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Quantum Integral Transforms

We demonstrated in the previous chapter that there are some quantum algo-
rithms superior to their classical counterparts. It is, however, rather difficult
to find any practical use of these algorithms. There are two quantum algo-
rithms, known to date, which are potentially useful: Grover’s search algorithm
and Shor’s prime number factorization algorithm. Both of them depend on
quantum integral transforms, which will be introduced in the present chapter.
We mainly follow [1] in our presentation.

6.1 Quantum Integral Transforms

DEFINITION 6.1 (Discrete Integral Transform) Let n ∈ N and Sn =
{0, 1, . . . , 2n − 1} be a set of integers. Consider a map

K : Sn × Sn → C. (6.1)

For any function f : Sn → C, its discrete integral transform (DIT) f̃ :
Sn → C with the kernel K is defined as:

f̃(y) =
2n−1∑

x=0

K(y, x)f(x). (6.2)

The transformation f → f̃ is also called the discrete integral transform.

We define N ≡ 2n to simplify our notations. The kernel K is expressed as
a matrix,

K =





K(0, 0) . . . K(0, N − 1)
K(1, 0) . . . K(1, N − 1)

. . . . . . . . .
K(N − 1, 0) . . . K(N − 1, N − 1),



 (6.3)

and the function f as a vector,

f = (f(0), f(1), . . . f(N − 1))t .

109



Quantum Integral Transform

110 QUANTUM COMPUTING

The definition of DIT then reduces to the ordinary multiplication of a matrix
on a vector as

f̃ = Kf.

PROPOSITION 6.1 Suppose the kernel K is unitary: K† = K−1. Then
the inverse transform f̃ → f of a DIT exists and is given by

f(x) =
N−1∑

y=0

K†(x, y)f̃(y). (6.4)

Proof. By substituting Eq. (6.2) into Eq. (6.4), we prove
N−1∑

y=0

K†(x, y)f̃(y) =
N−1∑

y=0

K†(x, y)

[
N−1∑

z=0

K(y, z)f(z)

]

=
N−1∑

z=0

[
N−1∑

y=0

K†(x, y)K(y, z)

]
f(z)

=
N−1∑

z=0

δxzf(z) = f(x).

Let U be an N × N unitary matrix which acts on the n-qubit space H =
(C2)⊗n. Let {|x〉 = |xn−1, xn−2 . . . , x0〉} (xk ∈ {0, 1}) be the standard binary
basis of H, where x = xn−12n−1 + xn−22n−2 + . . . + x020. Then

U |x〉 =
N−1∑

y=0

|y〉〈y|U |x〉 =
N−1∑

y=0

U(y, x)|y〉. (6.5)

The complex number U(x, y) = 〈x|U |y〉 is the (x, y)-component of U in this
basis.

PROPOSITION 6.2 Let U be a unitary transformation, acting on H =
(C2)⊗n. Suppose U acts on a basis vector |x〉 as

U |x〉 =
N−1∑

y=0

K(y, x)|y〉. (6.6)

Then U computes∗ the DIT f̃(y) =
∑N−1

x=0 K(y, x)f(x) for any y ∈ Sn, in the
sense that

U

[
N−1∑

x=0

f(x)|x〉
]

=
N−1∑

y=0

f̃(y)|y〉. (6.7)

∗The proposition claims that U maps a state with the probability amplitude f(x) to another
state with the probability amplitude f̃(y) that is related with f(x) through the kernel K.
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Now we make the connection with quantum computing
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Here |x〉 and |y〉 are basis vectors of H.

Proof. In fact,

U

[
N−1∑

x=0

f(x)|x〉
]

=
N−1∑

x=0

f(x)U |x〉

=
N−1∑

x=0

f(x)

[
N−1∑

y=0

K(y, x)|y〉
]

=
N−1∑

y=0

[
N−1∑

x=0

K(y, x)f(x)

]
|y〉

=
N−1∑

y=0

f̃(y)|y〉. (6.8)

Note that the unitary matrix U computes the discrete integral transform
f̃(y) for all variables y by a single operation if it acts on the superposition
state

∑
x f(x)|x〉. There are exponentially large numbers 2n of y for an n-

qubit register, and this fact provides a quantum computer with exponentially
fast computing power for a certain kind of computations compared to classical
alternatives.

The unitary matrix U implementing a discrete integral transform as in
Eq. (6.7) is called the quantum integral transform (QIT).

EXERCISE 6.1 Let f → f̃ be a DFT with a unitary kernel K. Prove
Parseval’s theorem

N−1∑

x=0

|f(x)|2 =
N−1∑

y=0

|f̃(y)|2. (6.9)

6.2 Quantum Fourier Transform (QFT)

One of the most important quantum integral transforms is the quantum
Fourier transform. Let ωn be the Nth primitive root of 1;

ωn = e2πi/N , (6.10)

where N = 2n as before. The complex number ωn defines a kernel K by

K(x, y) =
1√
N
ω−xy

n . (6.11)

The discrete integral transform with the kernel K,

f̃(y) =
1√
N

N−1∑

x=0

ω−xy
n f(x), (6.12)

The unitary matrix U implementing 
a discrete integral transform as in 
Eq. (6.7) is called the quantum 
integral transform (QIT). 
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We will introduce three types of QIT:

1. Quantum Fourier Transform (QFT)
2. Walsh Hadamard Transform (which we already saw)
3. Selective Phase Rotation Transform
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is called the discrete Fourier transform (DFT).
The kernel K is unitary since

(KK†)(x, y) = 〈x|K
∑

z

|z〉〈z|K†|y〉 =
∑

z

K(x, z)K†(z, y)

=
1
N

∑

z

ω−xz
n ωyz

n =
1
N

∑

z

ω−(x−y)z = δxy.

The quantum integral transform defined with this kernel is called the quan-
tum Fourier transform (QFT).

The kernel for n = 1 is

K1 =
1√
2

(
1 1
1 e2πi/2

)
=

1√
2

(
1 1
1 −1

)
, (6.13)

which is nothing but our familiar Hadamard gate. For n = 2, we have ω2 =
e2πi/4 = i and

K2 =
1
2





1 1 1 1
1 ω−1

2 ω−2
2 ω−3

2

1 ω−2
2 ω−4

2 ω−6
2

1 ω−3
2 ω−6

2 ω−9
2



 =
1
2





1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i



 . (6.14)

The inverse DFT is given by

f(x) =
1√
N

N−1∑

y=0

ωxy
n f̃(y). (6.15)

It is important to note that

UQFTn|0〉 =
1√
2n

2n−1∑

y=0

|y〉, (6.16)

where UQFTn is the n-qubit QFT gate. This equality shows that the QFT of
f(x) = δx0 is f̃(y) = 1/

√
2n, which is similar to the FT of the Dirac delta

function δ(x). Observe that a single application of UQFTn on the state |0〉 has
produced the superposition of all the basis vectors of H.

EXERCISE 6.2 Let

|ψ〉 = N
N−1∑

x=0

cos
(

2πx

N

)
|x〉

be an n-qubit state.
(1) Normalize |ψ〉.
(2) Find UQFTn|ψ〉.
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The quantum integral transform defined with this kernel is called the 
quantum Fourier transform (QFT). 

UQFT|xi =
1p
N

N�1X

y=0

!�xy
n |yi

<latexit sha1_base64="aebaCYyBNuWMLBC9cxoMtuqtKEY="></latexit>

UQFT =
1p
N

N�1X

x=0

N�1X

y=0

!�xy
n |yihx|

<latexit sha1_base64="OUckjckXBvq2sDeezitJxt9re7g="></latexit>
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6.4 Implementation of QFT

We now consider a quantum circuit UQFTn which implements the n-qubit
QFT. The circuit UQFTn maps a state

∑
x f(x)|x〉 to a state

∑
y f̃(y)|y〉,

where
f̃(y) =

1√
N

∑

x

ω−xy
n f(x), ωn = e2πi/N .

Thus for f(x′) = δx′x, we obtain f̃(y) = ω−xy
n /

√
N , namely

UQFTn|x〉 =
1√
N

N−1∑

y=0

e−2πixy/N |y〉.

Let us start our implmentation of QFT with n = 1, 2 and 3 to familiarize
ourselves with the problem.

n = 1
Eq. (6.13) shows that the kernel for n = 1 QFT is the Hadamard gate H ,

whose action on |x〉, x ∈ {0, 1}, is concisely written as

UH|x〉 =
1√
2
(|0〉+ (−1)x|1〉) =

1√
2

1∑

y=0

(−1)xy|y〉. (6.24)

In fact, this is the defining equation for n = 1 QFT as

UQFT1|x〉 =
1√
2

1∑

y=0

ω−xy
1 |y〉 = 1√

2

1∑

y=0

(−1)xy|y〉. (6.25)

It is instructive to demonstrate Eq. (6.7) explicitly here. Let |ψ〉 = f(0)|0〉+
f(1)|1〉 be any one-qubit state. Then

UQFT1|ψ〉 = f(0)
1√
2
(|0〉+ |1〉) + f(1)

1√
2
(|0〉 − |1〉)

=
1√
2

(f(0) + f(1)) |0〉+ 1√
2

(f(0)− f(1)) |1〉 =
1∑

y=0

f̃(y)|y〉.

n = 2
This case is considerably more complicated than the case n = 1. It also

gives important insights into implementing QFT with n ≥ 3. Let us introduce
an important gate, the controlled-Bjk gate. The Bjk gate is defined by the
matrix

Bjk =
(

1 0
0 e−iθjk

)
, θjk =

2π
2k−j+1

, (6.26)

where j, k ∈ {0, 1, 2, . . .} and k ≥ j.
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6.4 Implementation of QFT
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QFT. The circuit UQFTn maps a state

∑
x f(x)|x〉 to a state

∑
y f̃(y)|y〉,

where
f̃(y) =

1√
N

∑

x

ω−xy
n f(x), ωn = e2πi/N .

Thus for f(x′) = δx′x, we obtain f̃(y) = ω−xy
n /

√
N , namely

UQFTn|x〉 =
1√
N
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y=0

e−2πixy/N |y〉.
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2
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(−1)xy|y〉. (6.24)

In fact, this is the defining equation for n = 1 QFT as

UQFT1|x〉 =
1√
2
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ω−xy
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2
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y=0

(−1)xy|y〉. (6.25)

It is instructive to demonstrate Eq. (6.7) explicitly here. Let |ψ〉 = f(0)|0〉+
f(1)|1〉 be any one-qubit state. Then

UQFT1|ψ〉 = f(0)
1√
2
(|0〉+ |1〉) + f(1)

1√
2
(|0〉 − |1〉)

=
1√
2

(f(0) + f(1)) |0〉+ 1√
2

(f(0)− f(1)) |1〉 =
1∑

y=0

f̃(y)|y〉.

n = 2
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)
, θjk =

2π
2k−j+1
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where j, k ∈ {0, 1, 2, . . .} and k ≥ j.

Quantum Integral Transforms 117

FIGURE 6.1
(a) Controlled-Bjk gate. The inverted controlled-Bjk gate (b) and the
controlled-Bjk gate are equivalent (see Lemma 6.1).

LEMMA 6.1 The controlled-Bjk gate Ujk in Fig. 6.1 (a) acts on |x〉|y〉,
x, y ∈ {0, 1}, as

Ujk|x, y〉 = e−iθjkxy|x, y〉 = exp
(
− 2πi

2k−j+1
xy

)
|x, y〉. (6.27)

Proof. The controlled-Bjk gate is written as

Ujk = |0〉〈0|⊗ I + |1〉〈1|⊗Bjk, (6.28)

and its action on |x, y〉 is

Ujk|x, y〉 = |0〉〈0|x〉 ⊗ |y〉+ |1〉〈1|x〉 ⊗Bjk|y〉

=

{ |x〉 ⊗ |y〉 x = 0

|x〉 ⊗Bjk|y〉 x = 1.
(6.29)

Moreover, when x = 1 we have

Bjk|y〉 =
{ |y〉 y = 0

e−iθjk |y〉 y = 1.
(6.30)

Thus the action of Ujk on |y〉 is trivial if xy = 0 and nontrivial if and only if
x = y = 1. These results may be summarized as Eq. (6.27).

The action of the controlled-Bjk gate on a basis vector |x〉|y〉 is detemined
by the combination xy and not by x and y independently. Therefore the
controlled-Bjk gate and the “inverted” controlled-Bjk gate are equivalent; see
Fig. 6.1.

The DFT for n = 2 is defined as

f̃(y) =
1
2

3∑

x=0

ω−xy
2 f(x), ω2 = e2πi/4 = i, y ∈ S2. (6.31)
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Equation (6.6) in Proposition 6.2 states that our task is to find a unitary
matrix UQFT2 such that

UQFT2|x〉 =
1
2

3∑

y=0

ω−xy
2 |y〉. (6.32)

Let us write x and y in the binary form as x = 2x1 + x0 and y = 2y1 + y0,
respectively. The action of UQFT2 on |x〉 is

UQFT2|x1x0〉 =
1
2

3∑

y=0

e−2πixy/22
|y〉 = 1

2

1∑

y0,y1=0

e−2πix(2y1+y0)/22
|y1y0〉

=
1
2

∑

y1

e−2πixy1/2|y1〉 ⊗
∑

y0

e−2πixy0/22
|y0〉

=
1
2

(
|0〉+ e−2πix/2|1〉

)
⊗
(
|0〉+ e−2πix/22

|1〉
)

=
1
2

(
|0〉+ e−2πi(2x1+x0)/2|1〉

)
⊗
(
|0〉+ e−2πi(2x1+x0)/22

|1〉
)

=
1
2
(
|0〉+ e−πix0 |1〉

)
⊗
(
|0〉+ e−πix1e−i(π/2)x0 |1〉

)

=
1
2

(|0〉+ (−1)x0 |1〉)⊗Bx0
12 (|0〉+ (−1)x1 |1〉) , (6.33)

where use has been made of the fact θ12 = 2π/22−1+1 = π/2 to obtain the
last expression. Note that Bx0

12 is the controlled-B12 gate with the control bit
x0 and the target bit x1; B0

12 = I while B1
12 = B12. Note also that, in spite of

its tensor product looking appearance, the last line of Eq. (6.33) is entangled
due to this conditional operation. Equation (6.33) suggests that the n = 2
QFT are implemented with the Hadamard and the U12 gates. Before writing
down the quantum circuit realizing Eq. (6.33), we should note that the first
qubit has a power (−1)x0 , while the second one has (−1)x1, when the input
state is |x1x0〉. If we naively applied the Hadamard gate to the second qubit,
we would obtain

(I ⊗ UH)|x1x0〉 = |x1〉 ⊗
1√
2
(|0〉+ (−1)x0 |1〉).

These facts suggest that we need to swap the first and second qubits at the
beginning of the implementation so that

UQFT2|x1x0〉 =
1√
22

(|0〉+ (−1)x0 |1〉)⊗Bx0
12 (|0〉+ (−1)x1 |1〉)

= (UH ⊗ I)U12(I ⊗ UH)|x0, x1〉
= (UH ⊗ I)U12(I ⊗ UH)USWAP|x1x0〉. (6.34)

Since Eq. (6.34) is true for any |x1x0〉, we should have UQFT2 = (UH ⊗
I)U12(I ⊗ UH)USWAP, which proves the following proposition.

Note that Bx0
12 is the controlled-B gate 

with the control bit
x0  and the target bit x1; B0

12 = I while B1
12 = 

B12. Note also that, in spite of 
its tensor product looking appearance, 

the last line of Eq. (6.33) is entangled due 
to this conditional operation. 

!"# = 1 0
0 '()*+, ,    -"# = #.

#,/+0+ =
.
#
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!"# =
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Equation (6.6) in Proposition 6.2 states that our task is to find a unitary
matrix UQFT2 such that

UQFT2|x〉 =
1
2

3∑

y=0

ω−xy
2 |y〉. (6.32)

Let us write x and y in the binary form as x = 2x1 + x0 and y = 2y1 + y0,
respectively. The action of UQFT2 on |x〉 is

UQFT2|x1x0〉 =
1
2

3∑

y=0

e−2πixy/22
|y〉 = 1

2

1∑

y0,y1=0

e−2πix(2y1+y0)/22
|y1y0〉

=
1
2

∑

y1

e−2πixy1/2|y1〉 ⊗
∑

y0

e−2πixy0/22
|y0〉

=
1
2

(
|0〉+ e−2πix/2|1〉

)
⊗
(
|0〉+ e−2πix/22

|1〉
)

=
1
2

(
|0〉+ e−2πi(2x1+x0)/2|1〉

)
⊗
(
|0〉+ e−2πi(2x1+x0)/22

|1〉
)

=
1
2
(
|0〉+ e−πix0 |1〉

)
⊗
(
|0〉+ e−πix1e−i(π/2)x0 |1〉

)

=
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12 (|0〉+ (−1)x1 |1〉) , (6.33)

where use has been made of the fact θ12 = 2π/22−1+1 = π/2 to obtain the
last expression. Note that Bx0

12 is the controlled-B12 gate with the control bit
x0 and the target bit x1; B0

12 = I while B1
12 = B12. Note also that, in spite of

its tensor product looking appearance, the last line of Eq. (6.33) is entangled
due to this conditional operation. Equation (6.33) suggests that the n = 2
QFT are implemented with the Hadamard and the U12 gates. Before writing
down the quantum circuit realizing Eq. (6.33), we should note that the first
qubit has a power (−1)x0 , while the second one has (−1)x1, when the input
state is |x1x0〉. If we naively applied the Hadamard gate to the second qubit,
we would obtain

(I ⊗ UH)|x1x0〉 = |x1〉 ⊗
1√
2
(|0〉+ (−1)x0 |1〉).

These facts suggest that we need to swap the first and second qubits at the
beginning of the implementation so that

UQFT2|x1x0〉 =
1√
22

(|0〉+ (−1)x0 |1〉)⊗Bx0
12 (|0〉+ (−1)x1 |1〉)

= (UH ⊗ I)U12(I ⊗ UH)|x0, x1〉
= (UH ⊗ I)U12(I ⊗ UH)USWAP|x1x0〉. (6.34)

Since Eq. (6.34) is true for any |x1x0〉, we should have UQFT2 = (UH ⊗
I)U12(I ⊗ UH)USWAP, which proves the following proposition.
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QFT are implemented with the Hadamard and the U12 gates. Before writing
down the quantum circuit realizing Eq. (6.33), we should note that the first
qubit has a power (−1)x0 , while the second one has (−1)x1, when the input
state is |x1x0〉. If we naively applied the Hadamard gate to the second qubit,
we would obtain
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Equation (6.6) in Proposition 6.2 states that our task is to find a unitary
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last expression. Note that Bx0
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its tensor product looking appearance, the last line of Eq. (6.33) is entangled
due to this conditional operation. Equation (6.33) suggests that the n = 2
QFT are implemented with the Hadamard and the U12 gates. Before writing
down the quantum circuit realizing Eq. (6.33), we should note that the first
qubit has a power (−1)x0 , while the second one has (−1)x1, when the input
state is |x1x0〉. If we naively applied the Hadamard gate to the second qubit,
we would obtain

(I ⊗ UH)|x1x0〉 = |x1〉 ⊗
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(|0〉+ (−1)x0 |1〉).

These facts suggest that we need to swap the first and second qubits at the
beginning of the implementation so that

UQFT2|x1x0〉 =
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22

(|0〉+ (−1)x0 |1〉)⊗Bx0
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Since Eq. (6.34) is true for any |x1x0〉, we should have UQFT2 = (UH ⊗
I)U12(I ⊗ UH)USWAP, which proves the following proposition.
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PROPOSITION 6.3 The n = 2 QFT gate is implemented as

UQFT2 = (UH ⊗ I)U12(I ⊗ UH)USWAP (6.35)

(see Fig. 6.2).

FIGURE 6.2
Implementation of the n = 2 QFT, UQFT2.

The reader should verify the above implementation by explicitly writing
down the gates as matrices.

EXERCISE 6.4 It is also possible to have the SWAP gate in the very end
of the implementation. Design such an n = 2 QFT gate.

This construction is easily generalized to n ≥ 3 as we see next.

n = 3 and beyond
It is instructive to rewrite the construction of n = 2 QFT in a more gener-

alizable form. The state |x1x0〉 has been transformed as in Eq. (6.33):

|x1x0〉 →
1√
22

22−1∑

y=0

e−2πixy/22
|y〉

=
1√
22

(|0〉+ e−2πix0/2|1〉)⊗ (|0〉+ e−2πi(x1/2+x0/22)|1〉).

This observation suggests the following construction of n = 3 QFT:

UQFT3|x2x1x0〉

=
1√
23

(|0〉+ e−2πix0/2|1〉)⊗ (|0〉+ e−2πi(x1/2+x0/22)|1〉)

⊗(|0〉+ e−2πi(x2/2+x1/22+x0/23)|1〉)

=
1√
23

(|0〉+ (−1)x0 |1〉)⊗Bx0
01 (|0〉+ (−1)x1 |1〉)

⊗Bx0
02Bx1

12 (|0〉+ (−1)x2 |1〉)
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of the implementation. Design such an n = 2 QFT gate.

This construction is easily generalized to n ≥ 3 as we see next.

n = 3 and beyond
It is instructive to rewrite the construction of n = 2 QFT in a more gener-

alizable form. The state |x1x0〉 has been transformed as in Eq. (6.33):

|x1x0〉 →
1√
22

22−1∑

y=0

e−2πixy/22
|y〉

=
1√
22

(|0〉+ e−2πix0/2|1〉)⊗ (|0〉+ e−2πi(x1/2+x0/22)|1〉).

This observation suggests the following construction of n = 3 QFT:

UQFT3|x2x1x0〉

=
1√
23

(|0〉+ e−2πix0/2|1〉)⊗ (|0〉+ e−2πi(x1/2+x0/22)|1〉)

⊗(|0〉+ e−2πi(x2/2+x1/22+x0/23)|1〉)

=
1√
23

(|0〉+ (−1)x0 |1〉)⊗Bx0
01 (|0〉+ (−1)x1 |1〉)

⊗Bx0
02Bx1

12 (|0〉+ (−1)x2 |1〉)
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= (UH ⊗ I ⊗ I)U01(I ⊗ UH ⊗ I)U02U12(I ⊗ I ⊗ UH)|x0x1x2〉
= (UH ⊗ I ⊗ I)U01(I ⊗ UH ⊗ I)U02U12(I ⊗ I ⊗ UH)P |x2x1x0〉, (6.36)

where Ujk is the controlled-Bjk gate with the control qubit xj , and the gate
P reverses the order of the qubits as P |x2x1x0〉 = |x0x1x2〉. For a three-qubit
QFT, P is a SWAP gate between the first qubit (x2) and the third qubit (x0).
Again note here that we should be careful in ordering the gates so that the
control bit xj acts in Ujk before it is acted by a Hadamard gate.

EXERCISE 6.5 Let x = 22x2 + 2x1 + x0 and y = 22y2 + 2y1 + y0.
(1) Write down the RHS of

UQFT3|x2x1x0〉 =
1√
23
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y=0

e−2πixy/23
|y〉 (6.37)

explicitly in terms of xi and yi.
(2) Show that the RHS of Eq. (6.37) agrees with the first line of the RHS of
Eq. (6.36).

Since Eq. (6.36) is true for any |x2x1x0〉, we have found

UQFT3 = (UH ⊗ I ⊗ I)U01(I ⊗ UH ⊗ I)U02U12(I ⊗ I ⊗ UH)P. (6.38)

Equation (6.38) readily leads us to the quantum circuit in Fig. 6.3.
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EXERCISE 6.6 Design a quantum circuit UQFT3 in which the permutation
gate P is at the very end of the circuit.

Now the generalization of the present construction to n ≥ 4 should be easy.
The equation that generalizes Eq. (6.36) is

UQFTn|xn−1 . . . x1x0〉

120 QUANTUM COMPUTING

= (UH ⊗ I ⊗ I)U01(I ⊗ UH ⊗ I)U02U12(I ⊗ I ⊗ UH)|x0x1x2〉
= (UH ⊗ I ⊗ I)U01(I ⊗ UH ⊗ I)U02U12(I ⊗ I ⊗ UH)P |x2x1x0〉, (6.36)

where Ujk is the controlled-Bjk gate with the control qubit xj , and the gate
P reverses the order of the qubits as P |x2x1x0〉 = |x0x1x2〉. For a three-qubit
QFT, P is a SWAP gate between the first qubit (x2) and the third qubit (x0).
Again note here that we should be careful in ordering the gates so that the
control bit xj acts in Ujk before it is acted by a Hadamard gate.

EXERCISE 6.5 Let x = 22x2 + 2x1 + x0 and y = 22y2 + 2y1 + y0.
(1) Write down the RHS of

UQFT3|x2x1x0〉 =
1√
23

23−1∑

y=0

e−2πixy/23
|y〉 (6.37)

explicitly in terms of xi and yi.
(2) Show that the RHS of Eq. (6.37) agrees with the first line of the RHS of
Eq. (6.36).

Since Eq. (6.36) is true for any |x2x1x0〉, we have found

UQFT3 = (UH ⊗ I ⊗ I)U01(I ⊗ UH ⊗ I)U02U12(I ⊗ I ⊗ UH)P. (6.38)

Equation (6.38) readily leads us to the quantum circuit in Fig. 6.3.

FIGURE 6.3
Implementation of the n = 3 QFT.

EXERCISE 6.6 Design a quantum circuit UQFT3 in which the permutation
gate P is at the very end of the circuit.

Now the generalization of the present construction to n ≥ 4 should be easy.
The equation that generalizes Eq. (6.36) is

UQFTn|xn−1 . . . x1x0〉

Quantum Integral Transforms 119

PROPOSITION 6.3 The n = 2 QFT gate is implemented as

UQFT2 = (UH ⊗ I)U12(I ⊗ UH)USWAP (6.35)

(see Fig. 6.2).

FIGURE 6.2
Implementation of the n = 2 QFT, UQFT2.

The reader should verify the above implementation by explicitly writing
down the gates as matrices.

EXERCISE 6.4 It is also possible to have the SWAP gate in the very end
of the implementation. Design such an n = 2 QFT gate.

This construction is easily generalized to n ≥ 3 as we see next.

n = 3 and beyond
It is instructive to rewrite the construction of n = 2 QFT in a more gener-

alizable form. The state |x1x0〉 has been transformed as in Eq. (6.33):

|x1x0〉 →
1√
22

22−1∑

y=0

e−2πixy/22
|y〉

=
1√
22

(|0〉+ e−2πix0/2|1〉)⊗ (|0〉+ e−2πi(x1/2+x0/22)|1〉).

This observation suggests the following construction of n = 3 QFT:

UQFT3|x2x1x0〉

=
1√
23

(|0〉+ e−2πix0/2|1〉)⊗ (|0〉+ e−2πi(x1/2+x0/22)|1〉)

⊗(|0〉+ e−2πi(x2/2+x1/22+x0/23)|1〉)

=
1√
23

(|0〉+ (−1)x0 |1〉)⊗Bx0
01 (|0〉+ (−1)x1 |1〉)

⊗Bx0
02Bx1

12 (|0〉+ (−1)x2 |1〉)

For n= 2



Circuit implementation of QFT: n = 3

120 QUANTUM COMPUTING

= (UH ⊗ I ⊗ I)U01(I ⊗ UH ⊗ I)U02U12(I ⊗ I ⊗ UH)|x0x1x2〉
= (UH ⊗ I ⊗ I)U01(I ⊗ UH ⊗ I)U02U12(I ⊗ I ⊗ UH)P |x2x1x0〉, (6.36)

where Ujk is the controlled-Bjk gate with the control qubit xj , and the gate
P reverses the order of the qubits as P |x2x1x0〉 = |x0x1x2〉. For a three-qubit
QFT, P is a SWAP gate between the first qubit (x2) and the third qubit (x0).
Again note here that we should be careful in ordering the gates so that the
control bit xj acts in Ujk before it is acted by a Hadamard gate.

EXERCISE 6.5 Let x = 22x2 + 2x1 + x0 and y = 22y2 + 2y1 + y0.
(1) Write down the RHS of

UQFT3|x2x1x0〉 =
1√
23

23−1∑

y=0

e−2πixy/23
|y〉 (6.37)

explicitly in terms of xi and yi.
(2) Show that the RHS of Eq. (6.37) agrees with the first line of the RHS of
Eq. (6.36).

Since Eq. (6.36) is true for any |x2x1x0〉, we have found

UQFT3 = (UH ⊗ I ⊗ I)U01(I ⊗ UH ⊗ I)U02U12(I ⊗ I ⊗ UH)P. (6.38)

Equation (6.38) readily leads us to the quantum circuit in Fig. 6.3.

FIGURE 6.3
Implementation of the n = 3 QFT.

EXERCISE 6.6 Design a quantum circuit UQFT3 in which the permutation
gate P is at the very end of the circuit.

Now the generalization of the present construction to n ≥ 4 should be easy.
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Now the generalization of the present construction to n ≥ 4 should be easy.
The equation that generalizes Eq. (6.36) is

UQFTn|xn−1 . . . x1x0〉



Circuit implementation of QFT: n general

120 QUANTUM COMPUTING

= (UH ⊗ I ⊗ I)U01(I ⊗ UH ⊗ I)U02U12(I ⊗ I ⊗ UH)|x0x1x2〉
= (UH ⊗ I ⊗ I)U01(I ⊗ UH ⊗ I)U02U12(I ⊗ I ⊗ UH)P |x2x1x0〉, (6.36)

where Ujk is the controlled-Bjk gate with the control qubit xj , and the gate
P reverses the order of the qubits as P |x2x1x0〉 = |x0x1x2〉. For a three-qubit
QFT, P is a SWAP gate between the first qubit (x2) and the third qubit (x0).
Again note here that we should be careful in ordering the gates so that the
control bit xj acts in Ujk before it is acted by a Hadamard gate.

EXERCISE 6.5 Let x = 22x2 + 2x1 + x0 and y = 22y2 + 2y1 + y0.
(1) Write down the RHS of

UQFT3|x2x1x0〉 =
1√
23

23−1∑

y=0

e−2πixy/23
|y〉 (6.37)

explicitly in terms of xi and yi.
(2) Show that the RHS of Eq. (6.37) agrees with the first line of the RHS of
Eq. (6.36).

Since Eq. (6.36) is true for any |x2x1x0〉, we have found

UQFT3 = (UH ⊗ I ⊗ I)U01(I ⊗ UH ⊗ I)U02U12(I ⊗ I ⊗ UH)P. (6.38)

Equation (6.38) readily leads us to the quantum circuit in Fig. 6.3.

FIGURE 6.3
Implementation of the n = 3 QFT.

EXERCISE 6.6 Design a quantum circuit UQFT3 in which the permutation
gate P is at the very end of the circuit.

Now the generalization of the present construction to n ≥ 4 should be easy.
The equation that generalizes Eq. (6.36) is
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=
1√
N

(|0〉+ e−2πix0/2|1〉)⊗ (|0〉+ e−2πi(x1/2+x0/22)|1〉)

⊗(|0〉+ e−2πi(x2/2+x1/22+x0/23)|1〉)⊗ . . .

. . .⊗ (|0〉+ e−2πi(xn−1/2+xn−2/22+...x1/2n−1+x0/2n)|1〉)
= (UH ⊗ I ⊗ . . .⊗ I)U01(I ⊗ UH ⊗ I ⊗ . . .⊗ I)U02U12

×(I ⊗ I ⊗ UH ⊗ . . .⊗ I) . . .

×U0,n−1U1,n−1 . . . Un−2,n−1(I ⊗ . . .⊗ I ⊗ UH)|x0x1 . . . xn−1〉
= (UH ⊗ I ⊗ . . .⊗ I)U01(I ⊗ UH ⊗ I ⊗ . . .⊗ I)U02U12

×(I ⊗ I ⊗ UH ⊗ . . .⊗ I) . . . U0,n−1U1,n−1 . . . Un−2,n−1

×(I ⊗ . . .⊗ I ⊗ UH)P |xn−1 . . . x1x0〉, (6.39)

where P reverses the order of xk as P |xn−1 . . . x1x0〉 = |x0x1 . . . xn−1〉.
We finally find the following decompostion of UQFTn:

UQFTn = (UH ⊗ I ⊗ . . .⊗ I)U01(I ⊗ UH ⊗ I ⊗ . . .⊗ I)U02U12

×(I ⊗ I ⊗ UH ⊗ . . .⊗ I) . . .

×U0,n−1U1,n−1 . . . Un−2,n−1(I ⊗ . . .⊗ I ⊗ UH)P. (6.40)

A quantum circuit which implements UQFTn is found from Eq. (6.40) as in
Fig. 6.4. It may be proved, by induction, for example, that the circuit in

FIGURE 6.4
Implementation of the n-qubit QFT.

Fig. 6.4 really implements the n-qubit QFT.

PROPOSITION 6.4 The n-qubit QFT may be constructed with Θ(n2)
elementary gates.

Proof. The n-qubit QFT is made of a P gate, n Hadamard gates and (n −
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Fig. 6.4 really implements the n-qubit QFT.

PROPOSITION 6.4 The n-qubit QFT may be constructed with Θ(n2)
elementary gates.

Proof. The n-qubit QFT is made of a P gate, n Hadamard gates and (n −
122 QUANTUM COMPUTING

1) + (n − 2) + . . . + 2 + 1 = n(n − 1)/2 controlled-Bjk gates (see Fig. 6.4).
It has been shown in §4.2.3 that it requres three CNOT gates to construct
a SWAP gate. Furthermore, a P gate for n qubits requires "n/2# SWAP
gates,† assuming that there exists a SWAP gate for any pair of qubits. Thus
a P gate requires 3× "n/2# = Θ(n) elementary gates. Proposition 4.1 states
that a controlled-Bij gate is constructed with at most six elementary gates.
Thus it has been proved that the n-qubit QFT is made of Θ(n2) elementary
gates.

The above proposition is quite important in estimating the efficiency of
quantum algorithms. If we look at the definition

f̃(y) =
1√
N

2n−1∑

x=0

ω−xyf(x),

we naively expect that N = 2n steps (including the evaluation of exponential
functions followed by multiplication) are required for each y and N ×N steps
for all y’s. In other words, it takes exponentially large steps (∼ N2 = e2n ln 2)
to carry out the QFT. The above proposition states that this is done in Θ(n2)
steps with the QFT gate if the initial state is a superposition of all x’s.

6.5 Walsh-Hadamard Transform

There are two other quantum integral transforms, the Walsh-Hadamard trans-
form and the selective phase rotation transform, which are often employed in
quantum computing.

We have already encountered the Walsh-Hadamard transform in §4.2.2 and
§5.2. Let x, y ∈ Sn = {0, 1, . . . , N−1} with binary expressions xn−1xn−2 . . . x0

and yn−1yn−2 . . . y0, where N = 2n. The Walsh-Hadamard transform, written
in the form of Eq. (5.7), shows that it is a quantum integral transform with a
kernel Wn : Sn × Sn → C defined by

Wn(x, y) =
1√
N

(−1)x·y (x, y ∈ Sn), (6.41)

where x ·y = xn−1yn−1⊕xn−2yn−2⊕ . . .⊕x0y0. This kernel defines a discrete
integral transform

f̃(y) =
1√
N

N−1∑

x=0

(−1)x·yf(x). (6.42)

†!x" is the largest integer which is less than or equal to x ∈ R and called the floor of x.
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PROPOSITION 6.4 The n-qubit QFT may be constructed with Θ(n2)
elementary gates.

Proof. The n-qubit QFT is made of a P gate, n Hadamard gates and (n −
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Let {|i〉} be the basis vectors, where i ∈ {0, 1}. The action of CNOT on
the input state |i〉|j〉 is written as |i〉|i⊕ j〉, where i⊕ j is an addition mod 2,
that is, 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1 and 1⊕ 1 = 0.

EXERCISE 4.1 Show that the UCNOT cannot be written as a tensor prod-
uct of two one-qubit gates.

EXERCISE 4.2 Let (a|0〉 + b|1〉) ⊗ |0〉 be an input state to a CNOT gate.
What is the output state?

It is convenient to introduce graphical representations of quantum gates. A
one-qubit gate whose unitary matrix representation is U is depicted as

The left horizontal line is the input qubit state, while the right horizontal line
is the output qubit state. Therefore the time flows from the left to the right.

A CNOT gate is expressed as

where • denotes the control bit, while
⊕

denotes the conditional negation.
There may be many control bits (see CCNOT gate below).

More generally, we consider a controlled-U gate,

V = |0〉〈0|⊗ I + |1〉〈1|⊗ U, (4.7)

in which the target bit is acted on by a unitary transformation U only when
the control bit is |1〉. This gate is denoted graphically as

EXERCISE 4.3 (1) Find the matrix representation of the “upside down”
CNOT gate (a) in the basis {|00〉, |01〉, |10〉, |11〉}.
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The explict form of USWAP is given by

USWAP = |00〉〈00|+ |01〉〈10|+ |10〉〈01| + |11〉〈11|

=





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



 . (4.15)

Needless to say, it works as a linear operator on a superposition of states. The
SWAP gate is expressed as

Note that the SWAP gate is a special gate which maps an arbitrary tensor
product state to a tensor product state. In contrast, most two-qubit gates
map a tensor product state to an entangled state.

EXERCISE 4.7 Show that the above USWAP is written as
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(|0〉〈0|⊗ I + |1〉〈1|⊗X). (4.16)

This shows that the SWAP gate is implemented with three CNOT gates as
given in Exercise 4.3 (3).

The controlled-SWAP gate

is also called the Fredkin gate. It flips the second (middle) and the third
(bottom) qubits when and only when the first (top) qubit is in the state |1〉.
Its explicit form is

UFredkin = |0〉〈0|⊗ I4 + |1〉〈1|⊗ USWAP. (4.17)

4.3 Correspondence with Classical Logic Gates

Before we proceed further, it is instructive to show that all the elementary
logic gates, NOT, AND, XOR, OR and NAND, in classical logic circuits can

=
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1) + (n − 2) + . . . + 2 + 1 = n(n − 1)/2 controlled-Bjk gates (see Fig. 6.4).
It has been shown in §4.2.3 that it requres three CNOT gates to construct
a SWAP gate. Furthermore, a P gate for n qubits requires "n/2# SWAP
gates,† assuming that there exists a SWAP gate for any pair of qubits. Thus
a P gate requires 3× "n/2# = Θ(n) elementary gates. Proposition 4.1 states
that a controlled-Bij gate is constructed with at most six elementary gates.
Thus it has been proved that the n-qubit QFT is made of Θ(n2) elementary
gates.

The above proposition is quite important in estimating the efficiency of
quantum algorithms. If we look at the definition

f̃(y) =
1√
N

2n−1∑

x=0

ω−xyf(x),

we naively expect that N = 2n steps (including the evaluation of exponential
functions followed by multiplication) are required for each y and N ×N steps
for all y’s. In other words, it takes exponentially large steps (∼ N2 = e2n ln 2)
to carry out the QFT. The above proposition states that this is done in Θ(n2)
steps with the QFT gate if the initial state is a superposition of all x’s.

6.5 Walsh-Hadamard Transform

There are two other quantum integral transforms, the Walsh-Hadamard trans-
form and the selective phase rotation transform, which are often employed in
quantum computing.

We have already encountered the Walsh-Hadamard transform in §4.2.2 and
§5.2. Let x, y ∈ Sn = {0, 1, . . . , N−1} with binary expressions xn−1xn−2 . . . x0

and yn−1yn−2 . . . y0, where N = 2n. The Walsh-Hadamard transform, written
in the form of Eq. (5.7), shows that it is a quantum integral transform with a
kernel Wn : Sn × Sn → C defined by

Wn(x, y) =
1√
N

(−1)x·y (x, y ∈ Sn), (6.41)

where x ·y = xn−1yn−1⊕xn−2yn−2⊕ . . .⊕x0y0. This kernel defines a discrete
integral transform

f̃(y) =
1√
N

N−1∑

x=0

(−1)x·yf(x). (6.42)

†!x" is the largest integer which is less than or equal to x ∈ R and called the floor of x.
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unchanged otherwise. We then obtain a state

|ψ2〉 = Uf |ψ1〉

=
1√
2n

2n−1∑

x=0

|x〉 1√
2
(|f(x)〉 − |¬f(x)〉)

=
1√
2n

∑

x

(−1)f(x)|x〉 1√
2
(|0〉 − |1〉). (5.5)

Although the gate Uf is applied once for all, it is applied to all the
n-qubit states |x〉 simultaneously.

4. The Walsh-Hadamard transformation (4.11) is applied on the first n
qubits next. We obtain

|ψ3〉 = (Wn ⊗ I)|ψ2〉 =
1√
2n

2n−1∑

x=0

(−1)f(x)U⊗n
H |x〉 1√

2
(|0〉 − |1〉). (5.6)

It is instructive to write the action of the one-qubit Hadamard gate in
the following form,

UH|x〉 =
1√
2
(|0〉+ (−1)x|1〉) =

1√
2

∑

y∈{0,1}

(−1)xy|y〉,

where x ∈ {0, 1}, to find the resulting state. The action of the Walsh-
Hadamard transformation on |x〉 = |xn−1 . . . x1x0〉 yields

Wn|x〉 = (UH|xn−1〉)(UH|xn−2〉) . . . (UH|x0〉)

=
1√
2n

∑

yn−1,yn−2,...,y0∈{0,1}

(−1)xn−1yn−1+xn−2yn−2+...+x0y0

×|yn−1yn−2 . . . y0〉

=
1√
2n

2n−1∑

y=0

(−1)x·y|y〉, (5.7)

where x ·y = xn−1yn−1⊕xn−2yn−2⊕ . . .⊕x0y0. Substituting this result
into Eq. (5.6), we obtain

|ψ3〉 =
1
2n

(
2n−1∑

x,y=0

(−1)f(x)(−1)x·y|y〉
)

1√
2
(|0〉 − |1〉). (5.8)

5. The first n qubits are measured. Suppose f(x) is constant. Then |ψ3〉
is put in the form

|ψ3〉 =
1
2n

∑

x,y

(−1)x·y|y〉 1√
2
(|0〉 − |1〉)
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6.6 Selective Phase Rotation Transform

DEFINITION 6.2 (Selective Phase Rotation Transform) Let us de-
fine a kernel

Kn(x, y) = eiθxδxy, ∀x, y ∈ Sn, (6.43)

where θx ∈ R. The discrete integral transform

f̃(y) =
N−1∑

x=0

K(x, y)f(x) =
N−1∑

x=0

eiθxδxyf(x) = eiθyf(y) (6.44)

with the kernel Kn is called the selective phase rotation transform.

EXERCISE 6.7 Show that Kn defined above is unitary. Write down the
inverse transformation K−1

n .

The matrix representations for K1 and K2 are

K1 =
(

eiθ0 0
0 eiθ1

)
, K2 =





eiθ0 0 0 0
0 eiθ1 0 0
0 0 eiθ2 0
0 0 0 eiθ3



 .

The implementation of Kn is achieved with the universal set of gates as
follows. Take n = 2, for example. The kernel K2 has been given above. This
is decomposed as a product of two two-level unitary matrices as

K2 = A0A1, (6.45)

where

A0 =





eiθ0 0 0 0
0 eiθ1 0 0
0 0 1 0
0 0 0 1



 , A1 =





1 0 0 0
0 1 0 0
0 0 eiθ2 0
0 0 0 eiθ3



 . (6.46)

Note that

A0 = |0〉〈0|⊗ U0 + |1〉〈1|⊗ I, U0 =
(

eiθ0 0
0 eiθ1

)
,

A1 = |0〉〈0|⊗ I + |1〉〈1|⊗ U1, U1 =
(

eiθ2 0
0 eiθ3

)
.

Thus A1 is realized as an ordinary controlled-U1 gate while the control bit
is negated in A0. Then what we have to do for A0 is to negate the control
bit first and then to apply ordinary controlled-U0 gate and finally to negate
the control bit back to its input state. In summary, A0 is implemented as in
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the control bit back to its input state. In summary, A0 is implemented as in
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Fig. 6.5. In fact, it can be readily verified that the gate in Fig. 6.5 is written
as

(X ⊗ I)(|0〉〈0|⊗ I + |1〉〈1|⊗ U0)(X ⊗ I)
= X |0〉〈0|X ⊗ I + X |1〉〈1|X ⊗ U0 = |1〉〈1|⊗ I + |0〉〈0|⊗ U0 = A0.

Thus these gates are implemented with the set of universal gates. In fact, the
order of Ai does not matter since [A0, A1] = 0.

FIGURE 6.5
Implementation of A0.

EXERCISE 6.8 Repeat the above arguments for n = 3. In this case K3 is
written as a product of four two-level unitary matrices. Write down these ma-
trices and find the quantum circuits similar to that in Fig. 6.5 that implements
these two-level unitary matrices.
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Back on Grover’s search algorithm
We need to prove that the D gate used to perform the quantum search 
can be implemented efficiently. We now show that
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Define the kernel of the selective phase rotation transform Rf by

Kf(x, y) = eiπf(x)δxy = (−1)f(x)δxy, (7.2)

where x, y ∈ Sn. Since Rf maps |z〉 $→ −|z〉, while leaving all the other vectors
unchanged, it can be expressed as

Rf = I − 2|z〉〈z|. (7.3)

Let us consider a state

|ϕ〉 =
N−1∑

x=0

wx|x〉,
∑

x

|wx|2 = 1. (7.4)

Then it is easy to verify

Rf |ϕ〉 = w0|0〉+ . . . + (−1)wz|z〉+ . . . + wN−1|N − 1〉. (7.5)

(In other words, Rf changes the sign of wz while leaving all other coefficients
unchanged.)

STEP 2 Define a unitary matrix

D = WnR0Wn, (7.6)

where Wn is the Walsh-Hadamard transform,

Wn(x, y) =
1√
N

(−1)x·y, (x, y ∈ Sn) (7.7)

and R0 is the selective phase rotation transform defined by

R0(x, y) = eiπ(1−δx0)δxy = (−1)1−δx0δxy. (7.8)

PROPOSITION 7.1 Let

|ϕ0〉 =
1√
N

N−1∑

x=0

|x〉. (7.9)

Then
D = −I + 2|ϕ0〉〈ϕ0|. (7.10)

Moreover

D|ϕ〉 =
N−1∑

x=0

(w̄ − (wx − w̄)) |x〉, (7.11)

where |ϕ〉 is given in Eq. (7.4) and

w̄ =
1
N

N−1∑

x=0

wx (7.12)



Back on Grover’s search algorithm
Proof

hx|D|yi = hx| [�I + 2|'oih'0|] |yi = ��xy +
2

N
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is the avarage of wx over Sn.

Proof. Let us evaluate the matrix elements of the RHS of Eq. (7.10). We
obtain from

−I + 2|ϕ0〉〈ϕ0| = −I +
2
N

∑

x

|x〉
∑

y

〈y| = −I +
2
N

∑

x,y

|x〉〈y|

that the (x, y)-component of the RHS is

〈x|RHS|y〉 = −δxy +
2
N

. (7.13)

Let us turn to the LHS next. The (x, y)-component of D = WnR0Wn is

〈x|WnR0Wn|y〉 =
∑

u,v

〈x|Wn|u〉〈u|R0|v〉〈v|Wn|y〉

=
1
N

∑

u,v

(−1)x·u

×(−1)1−δu0δuv(−1)v·y.

The summation over u is evaluated as

N−1∑

u=0

(−1)x·u(−1)1−δu0δuv

= (−1)0(−1)0δ0v −
N−1∑

u=1

(−1)x·uδuv

= 2δ0v −
N−1∑

u=0

(−1)xn−1un−1+...+x1u1+x0u0δun−1vn−1 . . . δu1v1δu0v0

= 2δ0v −




1∑

un−1=0

(−1)xn−1un−1δun−1vn−1



 . . .

[
1∑

u1=0
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Define the kernel of the selective phase rotation transform Rf by

Kf(x, y) = eiπf(x)δxy = (−1)f(x)δxy, (7.2)

where x, y ∈ Sn. Since Rf maps |z〉 $→ −|z〉, while leaving all the other vectors
unchanged, it can be expressed as

Rf = I − 2|z〉〈z|. (7.3)

Let us consider a state

|ϕ〉 =
N−1∑

x=0

wx|x〉,
∑

x

|wx|2 = 1. (7.4)

Then it is easy to verify

Rf |ϕ〉 = w0|0〉+ . . . + (−1)wz|z〉+ . . . + wN−1|N − 1〉. (7.5)

(In other words, Rf changes the sign of wz while leaving all other coefficients
unchanged.)

STEP 2 Define a unitary matrix

D = WnR0Wn, (7.6)

where Wn is the Walsh-Hadamard transform,

Wn(x, y) =
1√
N

(−1)x·y, (x, y ∈ Sn) (7.7)

and R0 is the selective phase rotation transform defined by

R0(x, y) = eiπ(1−δx0)δxy = (−1)1−δx0δxy. (7.8)

PROPOSITION 7.1 Let

|ϕ0〉 =
1√
N

N−1∑

x=0

|x〉. (7.9)

Then
D = −I + 2|ϕ0〉〈ϕ0|. (7.10)

Moreover

D|ϕ〉 =
N−1∑

x=0

(w̄ − (wx − w̄)) |x〉, (7.11)

where |ϕ〉 is given in Eq. (7.4) and

w̄ =
1
N

N−1∑

x=0

wx (7.12)
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Back on Grover’s search algorithm
Therefore the D gate can be implemented efficiently. The overall circuit is 
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FIGURE 7.2
Implementation of Grover’s search algorithm. Details of the box denoted by
Uf = DRf are given in the lower diagram. The box Uf is repeated m times to
maximize Pz,k. The gate Rf is the oracle, and working qubits to implement
the oracle are given explicitly.

7.2 Searching for d Files

Suppose there are d (1 < d ≤ N) files that satisfy a given condition and we
are asked to find all of them. This problem is formulated with a help of an
oracle

f(x) =
{

1 (x ∈ A)
0 (x #∈ A). (7.33)

where A is the subset of Sn, whose elements satisfy the given condition. The
subset A is of course unknown to us beforehand.

This problem is solved similarly to the single-file searching problem. Let us
define

Rf = I − 2
∑

z∈A

|z〉〈z|. (7.34)

Then an application of Rf on |ϕ〉 =
∑N−1

x=0 wx|x〉 (
∑

x |wx|2 = 1) yields

Rf |ϕ〉 =
∑

x #∈A

wx|x〉 −
∑

z∈A

wz |z〉. (7.35)

Gf Gf Gf

Gf

Uf

We are not interested on how to 
implement the oracle Uf since this 
is supposed to be given



Shor’s factorization algorithm 
Shor's algorithm is a polynomial-time quantum computer algorithm for 
integer factorization. It solves the following problem: Given an integer
N, find its prime factors. It was invented in 1994 by Peter Shor.

Shor's algorithm consists of two parts:
1. A reduction, which can be done on a classical computer, of the 

factoring problem to the problem of order-finding.
2. A quantum algorithm to solve the order-finding problem.

The first part can be done easily. We will see the second part. 
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divide m, while mde ≡ 0 mod q if q divides m. Since p and q are prime, these
equalities imply mde ≡ m mod N .

The RSA cryptosystem depends heavily on the belief that factorization of a
large number into its prime factors is practically impossible. Shor’s algorithm
would demolish this myth, as we will see below.

8.2 Factorization Algorithm

Let p and q be prime numbers and let N = pq. We want to factor N into a
product of p and q. A naive method for the factorization takes

√
N trials, in

the worst case, before p and q are found. Since
√

N = e(r/2) ln 2 for N = 2r,
this method is inefficient. It turns out that the following algorithm is best
suited for our purpose.

STEP 1 Take a positive integer m less than N randomly. Calculate the greatest
common divisor gcd(m, N) by the Euclidean algorithm. If gcd(m, N) #=
1, we are extremely lucky: m is either p or q, and we are done. Suppose
gcd(m, N) = 1.

STEP 2 Define fN : N → N by a %→ ma mod N . Find the smallest P ∈ N, such
that mP ≡ 1 mod N . The number P is called the order or period.
It is known that this takes exponentially large steps in any classical
algorithm, but it takes only polynomial steps in Shor’s algorithm. A
quantum computer is required only in this step, and the rest may be
executed in polynomial steps even with a classical computer.

STEP 3 If P is odd, it cannot be used in the following steps. Go back to step 1
and repeat the above steps with different m until an even P is obtained.
If P is even, proceed to step 4.

STEP 4 Since P is even, it holds that

(mP/2 − 1)(mP/2 + 1) = mP − 1 ≡ 0 mod N. (8.3)

If mP/2 + 1 ≡ 0 mod N , then gcd(mP/2 − 1, N) = 1; go back to step 1
and try with different m. If mP/2 + 1 #≡ 0 mod N , mP/2 − 1 contains
either p or q, and we proceed to step 5. Note that the number mP/2− 1
cannot be a multiple of N in the latter case. If this is the case, it leads
to mP/2 ≡ 1 mod N , which contradicts the assumption that P is the
smallest number which satisifes mP ≡ 1 mod N .

STEP 5 The number
d = gcd(mP/2 − 1, N) (8.4)

is either p or q, and factorization is done.

Number to factorize
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by the same symbol f : Sn → Z/NZ.‡.
Our quantum computer has two n-qubit registers which we call |REG1〉 and

|REG2〉:

|REG1〉|REG2〉 = |a〉|b〉 = |an−1 . . . a1a0〉|bn−1 . . . b1b0〉, (8.7)

where decimal numbers a, b ∈ Sn are expressed in binary numbers in the RHS;

a =
n−1∑

j=0

aj2j, b =
n−1∑

j=0

bj2j.

In the following, extensive use of QFT will be made on an n-qubit system,
which is given by

|x〉 → UQFTn|x〉 =
1√
Q

Q−1∑

y=0

ω−xy
n |y〉, (8.8)

where x, y ∈ Sn and ωn = exp(2πi/Q). We will denote UQFTn by F hereafter.

8.3.2 STEP 2

Let us have a closer look at step 2.

STEP 2.0: Set the registers to the initial state

|ψ0〉 = |REG1〉|REG2〉 = | 00 . . .0︸ ︷︷ ︸
n qubits

〉| 00 . . . 0︸ ︷︷ ︸
n qubits

〉. (8.9)

STEP 2.1: The QFT F is applied on the first register;

|ψ0〉 = |0〉|0〉 F⊗I%→ |ψ1〉 =
1√
Q

Q−1∑

x=0

|x〉|0〉. (8.10)

The first register is in a superposition of all the states |x〉 (0 ≤ x ≤ Q − 1),
as remarked in Chapter 6.

STEP 2.2: Let us define a function f : Sn → Z/NZ by

f(x) = mx mod N, x ∈ Sn. (8.11)

Suppose that the unitary gate Uf realizes the action of f on x in such a way
that Uf |x〉|0〉 = |x〉|f(x)〉. Apply Uf on the state prepared in step 2.1 to yield

Uf |ψ1〉 = |ψ2〉 ≡
1√
Q

Q−1∑

x=0

|x〉|f(x)〉. (8.12)

‡It is clear that the range of f is Z/NZ since 0 ≤ f(x) ≤ N −1 ≤
√

Q−1 < Q−1, ∀x ∈ Sn.
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Step 0.
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Order finding – the quantum solution
Step 1.

with Q = 2n. Remember that QFT on all |0>’s gives the equal weighted 
superposition of all computational basis states  
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Order finding – the quantum solution
Step 2.
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EXAMPLE 8.1 An example will clarify the above steps. Let N = 799 =
17 · 47.∗

STEP 1: The choice m = 7 leads to gcd(799, 7) = 1. So this is OK.

STEP 2: It follows from Fig. 8.1 that 7368 ≡ 1 mod 799. Thus P = 368.
Of course we have cheated here and a quantum computer must be used for a
large N .

STEP 3: The order thus found is even: P/2 = 184. Let us proceed to step 4.

STEP 4: (7184 − 1)(7184 + 1) ≡ 0 mod 799. It is easy to see that

gcd(7184 + 1, 799) = 17 #= 1,

and we proceed to step 5.

STEP 5: 7184 − 1 and N = 799 must have a common prime factor. Indeed,
it is found that d = gcd(7184−1, 799) = 47. It is also found that 799/47 = 17,
which leads to 799 = 47 · 17.

EXERCISE 8.1 Let N = 35. Repeat the above steps to find the factors
of N . (There are m whose orders are less than 10. If your m does not give
P < 10, try another m. Good luck!)

It should be emphasized again that a quantum computation is required only
in step 2, where the order P of the function f : N→ Z/NZ (a %→ ma mod N)
must be found. Here Z/NZ stands for the set of equivalence classes in which
x and x + kN (k ∈ Z) are identified. Clearly, we may take x satisfying
0 ≤ x ≤ N − 1 as a representative of each equivalence class.†

8.3 Quantum Part of Shor’s Algorithm

8.3.1 Settings for STEP 2

Let N = pq ∈ N be a number to be factored, where p and q are primes. Find
n ∈ N, such that

N2 ≤ 2n < 2N2. (8.5)

Let us write Q = 2n hereafter. Denote f : a %→ ma mod N restricted on

Sn = {0, 1, . . . , Q− 1} (8.6)

∗This example is repeatedly studied in due course.
†In fact x = 0 is omitted since m and N are coprime to each other.
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This shows that the two registers are entangled in general.

STEP 2.3: Apply QFT on |REG1〉 again to yield

|ψ3〉 = (F ⊗ I)|ψ2〉 =
1
Q

Q−1∑

x=0

Q−1∑

y=0

ω−xy
n |y〉|f(x)〉

=
1
Q

Q−1∑

y=0

|y〉|Υ(y)〉 =
1
Q

Q−1∑

y=0

‖|Υ(y)〉‖ · |y〉 |Υ(y)〉
‖|Υ(y)〉‖ , (8.13)

where

|Υ(y)〉 =
Q−1∑

x=0

ω−xy
n |f(x)〉. (8.14)

STEP 2.4: |REG1〉 is measured. The result y ∈ Sn is obtained with the
probability

Prob(y) =
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with the probability (8.15).
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8.4 Probability Distribution

Let us study the probability distribution Prob(y) in detail.

§The order is less than 10 in this case.

Order finding – the quantum solution
Step 3.
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PROPOSITION 8.1 Let Q = 2n = Pq + r, (0 ≤ r < P ), where q and r
are uniquely determined non-negative integers. Let Q0 = Pq. Then

Prob(y) =






r sin2
(

πPy
Q

(
Q0
P + 1

))
+ (P − r) sin2

(
πPy
Q · Q0

P

)

Q2 sin2
(

πPy
Q

) (Py #≡ 0 mod Q)

r(Q0 + P )2 + (P − r)Q2
0

Q2P 2
(Py ≡ 0 mod Q).

Proof. It is found from the definition that¶

|Υ(y)〉 =
Q−1∑

x=0

ω−xy|f(x)〉 =
Q0−1∑

x=0

ω−xy|f(x)〉 +
Q−1∑

x=Q0

ω−xy|f(x)〉

=
P−1∑

x0=0

Q0/P−1∑

x1=0

ω−(Px1+x0)y|f(Px1 + x0)〉

+
r−1∑

x0=0

ω−[P (Q0/P )+x0]y|f(P (Q0/P ) + x0)〉

=
P−1∑

x0=0

ω−x0y




Q0/P−1∑

x1=0

ω−Px1y



 |f(x0)〉+
r−1∑

x0=0

ω−x0yω−Py(Q0/P )|f(x0)〉

=
r−1∑

x0=0

ω−x0y
Q0/P−1∑

x1=0

ω−Pyx1 |f(x0)〉
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P−1∑

x0=r

ω−x0y
Q0/P−1∑

x1=0
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ω−x0yω−Py(Q0/P )|f(x0)〉
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r−1∑
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ω−x0y




Q0/P∑

x1=0

ω−Pyx1



 |f(x0)〉

+
P−1∑

x0=r

ω−x0y




Q0/P−1∑

x1=0

ω−Pyx1



 |f(x0)〉.

Note that the map f : a &→ ma mod N is 1 : 1 on {0, 1, 2, . . . , P −1}, which we
prove now. Suppose ma ≡ mb mod N (a > b); then mb(ma−b−1) ≡ 0 mod N .
Since m and N are coprime, so are mb and N . Then mP > ma−b ≡ 1 mod
N , which contradicts the assumption that P is the smallest natural number
such that mP ≡ 1 mod N . This implies that |f(0)〉, |f(1)〉, . . . , |f(P − 1)〉 are

¶We drop n from ωn to simplify our notation.

P is  what we want to find
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¶We drop n from ωn to simplify our notation.

Definition + splitting the sum

x = Px1 + x0

0 1 P-1

0

1

Q0/P - 1

0 1 P-1

P P+1 2P-1

Q0 -P Q0 –P +1 Q0 –1

x0

x1

…

…

…

… … … … …

…

Splitting the sum

Merges the two sums
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¶We drop n from ωn to simplify our notation.
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So far we have
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¶We drop n from ωn to simplify our notation.
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mutually orthogonal. Accordingly

〈Υ(y)|Υ(y)〉 = r

∣∣∣∣∣∣

Q0/P∑

x1=0

ω−Pyx1

∣∣∣∣∣∣

2

+ (P − r)

∣∣∣∣∣∣

Q0/P−1∑

x1=0

ω−Pyx1

∣∣∣∣∣∣

2

.

In case Py ≡ 0 mod Q, we put Py = aQ, a ∈ N and obtain

ω−Pyx1 = e−2πi(Py/Q)x1 = e−2πiax1 = 1.

Therefore

〈Υ(y)|Υ(y)〉 = r ·
(

Q0

P
+ 1
)2

+ (P − r)
(

Q0

P

)2

,

which leads to the result independent of y,

Prob(y) =
r(Q0 + P )2 + (P − r)Q2

0

P 2Q2
=

r(q + 1)2 + (P − r)q2

Q2
. (8.16)

If Py &≡ 0 mod Q, on the other hand, we obtain

〈Υ(y)|Υ(y)〉 = r

∣∣∣∣
ω−Py(Q0/P+1) − 1

ω−Py − 1

∣∣∣∣
2

+ (P − r)
∣∣∣∣
ω−Py(Q0/P ) − 1

ω−Py − 1

∣∣∣∣
2

= r

∣∣∣∣
e−(2πi/Q)Py(Q0/P+1) − 1

e−(2πi/Q)Py − 1

∣∣∣∣
2

+ (P − r)
∣∣∣∣
e−(2πi/Q)Py(Q0/P ) − 1

e−(2πi/Q)Py − 1

∣∣∣∣
2

.

Here we find from

|eiθ − 1|2 = 2(1− cos θ) = 4 sin2 θ

2

that

〈Υ(y)|Υ(y)〉 = r

sin2 π

Q
Py

(
Q0

P
+ 1
)

sin2 π

Q
Py

+ (P − r)
sin2 π

Q
Py

Q0

P

sin2 π

Q
Py

.

Therefore, the probability distribution is given by

Prob(y) =
‖|Υ(y)〉‖2

Q2
=

r sin2

[
π

Q
Py

(
Q0

P
+ 1
)]

+ (P − r) sin2

[
π

Q
Py

Q0

P

]

Q2 sin2 π

Q
Py

,

(8.17)
which proves the proposition.
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COROLLARY 8.1 Suppose Q/P ∈ Z (namely Q0 = Q). Then the proba-
bility of obtaining a measurement outcome y is

Prob(y) =






0 (Py "≡ 0 mod Q)

1
P

(Py ≡ 0 mod Q)

Proof. When Py "≡ 0 mod Q, r = 0 implies Q = Pq. Therefore

Prob(y) =
P sin2 πy

Q2 sin2 πy
q

= 0.

In case Py ≡ 0 mod Q, we obtain

Prob(y) =
PQ2

Q2P 2
=

1
P

.

Figure 8.2 shows the probability distribution Prob(y) with the parameters
N = 799 = 17 · 47, P = 368, Q = 220 = 1, 048, 576. Note that N2 = 638, 401
and 2N2 = 1, 276, 802 so that they satisfy N2 ≤ Q < 2N2. Then Q ≡
144 mod 368 → r = 144, Q0 = Q − r = 1, 048, 432,→ q = Q0/P = 2849.
Accordingly, Prob(y) exhibits sharp peaks at integral multiples of q = 2849.
Figure 8.3 shows Prob(y) for 8, 520 < y < 8, 580. Observe that it has a sharp
peak at y = 8548, for which 8548/2849 = 3.00035. Compare the numbers

Prob(8547) = 0.00005393, Prob(8548) = 0.00245753, Prob(8549) = 0.00010892.

For neighboring numbers, we obtain 8547/2849 = 3 and 8549/2849 = 3.0007.
Note that there are P = 368 sharp peaks, and Prob(y) at each peak is roughly
on the order of 1/386 ∼ 0.00272.

Since y is restricted within the range 0 ≤ y ≤ Q−1, repeated measurements
reveal that the minimal distance between the peaks is ∼ 2849, which yields
the approximate order P = Q/2849 ∼ 368.0505. The order thus obtained is
probabilistic, and its plausibility must be checked by carrying out step 3 ∼
step 5. Needless to say, this strategy is not practical when N is considerably
large. There is a powerful method of continued fraction expansion by which
we find the order P with a single measurement of the first register, which is
the subject of §8.5.

It will be shown that factorization of a number N = pq is carried out
efficiently by a quantum computer. A quantum algorithm is employed to find
the order of the function f(x) = mx mod N , and the other steps are done
with classical algorithms. The quantum circuit in Fig. 8.4 implements the
quantum part of the algorithm where Uf and F stand for the map

Uf |x〉|0〉 = |x〉|mx mod N〉

r = 0

Peaks are repeated 
at distance q, 
because we are in 
the first situation 
until y = q



Factoring 15 (Credits: Dr. G. Crognaletti)
N = 15. 
m = 7.
Quindi: f(x) = 7x mod 15

Il numero di qubit n è stabilito da 2 log2(N) < n < 2 log2(N)+1 , in questo caso 
7.8 < n < 8.8 ⇛ n= 8, necessito di 28 = 256 ampiezze di probabilità.



Ad ogni stato della macchina è associato 
un istogramma di questo tipo:

• Il primo asse rappresenta la base 
computaizionale del primo registro, i cui 
valori verranno indicati con c.

• Il secondo rappresenta la base 
computazionale del secondo, limitato ai 
valori ottenuti nell pratica (in questo 
caso 13), i cui valori verranno indicati 
con k.

• L'asse verticale rappresenta la 
probabilità di misura P(c,k) associata ad 
ogni elemento della base della coppia di 
registri. Es: lo stato iniziale

Factoring 15



1. Trasformata di Hadamard
Creo lo stato sovrapposto di tutta la base computazionale. Ciò richiede in totale n
operazioni (applicazione di H ad ognuno dei Qubit)

=0 =128

Factoring 15



1. Trasformata di Hadamard

=0 =255

Factoring 15



2. Applico l'operatore esponenziale modulare Uf

È uno stato non separabile, descrivibile come 
sovrapposizione con uguale ampiezza di probabilità 
di 4 stati separabili

Factoring 15



3. Applico la Trasformata di Fourier Quantistica
L'algoritmo utilizzato in questo caso è quello relativo alla QFT esatta, schematizzato dal 
circuito:

Factoring 15



3. Applico la Trasformata di Fourier Quantistica

Factoring 15



3. Applico la Trasformata di Fourier Quantistica

dove si ricordano le espressioni in binario

Factoring 15



Factoring 15



A questo punto l'algoritmo prevede la misura del primo registro: La distribuzione di 
probabilità marginale ottenuta è riassunta in figura:

Quindi q = 64

e

Q/P = 256/64 = 4

Che è l’ordine cercato

Factoring 15





We have to find the order P of the function f(a) = 7a mod 799.
(The answer is P = 368). We take n = 20

Example: Factorize 799. Take m = 7. 

148 QUANTUM COMPUTING

FIGURE 8.2
(a) Probability distribution Prob(y) for 0 ≤ y ≤ 10, 000. (b) Same graph for
the range 100, 000 ≤ y ≤ 110, 000.

and the QFT, respectively.

It is instructive to recollect step 2 with our example of 799 = 17 · 47, for
which n = 20. We take m = 7 as before.
STEP 2.0: The initial state is

|ψ0〉 = |0〉|0〉. (8.18)

STEP 2.1: The QFT on the first register results in

|ψ1〉 =
1√
Q

Q−1∑

x=0

|x〉|0〉, (8.19)



Example: Factorize 799. Take m = 7. 
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FIGURE 8.3
Probability distribution Prob(y) for 8, 520 ≤ y ≤ 8, 580.

FIGURE 8.4
Quantum circuit to find the order of f(x) = mx mod N .

where Q = 220 = 1048576.

STEP 2.2: Application of Uf on |ψ1〉 produces

|ψ2〉 =
1√
Q

Q−1∑

x=0

|x〉|7x mod 799〉

=
1√
Q

[
|0〉|1〉+ |1〉|7〉+ |2〉|49〉+ |3〉|343〉+ |4〉|4〉+ |5〉|28〉

+ . . . + |368〉|1〉+ |369〉|7〉+ |370〉|49〉+ . . .

+|Q− 2〉|756〉+ |Q− 1〉|498〉
]
. (8.20)

Note that there are only P = 368 different states in the second register.

STEP 2.3: The QFT with ω = e2πi/Q, Q = 2n, is applied to the first register.
This results in

|ψ3〉 =
1√
Q

Q−1∑

x=0

1√
Q

Q−1∑

y=0

ω−xy|y〉|7x mod 799〉



Example: Factorize 799. Take m = 7. 
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≡ 1
Q

Q−1∑

y=0

|y〉|Υ(y)〉, (8.21)

where

|Υ(y)〉 =
Q−1∑

x=0

ω−xy|7x mod 799〉

=
Q−1∑

x=0

e−2πixy/Q|7x mod 799〉

= |1〉+ ω−y|7〉+ ω−2y|49〉+ ω−3y|343〉+ . . .

+ω−368y|1〉+ ω−369y|7〉+ ω−370y|49〉+ ω−371y|343〉+ . . .

+ . . . +
+ω−736y|1〉+ ω−737y|7〉+ ω−738y|49〉+ ω−739y|343〉+ . . .

+ . . . +
+ω−1048432y|1〉+ ω−1048433y|7〉+ ω−1048434y|49〉+ ω−1048435y|343〉

. . . + ω−1048575y|498〉
= (1 + ω−368y + ω−736y + . . . + ω−1048432y)|1〉

+(ω−y + ω−369y + ω−737y + . . . + ω−1048433y)|7〉
+(ω−2y + ω−370y + ω−738y + . . . + ω−1048434y)|49〉
+(ω−3y + ω−371y + ω−739y + . . . + ω−1048435y)|343〉

+ . . .

+(ω−87y + ω−455y + ω−823y + . . .)|794〉. (8.22)

There are 368 ket vectors in the above expansion. The coefficient of each
vector becomes sizeable when and only when y is approximately a multiple of
2849. For example,

2849∑

k=0

ω−368ky = 0.608696 + 0.000262611i,

∣∣∣∣∣

2849∑

k=0

ω−368ky

∣∣∣∣∣ = 0.608696

for y = 1 while
2849∑

k=0

ω−368ky = 2315.79 + 1408.03i,

∣∣∣∣∣

2849∑

k=0

ω−368ky

∣∣∣∣∣ = 2710.25

for y = 8548. The previous result is recovered as

Prob(8548) = 368
(

2710.25
Q

)2

= 0.00245848. (8.23)

The order P may be inferred by repeating measurements. However, the
number of measurements required to guess P grows rapidly as N becomes
larger and larger. We certainly need a technique with which we may find P
with a single measurement, which is the subject of the next section.
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FIGURE 8.3
Probability distribution Prob(y) for 8, 520 ≤ y ≤ 8, 580.

FIGURE 8.4
Quantum circuit to find the order of f(x) = mx mod N .
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e−2πixy/Q|7x mod 799〉

= |1〉+ ω−y|7〉+ ω−2y|49〉+ ω−3y|343〉+ . . .

+ω−368y|1〉+ ω−369y|7〉+ ω−370y|49〉+ ω−371y|343〉+ . . .

+ . . . +
+ω−736y|1〉+ ω−737y|7〉+ ω−738y|49〉+ ω−739y|343〉+ . . .

+ . . . +
+ω−1048432y|1〉+ ω−1048433y|7〉+ ω−1048434y|49〉+ ω−1048435y|343〉

. . . + ω−1048575y|498〉
= (1 + ω−368y + ω−736y + . . . + ω−1048432y)|1〉

+(ω−y + ω−369y + ω−737y + . . . + ω−1048433y)|7〉
+(ω−2y + ω−370y + ω−738y + . . . + ω−1048434y)|49〉
+(ω−3y + ω−371y + ω−739y + . . . + ω−1048435y)|343〉

+ . . .

+(ω−87y + ω−455y + ω−823y + . . .)|794〉. (8.22)

There are 368 ket vectors in the above expansion. The coefficient of each
vector becomes sizeable when and only when y is approximately a multiple of
2849. For example,

2849∑

k=0

ω−368ky = 0.608696 + 0.000262611i,

∣∣∣∣∣

2849∑

k=0

ω−368ky

∣∣∣∣∣ = 0.608696

for y = 1 while
2849∑

k=0

ω−368ky = 2315.79 + 1408.03i,

∣∣∣∣∣

2849∑

k=0

ω−368ky

∣∣∣∣∣ = 2710.25

for y = 8548. The previous result is recovered as

Prob(8548) = 368
(

2710.25
Q

)2

= 0.00245848. (8.23)

The order P may be inferred by repeating measurements. However, the
number of measurements required to guess P grows rapidly as N becomes
larger and larger. We certainly need a technique with which we may find P
with a single measurement, which is the subject of the next section.
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The order P may be inferred by repeating measurements. However, the
number of measurements required to guess P grows rapidly as N becomes
larger and larger. We certainly need a technique with which we may find P
with a single measurement, which is the subject of the next section.

There are         
P = 368 ket
vectors in the 
above 
expansion. 



The coefficient of each vector becomes sizeable when and only when y is 
approximately a multiple of 2849. That means that q ∼ 2849 (in general r ≠ 0) 
and therefore P ∽ Q/2849 ∽ 368.0505. The order thus obtained is probabilistic, 
and its plausibility must be checked. This strategy is not practical when N is 
considerably large. There is a powerful method of continued fraction expansion 
by which we find the order P with a single measurement of the first register.
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FIGURE 8.2
(a) Probability distribution Prob(y) for 0 ≤ y ≤ 10, 000. (b) Same graph for
the range 100, 000 ≤ y ≤ 110, 000.

and the QFT, respectively.

It is instructive to recollect step 2 with our example of 799 = 17 · 47, for
which n = 20. We take m = 7 as before.
STEP 2.0: The initial state is

|ψ0〉 = |0〉|0〉. (8.18)

STEP 2.1: The QFT on the first register results in

|ψ1〉 =
1√
Q

Q−1∑

x=0

|x〉|0〉, (8.19)
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