Breast cancer	[91]
Rodgers et al., 2016	On switch	CD19	Leukemia	[77]

CAR chimeric antigen receptor, CD cluster of differentiation, EpCAM epithelial cell adhesion molecule, Meso mesothelin, FRa folate receptor a, HER2 human epidermal growth factor receptor 2, MUC1 Mucin 1, PSMA prostate-specific membrane antigen, PSCA prostate stem cell antigen, EGFR epidermal growth factor receptor, GFP green fluorescent protein, ROR1 receptor-tyrosine-kinase-like orphan receptor 1, AML acute myeloid leukemia, MCL mantle cell lymphoma, MLL mixed-lineage leukemia, ALL acute lymphocytic leukemia

Tahmasebi, et al.

Clinical and Translational Oncology

2020

CAR-T cells: target selection

Leukemia (2020) 34:3382–3387 https://doi.org/10.1038/s41375-020-0831-z

LETTER

Acute lymphoblastic leukemia

Frequent occurrence of CD19-negative relapse after CD19 CAR T and consolidation therapy in 14 *TP53*-mutated r/r B-ALL children

Jing Pan 0 · Yue Tan² · Biping Deng³ · Chunrong Tong⁴ · Lin Hua⁵ · Zhuojun Ling⁴ · Weiliang Song⁴ · Jinlong Xu⁴ · Jiajia Duan⁴ · Zelin Wang⁴ · Huilin Guo⁶ · Xinjian Yu⁶ · Alex H. Chang⁷ · Qinlong Zheng⁶ · Xiaoming Feng^{2,8}

Received: 24 February 2020 / Revised: 27 March 2020 / Accepted: 2 April 2020 / Published online: 28 April 2020 © The Author(s), under exclusive licence to Springer Nature Limited 2020

To the Editor:

Despite high remission rates after CD19 CAR T-cell therapy in patients with refractory or relapsed B acute lymphoblastic leukemia (r/r B-ALL), relapses were commonly observed [1–4]. To improve long-term disease-free survival (DFS), our and other centers have conducted post-CD19 CAR consolidations with allogeneic hematopoietic stem cell transplantation (allo-HCT) or CD22 CAR T-cell infusion [5–9]. However, some patients still relapsed, but it is unknown which factors caused their relapses. *TP53* mutation predicts nonresponse and poor outcome in childhood B-ALL during traditional therapies. Genomic instability caused by *TP53* mutation induces leukemia cells to undergo genomic evolution to survive stress and treatment [10–12]. In our previous studies, CAR T therapy can overcome genetic adverse features including TP53 mutation to induce remission [5, 6], but it is unknown whether the long-term outcome would be influenced by TP53 mutation and other genetic aberrations.

We analyzed the outcome of 68 r/r B-ALL children (characteristics in Supplementary Tables. 1 and 2) treated with CD19 CAR T cells and post-CAR consolidations of allo-HCT or CD22 CAR T-cell infusion between January 2nd, 2018 and April 19th 2019 in three trials. The details of trials, clinical procedure, and analysis methods were in supplemental methods pp1-8. Sixty-six patients (97.1%) achieved complete remission. With a median follow-up of 11.3 (range, 1-21) months, a promising one-year DFS of 79.6% (95% CI, 65.9-87.8) was achieved (Supplementary Fig. 1a), but 12 patients still relapsed within a median time of 6.3 (range, 1–11.4) months (Fig. 1a and Supplementary Fig. 1b). DFS was comparable between allo-HCT (n = 34) and CD22 CAR T (n = 30) consolidation subgroups (P =0.232, Supplementary Fig. 1c). . • ATGG 4 4444 1

CAR-T cells: target selection

Check for updates

Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial

Nirav N. Shah[©]¹[⊠], Bryon D. Johnson¹, Dina Schneider², Fenlu Zhu¹, Aniko Szabo[©]³, Carolyn A. Keever-Taylor[©]¹, Winfried Krueger², Andrew A. Worden², Michael J. Kadan², Sharon Yim[©]¹, Ashley Cunningham⁴, Mehdi Hamadani[©]¹, Timothy S. Fenske¹, Boro Dropulić[©]²[⊠], Rimas Orentas^{2,5} and Parameswaran Hari¹

Chimeric antigen receptor (CAR) T cells targeting CD19 are a breakthrough treatment for relapsed, refractory B cell malignancies1-5. Despite impressive outcomes, relapse with CD19⁻ disease remains a challenge. We address this limitation through a first-in-human trial of bispecific anti-CD20, anti-CD19 (LV20.19) CAR T cells for relapsed, refractory B cell malignancies. Adult patients with B cell non-Hodgkin lymphoma or chronic lymphocytic leukemia were treated on a phase 1 dose escalation and expansion trial (NCT03019055) to evaluate the safety of 4-1BB-CD3/ LV20.19 CAR T cells and the feasibility of on-site manufacturing using the CliniMACS Prodigy system, CAR T cell doses ranged from 2.5×105-2.5×10⁶ cells per kg. Cell manufacturing was set at 14d with the goal of infusing non-cryopreserved LV20.19 CAR T cells. The target dose of LV20.19 CAR T cells was met in all CAR-naive patients, and 22 patients received LV20.19 CAR T cells on protocol. In the absence of dose-limiting toxicity, a dose of 2.5 × 10⁶ cells per kg was chosen for expansion. Grade 3-4 cytokine release syndrome occurred in one (5%) patient, and grade 3-4 neurotoxicity occurred in three (14%) patients. Eighteen (82%) patients achieved an overall response at day 28, 14 (64%) had a complete response, and 4 (18%) had a partial response. The overall response rate to the dose of $2.5 \times 10^{\circ}$ cells per kg with non-cryopreserved infusion (n = 12) was 100% (complete response, 92%; partial response, 8%). Notably, loss of the CD19 antigen was not seen in patients who relapsed or experienced treatment failure. In conclusion, on-site manufacturing and infusion of non-cryopreserved LV20.19 CAR T cells were feasible and therapeutically safe, showing low toxicity and high efficacy. Bispecific CARs may improve clinical responses by mitigating target antigen downregulation as a mechanism of relapse.

Anti-CD19 CAR T cell therapy is a new immunotherapeutic approach for patients with relapsed, refractory B cell malignancies¹⁻⁶. Despite early excitement about this treatment, long-term progression-free survival (PFS) with anti-CD19 CAR T cell products ranges from 30-40% for aggressive B cell non-Hodgkin lymphoma (NHL), suggesting that most patients will either not respond or relapse after receiving this treatment^{2,2,7}. A common mechanism

of relapse is downregulation of the CD19 antigen and development of a CD19⁻ clone⁸⁻¹¹. Biopsies obtained at relapse from patients with B cell NHL after anti-CD19 CAR T cell therapy revealed that approximately 30% of patients were CD19-, demonstrating the impact of clonal selection that occurs with single targeting of the CD19 antigen12,13. Simultaneous targeting of more than one B cell antigen has been proposed as a therapeutic strategy to reduce the risk of relapse mediated by antigen-negative clonal escape14-16. Preclinical studies found that tandem, bispecific CD20-CD19 lentiviral CARs can mitigate downregulation of not only the targeted receptors but also at least one non-targeted B cell receptor (that is, CD22)17. These data provided support for the clinical development of a phase 1 trial for tandem bispecific anti-CD20, anti-CD19 4-1BB-CD3(lentiviral (LV20.19) CAR T cells (Extended Data Fig. 1) for patients with relapsed, refractory B cell malignancies, including NHL and chronic lymphocytic leukemia (CLL).

Twenty-six patients with B cell NHL or CLL met eligibility criteria and underwent apheresis for LV20.19 CAR T cell production (Extended Data Fig. 2). Four patients did not meet their target doses, three of whom were treated per clause, allowing infusion outside of specified cohorts. Patient and disease characteristics for the remaining 22 patients are detailed in Table 1 (top). The median age at CAR T cell infusion was 57 years (range, 38-72 years), and the median number of lines of prior therapy was 4 (range, 2-12) (see Supplementary Table 1 for detailed patient history). Patients with mantle cell lymphoma (MCL) were particularly heavily pretreated, with a median of 8 prior lines, and all patients had experienced treatment failure with Bruton's tyrosine kinase (BTK) inhibitors. Most patients (82%) were refractory to their last line of treatment. Baseline CD19 and CD20 expression on tumor cells from biopsy material taken before infusion with LV20.19 CAR T cells is listed in Supplementary Table 2.

Twenty-six LV20.19 CAR T cell products were manufactured using a fixed 14-d process in the CliniMACS Prodigy device (Supplementary Note, CAR T cell manufacturing). The target dose of LV20.19 CAR T cells was achieved in 85% of patients (22 of 26), which met our feasibility endpoint (>75% success), with 100% successful manufacturing in CAR-naive patients. Detailed manufacturing data are presented in Extended Data Fig. 3.

¹BMT & Cellular Therapy Program, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, USA. ³Lentigen, a Miltenyi Biotec company, Gaithersburg, MD, USA. ³Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA. ⁴Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA. ⁵Department of Pediatrics, University of Washington School of Medicine, Ben Towne Center for Childhood Cancer Research, Seattle, WA, USA. ³Be-mail: nishah@mcw.edu; borc.dropulic@miltenyi.com

Challenges of CAR-T

1. Target selection

2. Optimize co-stimulatory signaling of T cell effector functions

Abbas et al: Cellular and Molecular Immunology, Updated 6th Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

Evolution in CAR design

First-generation CARs: including activating receptors such as CD8/CD3-ζ fusion receptors; **Second-generation CARs**: providing dual signaling to direct combined activating and co-stimulatory signals;

Third-generation CARs: comprising more complex structures with 3 or more signaling domains.

Evolution in CAR design

First-generation CARs: including activating receptors such as CD8/CD3-ζ fusion receptors; **Second-generation CARs**: providing dual signaling to direct combined activating and co-stimulatory signals;

Third-generation CARs: comprising more complex structures with 3 or more signaling domains.

The third generation of CARs

- A third generation of CARs in which a second costimulatory molecule is fused in the intra-cellular motif with the co-stimulatory signals, therefore, generating triple-signaling CARs, is under development
- Third-generation CARs seem to have improved proliferation, cytokine secretion and a better persistence in circulation
- Unfortunately, this last generation of CARs may also be dangerous and the activation can be too strong leading to cytokine storm and eventually to death

Advantages of CAR-T cell therapy

- HLA-independent antigen recognition, therefore universal application
- Active in both CD4+ and CD8+ T cells
- Target antigens include proteins, carbohydrates and glycolipids
- Rapid generation of tumor specific T cells
- Minimal risk of autoimmunity or GvHD
- A living drug, single infusion

Challenges of CAR-T

1. Target selection

2. Optimize co-stimulatory signaling of T cell effector functions

3. Toxicities (on-target but off-tumor toxicity)

(The on-target toxicities result from the inability of engineered T cells to distinguish between normal cells and cancer cells that express the targeted Ag)

Challenges of CAR-T

Toxicities

On target/off tumor toxicities

Metastatic colon cancer patient died after 5 days of infusion of ERBB2+CAR-T cells

-----Low levels of ERBB2 express on lung epithelium (lung tox)

Renal cell carcinoma: 5/11 patients developed liver toxicity

-Cytokine syndrome

Elevated levels of pro-inflammatory cytokines

—Treatable by anti-IL-6 mAb and steroid

Tumor lysis syndrome

International Journal of *Molecular Sciences*

Review

Engineering Next-Generation CAR-T Cells for Better Toxicity Management

Alain E. Andrea ¹, Andrada Chiron ^{2,3}, Stéphanie Bessoles ² and Salima Hacein-Bey-Abina ^{2,3,*}

- ¹ Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut 1100, Lebanon; alain.andrea@net.usj.edu.lb
- ² Université de Paris, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France; andrada.chiron@parisdescartes.fr (A.C.); stephanie.bessoles@parisdescartes.fr (S.B.)
- ³ Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, 94275 Le-Kremlin-Bicêtre, France
- * Correspondence: salima.hacein-bey-abina@parisdescartes.fr

Received: 12 October 2020; Accepted: 13 November 2020; Published: 16 November 2020

Determinants of successful CAR-T cells

Tumor target

- Target antigen is critical determinant for efficacy & safety
- Ideal target uniquely express on tumor cells or on cells which are not essential for survival

Efficacy & Long-term persistence

- Subtypes of CD4+T cells (Th1, Th2, Th17, Th9 cells),
- CD8+T cells
 - naïve, central memory; long-term
 - effector; active but short lived

Trafficking of CAR T cells to tumor

- Expression of addressins
- —Route of CAR-T cell infusion
 - Intra-tumoral/intravenous
- Optimal co-stimulation of T cells

Classification of T-cell

- Cytotoxic T-cell (CD8)
- Helper T-cell (CD4)
- Regulatory/suppressor T-cell (T-Reg)
- Memory T-cell

Adoptive T cell therapy: Right T cell population?

Zou W & Restifo NP Nature Reviews Immunology 2010

Tumor growth suppression in RORγ-/- mice (Th17 cell deficient)

Abrogation of Th17 pathways promotes anti-tumor immune responses

Evolution in CAR design

(Elahi, Khosh, Tahmasebi, & Esmaeilzadeh, 2018)

First-generation CARs: including activating receptors such as CD8/CD3-ζ fusion receptors; **Second-generation CARs**: providing dual signaling to direct combined activating and co-stimulatory signals;

Third-generation CARs: comprising more complex structures with 3 or more signaling domains.

Fourth-generation:

IL-12

- A heterodimeric cytokine secreted by activated APCs, neutrophils and macrophages.
- Induces Th1 CD4⁺ T cell response enhancing IL-2 and IFN-γ secretion
- Enhances T cell clonal expansion and effector function in concert with TCR signaling (signal 1) and CD28 costimulation (signal 2), serving as a signal 3.
- Avoids/reverses T cell anergy
- May overcome Treg mediated effector T cell inhibition
- Recruits and activates NK cells
- Clinical trials in cancer using systemic IL-12 therapy has been limited by severe inflammatory side effects

Moving Forward: Armored CARs

CANCER

Antitumor activity without on-target off-tumor toxicity of GD2–chimeric antigen receptor T cells in patients with neuroblastoma

Karin Straathof^{1,2}, Barry Flutter^{1,2}, Rebecca Wallace^{1,2}, Neha Jain², Thalia Loka², Sarita Depani², Gary Wright², Simon Thomas^{3,4}, Gordon Weng-Kit Cheung³, Talia Gileadi¹, Sian Stafford¹, Evangelia Kokalaki³, Jack Barton¹, Clare Marriott², Dyanne Rampling², Olumide Ogunbiyi², Ayse U. Akarca³, Teresa Marafioti³, Sarah Inglott², Kimberly Gilmour², Muhammad Al-Hajj⁴, William Day⁴, Kieran McHugh², Lorenzo Biassoni², Natalie Sizer², Claire Barton⁵, David Edwards⁵, Ilaria Dragoni⁵, Julie Silvester⁵, Karen Dyer⁵, Stephanie Traub⁵, Lily Elson⁵, Sue Brook⁵, Nigel Westwood⁵, Lesley Robson⁵, Ami Bedi², Karen Howe², Ailish Barry², Catriona Duncan², Giuseppe Barone², Martin Pule³*, John Anderson^{1,2}*

The reprogramming of a patient's immune system through genetic modification of the T cell compartment with chimeric antigen receptors (CARs) has led to durable remissions in chemotherapy-refractory B cell cancers. Targeting of solid cancers by CAR-T cells is dependent on their infiltration and expansion within the tumor micro-environment, and thus far, fewer clinical responses have been reported. Here, we report a phase 1 study (NCT02761915) in which we treated 12 children with relapsed/refractory neuroblastoma with escalating doses of second-generation GD2-directed CAR-T cells and increasing intensity of preparative lymphodepletion. Overall, no patients had objective clinical response at the evaluation point +28 days after CAR-T cell infusion using standard radiological response criteria. However, of the six patients receiving $\geq 10^8$ /meter² CAR-T cells after fludarabine/ cyclophosphamide conditioning, two experienced grade 2 to 3 cytokine release syndrome, and three demonstrated regression of soft tissue and bone marrow disease. This clinical activity was achieved without on-target off-tumor toxicity. Targeting neuroblastoma with GD2 CAR-T cells appears to be a valid and safe strategy but requires further modification to promote CAR-T cell longevity.

Copyright © 2 The Authors, rights reserve exclusive lice American Ass for the Advar of Science. No to original U.3 Government

Fig. 1. 1RG-CART design, expression, and function. (**A**) The GD2-CAR (chimeric antigen receptor) consists of the single-chain variable fragment (scFv) of humanized anti-GD2 antibody K666 (*14*), as previously described (*13*). This is connected to the human immunoglobulin IgG1 hinge and Fc regions. To avoid unintended binding of innate immune cells expressing IgG Fc receptors (FcγRs) to CH2CH3, essential binding motifs needed for IgG1-FcγR interaction were mutated (*15*). The extracellular part of the CAR is fused to the transmembrane and the intracellular components of CD28 linked in cis to CD3ζ. RQR8 depicts the sort/suicide component and is coexpressed with GD2-CAR using a foot-and-mouth virus-derived 2A cleavage site. LTR, long terminal repeat; MoMLV, moloney murine leukemia virus-based vector; SAR, scaffold attachment region. (**B**) Coexpression of GD2-CAR and RQR8 is demonstrated in transduced T cells by staining for GD2-CAR using anti-human Fc binding the CH2CH3 spacer and by staining for RQR8 using QBEnd10. (**C**) Shown is the percentage of viable CD3⁺/1RG-CART⁺, CD4⁺, and CD8⁺ cells as well as the proportion of viable CD3⁺/1RG-CART⁺ lymphocytes in different T memory subsets [here defined as CD45RA⁺CCR7⁺, T stem cell memory (Tscm)/naïve; CD45RA⁻CCR7⁺, T central memory (Tcm); CD45RA⁻CCR7⁻, T effector memory (Tem); and CD45RA⁺CCR7⁻, T effector memory reexpressing CD45RA (Temra)]. Shown are data points for each of the 17 1RG-CART cell products manufactured and the median as a horizontal red line. (**D**) Depletion of autologous neuroblastoma (NBL) cells in infiltrated bone marrow (BM) by 1RG-CART cells (example on the left and degree of depletion for each sample on the right).

Fig. 2. 1RG-CART in vivo expansion. (**A**) Shown is the detection of 1RG-CART cells by qPCR expressed as copies/µg of DNA at indicated time points after CAR-T cell infusion for the six patients treated on DL4 and DL5. Marking quantification was below the limit of detection for the six patients treated on DL1 to DL3. The value at day +28 for patient 25/011 is 0. (**B**) Shown is the detection of 1RG-CART in peripheral blood by flow cytometry after staining for RQR8 at indicated time points for the six patients treated on DL4 and DL5. (**C**) Shown is the percentage of CD3⁺/QBEnd10⁺ cells of CD45⁺/7-AAD⁻ cells in peripheral blood at day 0 (D0) and at indicated time points after 1RG-CART administration for patients 25/010, 25/013, and 25/018.

secondary cytopenia was likely, at least in part, due to bone marrow infiltration. In summary, using cell doses of up to $10^9/m^2$, no dose-limiting toxicity, including neurotoxicity, was seen.

Tumor responses are associated with immune activation but are incomplete

Using Response Evaluation Criteria in Solid Tumors (RECIST) (18) and immune RECIST (19) for soft tissue target lesions and Curie and International Society of Pediatric Oncology European Neuroblastoma Group (SIOPEN) scoring for metastatic deposits identified by metaiodobenzylguanidine (¹²³I-mIBG) scans (20), no objective clinical responses were recorded at the day +28 reassessment (table S5, A and B). Three of the six patients treated with CAR-T cell doses of $\geq 10^8/m^2$ in DL4 and DL5 had clinical signs of progressive disease confirmed with MRI and/¹²³I-mIBG scintigraphy at 3 to 4 weeks 1RG-CART activity are described in detail below.

Patient 25/010 was an 8-year-old girl with relapsed metastatic neuroblastoma after four lines of previous treatment. At trial entry, she had widespread bone metastases and extensive bone marrow infiltration. She required opioid analgesia for pain, and her performance score was 60%. She received $1 \times 10^8/\text{m}^2$ 1RG-CART cells. On day +5, she developed fever and hypotension requiring fluid boluses and was supported with nasal cannula oxygen. At that time, she had raised C-reactive protein (CRP) with serum interleukin-6 (IL-6) and IL-10 concentrations in keeping with grade 3 CRS. These symptoms resolved after a single dose of tocilizumab (Fig. 3A). From day +7, she developed weight gain, tender hepatomegaly, and ascites. She had a low serum albumin, coagulopathy, and raised soluble CD25 [16,100 pg/ml (normal, <2500)], raised triglycerides (1.75 mM), and raised ferritin (3724 µg/ml; peak, 17,208 µg/ml) (Fig. 3B). These symp-

toms of sustained immune activation resolved by day +22 with supportive care including strict fluid management, 20% albumin infusion, and spironolactone. On day +21, she had an episode of acute back pain. Biochemical analysis of blood showed changes consistent with tumor lysis: raised potassium and phosphate serum concentrations and a peak lactate dehydrogenase (LDH) of 4017 IU/liter (Fig. 3C). Supportive care was provided, including hydration and salbutamol to treat hyperkalemia. Her symptoms resolved by day +24, and all analgesia was stopped. As per standard management of febrile neutropenia, regular blood cultures were taken; with the exception of a single blood culture taken on day +10, these showed no growth throughout the period to day +28. At disease reassessment on day +28, her performance status had markedly improved to 90%. Histological assessment of the bone marrow, which, at baseline, was heavily infiltrated with neuroblastoma, showed extensive tumor

Summary

CAR-T cells

- T cells transduced with tumor-specific Chimeric Antigen Receptor (CAR)
 - Tumor recognition independent of HLA (no HLA typing needed)
 - Target: variety of tumor antigens (protein, carbohydrate, glycolipid)
 - High response rate (up to 88%): pre-clinical and clinical findings

Limitation of CAR-T cells

Toxicities

- On target/off tumor toxicities
- Cytokine syndrome

-Tumor microenvironment

- Presence of MDSCs & Treg in tumor
- Immunosuppressive agents

The hostile tumor microenvironment

The tumor microenvironment contains multiple inhibitory factors designed to potentially suppress effector T cells.

- CD4+ CD25^{hi} FoxP3+ regulatory T cells (Tregs)
- MDSCs
- TAMs
- Expression of inhibitory ligands by tumor (PD-L1)
- Tumor secretion of T cell suppressive cytokines (TGF-β and IL-10)

Antigen Dilemma	T Cell Fitness	
 Modulating scFv affinity Targeting multiple antigens Restricting CAR activity to tumor sites Safety switches 	 Provision of additional signals to promote T-cell activation/co-stimulation Expression of cytokines or constitutively active cytokine receptors Silencing or deletion of molecules that restrict T-cell activation Modulating transcription factors 	
Homing/Penetration • Expression of chemokine receptors • Expression of ECM degrading enzymes	 Microenvironment Directly counteracting immunosuppressive factors Hijacking cytokines or growth factors to promote T-cell effector function Improving metabolic fitness of CAR T cells Targeting non-malignant cells of the tumor stroma 	

Molecular Therapy 2020 282320-2339; DOI: (10.1016/j.ymthe.2020.09.015)

Stromal

cells

cytokines

Molecular Therapy 2020 282320-2339; DOI: (10.1016/j.ymthe.2020.09.015)

D

●■ ◆ ▲ ● + * * ROR1-28z CAR-treated 4T1- ROR1 tumors

Fan Zhang et al. Cancer Res 2018;78:3718-3730

S blood advances

Next-generation cell therapies: the emerging role of CAR-NK cells

Rafet Basar, May Daher, and Katayoun Rezvani

Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX

T cells engineered with chimeric antigen receptors (CARs) have revolutionized the field of cell therapy and changed the paradigm of treatment for many patients with relapsed or refractory B-cell malignancies. Despite this progress, there are limitations to CAR-T cell therapy in both the autologous and allogeneic settings, including practical, logistical, and toxicity issues. Given these concerns, there is a rapidly growing interest in natural killer cells as alternative vehicles for CAR engineering, given their unique biological features and their established safety profile in the allogeneic setting. Other immune effector cells, such as invariant natural killer T cells, $\gamma \delta$ T cells, and macrophages, are attracting interest as well and eventually may be added to the repertoire of engineered cell therapies against cancer. The pace of these developments will undoubtedly benefit from multiple innovative technologies, such as the CRISPR-Cas gene editing system, which offers great potential to enhance the natural ability of immune effector cells to eliminate refractory cancers.