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Relativistic	kinematics	-	acceleration
We	consider	the	simple	case	of	acceleration	
along	the	x	(x’)	axis.


We	start	with	the	velocity	at	a	given	time:
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6.7 Constant acceleration in Special Relativity

This section is not examinable and is included for interest
It is often said, erroneously, that Special Relativity cannot deal with acceleration because

it deals only with inertial frames, and that therefore acceleration must be the preserve of General
Relativity. We must, of course, only allow transformations between inertial frames; the frames must
not accelerate, but the observers in the frame can move as the please. Special Relativity can deal
with anything kinematic but General Relativity is required when gravitational forces are present.

As an example of non-uniform motion, we consider an observer who is moving with constant
acceleration.

The first step is to define what we mean by ‘constant acceleration’ which is certainly a frame-
dependent concept. The most common situation is that of an observer in a rocket experiencing
a constant ‘G-force’ due to the rocket thrust. This corresponds to the acceleration measured in
the instantaneous (inertial) rest frame of the rocket being constant (acceleration having the usual
definition of dv/dt), so we take this to be our definition.

For reasons that will later become clear, we need to determine the way that acceleration
transforms under Lorentz transformations. We can do this in a number of ways. We will here
start with the velocity transformation law (6.20) for an observer with world line given in S by°
ct(τ), x(τ)

¢
and in S

� by
°
ct

�(τ), x�(τ)
¢
. Forgetting the acceleration problem for the moment, we

assume that these frames have a constant relative velocity v.
The velocities u and u

� in the two frames are related by

u
� =

u − v

1 − uv/c2
≡ (c2

/v)(1 − v
2
/c

2)
1 − uv/c2

− c
2

v

(the equivalent form is just a bit of algebra to obtain a useful expression). Differentiating this with
respect to τ gives

du
�

dτ
=

1 − v
2
/c

2

(1 − uv/c2)2
du

dτ
. (6.22)

The acceleration, a, in S is by definition du/dt and similarly for S
� so

a
� =

du
�

dt�

=
du

�

dτ

¡
dt

�

dτ

=
1 − v

2
/c

2

(1 − uv/c2)2
du

dτ

¡
dt

�

dτ
(using (6.22)

=
1 − v

2
/c

2

(1 − uv/c2)2
du

dτ

¡
γ(1 − uv/c

2)
dt

dτ
(using (6.20))

=
(1 − v

2
/c

2) 3
2

(1 − uv/c2)3
a. (6.23)

As mentioned above there are other ways of obtaining this result; for example, more elegantly using
four-vectors (see section 6.7).

In the situation we have in mind, S
� is the instantaneous rest frame of the accelerating observer,

so that u
� = 0 and u = v, and the acceleration a

� in this frame is constant (i.e. independent of v).
Thus (6.23) becomes

a = (1 − u
2
/c

2)
3
2 a

�

Now

a =
du

dτ

¡
dt

dτ
and

dt

dτ
= (1 − u

2
/c

2)−
1
2

so we can find the parameterised equation of the world line by integrating

du

dτ
= a

dt

dτ
= (1 − u

2
/c

2)a�
.

This gives
u = c tanh(a�

τ/c) (choosing the origin of τ so that u = 0 when τ = 0)
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Acceleration	is	not	absolute	anymore!	(Should	not	be	a	surprise)	
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As mentioned above there are other ways of obtaining this result; for example, more elegantly using
four-vectors (see section 6.7).

In the situation we have in mind, S
� is the instantaneous rest frame of the accelerating observer,

so that u
� = 0 and u = v, and the acceleration a

� in this frame is constant (i.e. independent of v).
Thus (6.23) becomes

a = (1 − u
2
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3
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2
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This gives
u = c tanh(a�

τ/c) (choosing the origin of τ so that u = 0 when τ = 0)
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As mentioned above there are other ways of obtaining this result; for example, more elegantly using
four-vectors (see section 6.7).

In the situation we have in mind, S
� is the instantaneous rest frame of the accelerating observer,

so that u
� = 0 and u = v, and the acceleration a

� in this frame is constant (i.e. independent of v).
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so we can find the parameterised equation of the world line by integrating
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This gives
u = c tanh(a�

τ/c) (choosing the origin of τ so that u = 0 when τ = 0)

Relativistic	kinematics	–	uniform	acceleration
How	do	we	define	constant	acceleration?

Initial	guess:


dv/dt	=	constant	=	a		➔  v	=	v0	+	at


Does	it	make	sense?	No


Velocity	will	eventually	exceed	c.	And	
moreover	it	will	not	be	true	that	a	will	be	
constant	in	other	frames



Relativistic	kinematics	–	uniform	acceleration
We	define	uniform	acceleration	as	“feeling	constant	to	the	object	being	
accelerated”.	The	accelerate	observer	can	measure	it	with	an	accelerometer.


How	doe	we	analyse	this	in	terms	of	inertial	frames?

We	consider	the	instantaneous	
reference	frame,	where	the	object	is	as	
rest	at	that	specific	time.	

Relativistic	kinematics	–	uniform	acceleration
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Let	us	consider	the	instantaneous	rest	frame	of	the	accelerating	observer:

u’	=	0	and	u	=	v.	Then:


a’	is	called	the	proper	acceleration	(as	measured	by	an	instantaneous	rest	
frame).


Or:


6.7. CONSTANT ACCELERATION IN SPECIAL RELATIVITY 17

6.7 Constant acceleration in Special Relativity

This section is not examinable and is included for interest
It is often said, erroneously, that Special Relativity cannot deal with acceleration because

it deals only with inertial frames, and that therefore acceleration must be the preserve of General
Relativity. We must, of course, only allow transformations between inertial frames; the frames must
not accelerate, but the observers in the frame can move as the please. Special Relativity can deal
with anything kinematic but General Relativity is required when gravitational forces are present.

As an example of non-uniform motion, we consider an observer who is moving with constant
acceleration.

The first step is to define what we mean by ‘constant acceleration’ which is certainly a frame-
dependent concept. The most common situation is that of an observer in a rocket experiencing
a constant ‘G-force’ due to the rocket thrust. This corresponds to the acceleration measured in
the instantaneous (inertial) rest frame of the rocket being constant (acceleration having the usual
definition of dv/dt), so we take this to be our definition.

For reasons that will later become clear, we need to determine the way that acceleration
transforms under Lorentz transformations. We can do this in a number of ways. We will here
start with the velocity transformation law (6.20) for an observer with world line given in S by°
ct(τ), x(τ)

¢
and in S

� by
°
ct

�(τ), x�(τ)
¢
. Forgetting the acceleration problem for the moment, we

assume that these frames have a constant relative velocity v.
The velocities u and u

� in the two frames are related by

u
� =

u − v

1 − uv/c2
≡ (c2

/v)(1 − v
2
/c

2)
1 − uv/c2

− c
2

v

(the equivalent form is just a bit of algebra to obtain a useful expression). Differentiating this with
respect to τ gives

du
�

dτ
=

1 − v
2
/c

2

(1 − uv/c2)2
du

dτ
. (6.22)

The acceleration, a, in S is by definition du/dt and similarly for S
� so

a
� =

du
�

dt�

=
du

�

dτ

¡
dt

�

dτ

=
1 − v

2
/c

2

(1 − uv/c2)2
du

dτ

¡
dt

�

dτ
(using (6.22)

=
1 − v

2
/c

2

(1 − uv/c2)2
du

dτ

¡
γ(1 − uv/c

2)
dt

dτ
(using (6.20))

=
(1 − v

2
/c

2) 3
2

(1 − uv/c2)3
a. (6.23)

As mentioned above there are other ways of obtaining this result; for example, more elegantly using
four-vectors (see section 6.7).

In the situation we have in mind, S
� is the instantaneous rest frame of the accelerating observer,

so that u
� = 0 and u = v, and the acceleration a

� in this frame is constant (i.e. independent of v).
Thus (6.23) becomes

a = (1 − u
2
/c

2)
3
2 a

�

Now

a =
du

dτ

¡
dt

dτ
and

dt

dτ
= (1 − u

2
/c

2)−
1
2

so we can find the parameterised equation of the world line by integrating

du

dτ
= a

dt

dτ
= (1 − u

2
/c

2)a�
.

This gives
u = c tanh(a�

τ/c) (choosing the origin of τ so that u = 0 when τ = 0)



Relativistic	kinematics	–	uniform	acceleration

a′￼= constant →
d
dt

[γu] = constant = α

γu = αt (initial	conditions: u = 0 for t = 0)

u

1 − u2

c2

= αt → u =
αt

1 + α2t2

c2

The	solution	is:	

Classical	answer

Relativistic	correction

We	see	that	u	remain	always	smaller	than	c,	and	approaches	c	for	large	times.		

Relativistic	kinematics	–	uniform	acceleration

x = x0 + ∫
t

0
u dt′￼ = x0 +

c2

α
1 +

α2t2

c2
− 1 =

c2

α
1 +

α2t2

c2

With	the	choice	 x0 = c2/α

Then	we	have:

x2 − (ct)2 = (c2/α)2



Relativistic	
kinematics	–	
uniform	
acceleration
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and hence
γ = cosh(a�

τ/c).

Then from dt/dτ = γ, we find that

t = c/a
� sinh(a�

τ/c) (choosing the origin of t such that t = 0 when τ = 0)

Finally,

dx

dτ
=

dx

dt

dt

dτ

= uγ

= c sinh(a�
τ/c)

so
x = c

2
/a

� cosh(a�
τ/c). (choosing the origin of x such that x = c

2
/a

� when t = 0)

Uniformly accelerated particles therefore move on rectangular hyperbolas of the form

x
2 − (ct)2 = (c2

/a
�)2.

The diagram shows the trajectory. The dotted lines are the light cones. An event taking
place within the dashed lines can influence an accelerated observer at the position shown, but
events taking place outside the dashed lines would have to move faster than the speed of light to do
so. As τ → ∞, the whole of the space-time to the left of the dotted line x = ct would be inaccessible
to the observer. This line is called the Rindler event horizon for the accelerated observer. In some
ways, it performs the same function as the event horizon of a black hole. In particular, the observer
has to accelerate to avoid falling through it and anything happening on the other side would be
hidden to the observer. Of course, the accelerating observer could just stop accelerating whereas
the observer in a black hole space-time can do nothing to affect the event horizon.

x

ct

x = ct

The space-time diagram for an accelerated observer. The thick hyperbola is the observer’s world
line. An observer ‘below’ the dashed lines could in principle send a message to the observer marked
as a heavy dot; other observers could not.

6.8 Four-vectors

6.8.1 definitions

In 1 + 3 dimensions (i.e. one time dimension and three space dimensions), we write the position
4-vector X in the form

X =

0

BB@

ct

x

y

z

1

CCARelativistic	kinematics	–	momentum

Conservation	of	mass:	

Before

After

A B

C D

Conservation	of	momentum:	

Conservation	of	energy:	

Classically	we	have

mA + mB = mC + mD

mAuA + mBuB = mCuC + mDuD

1
2

mAu2
A +

1
2

mBu2
B =

1
2

mCu2
C +

1
2

mDu2
D



Relativistic	kinematics	–	momentum

conservation	of	momentum

If	these	transformations	hold	true	in	a	reference	frame,	Galilei’s	transformation	
laws	make	sure	that	they	hold	in	any	other	(inertial)	frame.	In	particular

−v[mAu′￼A + mBu′￼B − mCu′￼C − mDu′￼D]

1
2

mAu2
A +

1
2

mBu2
B =

1
2

mCu2
C +

1
2

mDu2
D

1
2

mAu′￼
2
A +

1
2

mBu′￼
2
B =

1
2

mCu′￼
2
C +

1
2

mDu′￼
2
D −

1
2

v2[mA + mB − mC − mD]

(u = u′￼+ v)

conservation	of	mass

Relativistic	kinematics	–	momentum
mAuA + mBuB = mCuC + mDuD (u = u′￼+ v)

mAu′￼A + mBu′￼B = mCu′￼C + mDu′￼D − v[mA + mB − mC − mD]
conservation	of	mass

This	is	how	conservation	properties	are	linked	to	each	other

In	a	relativistic	context,	given	the	transformation	properties	of	velocities,	
momentum	as	defined	above	is	nor	conserved	in	all	inertial	frames.	If	it	is	
conserved	in	one	frame,	it	is	not	in	the	others.

A	new	definition	is	needed!!			



Relativistic	kinematics	–	momentum
Two	criteria	for	a	new	definition	of	momentum:


1. Momentum	should	be	conserved	in	every	inertial	frame	

2. It	reduces	to	classical	momentum	for	low	velocities

p =
mu

1 − u2

c2

It	clearly	reduces	to	the	classical	definition	for	low	velocities.	We	now	consider	
the	issue	of	conservation

u′￼x =
ux − v

1 − vux

c2

O O’
v

t

x

t’

u

u'

Relativistic	kinematics	–	momentum

u′￼y =
uy

γ (1 − vux

c2 )
u′￼z =

uz

γ (1 − vux

c2 )
One	can	prove	that:

1

1 − u2/c2
= γ

1 + u′￼xv/c2

1 − u′￼2/c2

γ =
1

1 − v2/c2



Relativistic	kinematics	–	momentum
Then:

px =
mux

1 − u2/c2
= m (γ

1 + u′￼xv/c2

1 − u′￼2/c2 ) ( u′￼x + v
1 + vu′￼x /c2 )

= γ
mu′￼x

1 − u′￼2/c2
+ γ

mv

1 − u′￼2/c2
= γ p′￼x + γ

v
c2

mc2

1 − u′￼2/c2

= γ (p′￼x +
v
c2

E′￼) E′￼ =
mc2

1 − u′￼2/c2

Relativistic	kinematics	–	momentum
Then:

py =
muy

1 − u2/c2
= m (γ

1 + u′￼xv/c2

1 − u′￼2/c2 ) (
u′￼y

γ(1 + vu′￼x /c2) )

= m
u′￼y

1 − u′￼2/c2
= p′￼y

And	same	for	the	z-component



Relativistic	kinematics	–	momentum
To	summarize	we	have:

px = γ (p′￼x +
v
c2

E′￼) p′￼x = γ (px −
v
c2

E)
py = p′￼y p′￼y = py

pz = p′￼z p′￼z = pz

With: E =
mc2

1 − u2/c2

Relativistic	kinematics	–	momentum
Coming	back	to	conservation	of	momentum,	conservation	along	the	y	and	z	
directions	is	trivial.	Along	the	x	direction:

pxA + pxB = pxC + pxD

Therefore	momentum	is	conserved	if	also	E	is	conserved.

γ (p′￼xA +
v
c2

E′￼A) + γ (p′￼xB +
v
c2

E′￼B) = γ (p′￼xC +
v
c2

E′￼C) + γ (p′￼xD +
v
c2

E′￼D)
p′￼xA + p′￼xB = p′￼xC + p′￼xD −

v
c2 (E′￼A + E′￼B − E′￼C − E′￼D)



Relativistic	kinematics	–	energy
What	is	E?

E =
mc2

1 − u2/c2
= mc2 +

1
2

mu2 +
3
8

m
u4

c2
+ …

Constant	
term

Classical	
kinetic	
term

Relativistic	
corrections

E	=	total	energy


T	=	E	-	mc2	

Kinetic	energy

Relativistic	kinematics	–	energy
The	transformation	properties	of	E	are:

E =
mc2

1 − u2/c2
= mc2γ

1 + u′￼xv/c2

1 − u′￼2/c2
= γ [E′￼+ vp′￼x]

It	is	easy	to	show	that	the	following	relation	holds:

E2 − p2c2 = m2c4 It	takes	the	same	value	
in	all	reference	frames



Relativistic	kinematics	–	energy	and	momentum
If	we	want	to	have	that	momentum	is	conserved	in	all	frames,	then	also	the	
energy	must	be	conserved.	Then	

pxA + pxB = pxC + pxD

EA + EB = EC + ED

in	one	frame	implies	

p′￼xA + p′￼xB = p′￼xC + p′￼xD − (v/c2)[E′￼A + E′￼B − E′￼C − E′￼D]

E′￼A + E′￼B = E′￼C + E′￼D − v[p′￼xA + p′￼xB − p′￼xC − p′￼xD]

in	any	other	frame

p′￼xA + p′￼xB = p′￼xC + p′￼xD

E′￼A + E′￼B = E′￼C + E′￼D

Relativistic	kinematics	–	energy	and	momentum

Conservation	of	energy	and	momentum	in	one	frame	implies	conservation	in	
all	other	frames.	


But	are	they	conserved?


Postulate:	for	every	closed	system	(no	external	forces)	energy	an	momentum	
are	conserved.


It	is	experimentally	verified	(so	far)



Relativistic	kinematics	–	mass

And	what	about	the	mass?	


The	conservation	of	the	mass	is	not	necessary	anymore	-	as	it	was	in	classical	
mechanics	-	to	have	conservation	of	energy	and	momentum.


And	in	fact	in	special	relativity	the	mass	is	not	conserved	any	more.

Relativistic	kinematics	–	mass

Classically

m m1 m2

u1 u2

m = m1 + m2 0 =
1
2

(m1u2
1 + m2u2

2)0 = m1u1 + m2u2

Impossible



Relativistic	kinematics	–	mass

In	special	relativity

m m1 m2

u1 u2

E = mc2 = E1 + E2 =
m1c2

1 − u2
1 /c2

+
m2c2

1 − u2
2 /c2

0 = p1 + p2

(m − m1 − m2)c2 = m1c2[ m1c2

1 − u2
1 /c2

− 1] + m2c2[ m2c2

1 − u2
2 /c2

− 1] = T1 + T2

Relativistic	kinematics	–	mass

We	see	that	this	process	is	consistent	with	the	theory:	mass	is	lost	in	favour	
of	kinetic	energy.	


Also,	the	amount	of	kinetic	energy	is	equal	to	 ,	which	is	very	largeΔmc2

m m1 m2

u1 u2

Δm =
T1 + T2

c2



Relativistic	kinematics	–	mass

From	the	conceptual	point	of	view,	what	is	remarkable	is	that	all	this	comes	
from	the	structure	of	space	and	time,	and	this	structure	affects	the	
properties	of	matter:	how	fat	they	can	travel,	how	their	mass	and	energy	
behaves.

m m1 m2

u1 u2

Relativistic	kinematics	–	massless	particles
From	the	relation	

E2 − p2c2 = m2c4

Taking	m	=	0,	we	have:	E	=	|p|c.	


Relativity	opens	to	the	possibility	of	particles	of	zero	mass.	They	have	to	
travel	at	the	sped	of	light.


Classically,	without	mass	there	is	no	momentum	and	no	kinetic	energy.	



Relativistic	dynamics
Newton’s	first	law	of	inertia:	ok


Newton’s	second	law:	 F =
dp
dt

It	remains	valid,	provided	that	with	p	we	use	the	relativistic	momentum.


Remembering	that	 	and	that	the	proper	acceleration	is	
,	we	see	that	a	constant	force	exerts	a	constant	proper	

acceleration,	thus	a	hyperbolic	motion.						

p = mγu
a′￼= d(γu)/dt

Work	&	Energy
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To complete the problem we must integrate again: 

x(t) = F t t' dt' 
m Jo y'1 + (Ft' jmc)2 

mc
2 It mc

2 
[ J = F -/1 + (Ft'jmc)2 

0 
= F -/1 + (Ftjmc)2 -1 . (12.61) 

In place of the classical parabola, x(t) = (F j2m)t2, the graph is a hyperbola 
(Fig. 12.30); for this reason, motion under a constant force is often called 
hyperbolic motion. It occurs, for example, when a charged particle is placed 
in a uniform electric field. 

ct 

/ 
/ 

Relativistic 
(hyperbola) 

FIGURE 12.30 

Work, as always, is the line integral of the force: 

W= f F·dl. 

X 

(12.62) 

The work-energy theorem ("the net work done on a particle equals the increase 
in its kinetic energy") holds relativistically: 

W = j dp. dl = j dp. dl dt = j dp. udt 
dt dt dt dt ' 

while 



Transformation	rules	for	the	Force
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so 

(12.64) 

(Since the rest energy is constant, it doesn't matter whether we use the total en-
ergy, here, or the kinetic energy.) 

Unlike the first two, Newton's third law does not, in general, extend to the 
relativistic domain. Indeed, if the two objects in question are separated in space, 
the third law is incompatible with the relativity of simultaneity. For suppose the 
force of A on Bat some instant tis F(t), and the force of B on A at the same in-
stant is -F(t); then the third law applies in this reference frame. But a moving 
observer will report that these equal and opposite forces occurred at different 
times; in his system, therefore, the third law is violated. Only in the case of con-
tact interactions, where the two forces are applied at the same physical point (and 
in the trivial case where the forces are constant) can the third law be retained. 

Because F is the derivative of momentum with respect to ordinary time, it 
shares the ugly behavior of (ordinary) velocity, when you go from one inertial 
system to another: both the numerator and the denominator must be transformed. 
Thus,18 

- dpy dpy Fy = - -- = __ ....::....::.--=-- dpy/dt Fy 

dt ydt- yf3 dx 
c 

y ( 1 _ !!_ dx) = y(1- f3uxfc)' 
c dt 

and similarly for the z component: 

- Fz 
Fz = . 

y(1- f3uxfc) 

The x component is even worse: 

- dfix Y dpx - yf3 dp0 
Fx= - - = = 

dt ydt- yf3 dx 
c 

dpx _ f3dp 0 

dt dt 
f3 dx 1- --
c dt 

We calculated dE j dt in Eq. 12.63; putting that in, 

Fx- f3(u · F)/c Fx= ------
1- f3uxfc 

F _!!_(dE) 
X C dt 
1 - f3uxfc 

(12.65) 

(12.66) 

In one special case these equations are reasonably tractable: If the particle is (in-
stantaneously) at rest inS, so that u = 0, then 

- 1 -
F_1_= - F_i, F11=F11. 

y 
(12.67) 

18Remember: y and {J pertain to the motion of S with respectS-they are constants; u is the velocity 
of the particle with respect to S. 
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Relativistic	dynamics
Newton’s	third	law:


It	does	not	extend	to	relativistic	motion,	because	it	is	incompatible	with	the	
relativity	of	simultaneity.	It	holds	only	for	contact	interactions.


In	relativity,	forces	are	rep	by	fields	mediating	the	interaction.

Geometry	of	spacetime	-	vectors
What	does	it	mean	that	a	vector	is	a	vector?

It	means	that	it	has	magnitude	and	a	direction.	

It	can	be	expressed	by	its	components,	which	
however	are	not	intrinsic,	but	relative	to	the	
reference	frame.
Mathematically,	a	vector	is	expressed	by	three	components	(since	space	is	three	
dimensional)	





with	i	=	1,2,3

r ↔ ri



Geometry	of	spacetime	-	vectors
In	another	frame	the	components	are





where	 	is	an	orthogonal	rotation	matrix.		

r′￼i = Oi
jr

j

Oi
j

We	used	Einstein’s	summation:	repeated	indices	are	summed.


The	components	of	the	vector	change	when	changing	the	reference	frame.


Let	us	see	that	the	length	and	direction	do	not	change

Geometry	of	spacetime	-	vectors

Let	us	introduce	the	metric	ηij =

Then	we	define


Scalar	product:	 

Norm:	 

Distance:	 


These	objects	are	defined	by	the	metric	tensor.	It	reflects	the	structure	of	
Euclidean	space	

p ⋅ q = piηijqj

∥p∥2 = piηij p j

∥p − q∥

3x3 Identity
matrix

Identity matrix
In linear algebra, the identity matrix (sometimes ambiguously called a unit
matrix) of size n is the n × n square matrix with ones on the main diagonal
and zeros elsewhere. It is denoted by In, or simply by I if the size is immaterial
or can be trivially determined by the context.[1][2] In some fields, such as
quantum mechanics, the identity matrix is denoted by a boldface one, 1;
otherwise it is identical to I. Less frequently, some mathematics books use U or
E to represent the identity matrix, meaning "unit matrix"[3] and the German
word Einheitsmatrix respectively.[4]

When A is m×n, it is a property of matrix multiplication that

In particular, the identity matrix serves as the unit of the ring of all n×n matrices, and as the
identity element of the general linear group GL(n) (a group consisting of all invertible n×n
matrices). In particular, the identity matrix is invertible—with its inverse being precisely itself.

Where n×n matrices are used to represent linear transformations from an n-dimensional vector
space to itself, In represents the identity function, regardless of the basis.

The ith column of an identity matrix is the unit vector ei (the vector whose ith entry is 1 and 0
elsewhere) It follows that the determinant of the identity matrix is 1, and the trace is n.

Using the notation that is sometimes used to concisely describe diagonal matrices, we can write

The identity matrix can also be written using the Kronecker delta notation:[4]

When the identity matrix is the product of two square matrices, the two matrices are said to be the
inverse of each other.

The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only
matrix such that:

1. When multiplied by itself, the result is itself
2. All of its rows and columns are linearly independent.



Geometry	of	spacetime	-	vectors

Now	we	can	prove	that	the	length	of	a	vector	is	the	same	in	every	frame


∥r′￼∥2 = r′￼iηijr′￼j = Oi
kr

kηijO
j
ℓrℓ = [Oi

kηijO
j
ℓ]rkrℓ = [Oj

kO
j
ℓ]rkrℓ

= [(Ok
j )TOj

ℓ]rkrℓ = rkηkℓrℓ = ∥r∥2

Same	for	the	direction	of	a	vector	relative	to	another	vector	(scalar	product)


Geometry	of	spacetime	-	Minkowski	space

Minkowski:	relativistic	space	has	a	different	geometric	structure.	One	should	
consider	it	has	a	four-dimensional	space	(space-time	=	space	and	time)	with	
the	following	metric:

ημν =

From the second postulate of special relativity, together with homogeneity of spacetime and isotropy of
space, it follows that the spacetime interval between two arbitrary events called 1 and 2 is:[15]

This quantity is not consistently named in the literature. The interval is sometimes referred to as the square
of the interval as defined here.[16] It is not possible to give an exhaustive list of notational inconsistencies.
One has to first check out the definitions when consulting the relativity literature.

The invariance of the interval under coordinate transformations between inertial frames follows from the
invariance of

(with either sign ± preserved), provided the transformations are linear. This quadratic form can be used to
define a bilinear form

via the polarization identity. This bilinear form can in turn be written as

where [η] is a 4×4 matrix associated with η. Possibly confusingly, denote [η] with just η as is common
practice. The matrix is read off from the explicit bilinear form as

and the bilinear form

with which this section started by assuming its existence, is now identified.

For definiteness and shorter presentation, the signature (− + + +) is adopted below. This choice (or the
other possible choice) has no (known) physical implications. The symmetry group preserving the bilinear
form with one choice of signature is isomorphic (under the map given here) with the symmetry group
preserving the other choice of signature. This means that both choices are in accord with the two postulates
of relativity. Switching between the two conventions is straightforward. If the metric tensor η has been used
in a derivation, go back to the earliest point where it was used, substitute η for −η, and retrace forward to
the desired formula with the desired metric signature.

A standard basis for Minkowski space is a set of four mutually orthogonal vectors { e0, e1, e2, e3 } such that

These conditions can be written compactly in the form

Standard basis

• It	is	not	Euclidean	anymore.	It	is	Minkowski	space	

• Space	and	time	are	put	together	(but	not	unified)

• Conventions	with	opposite	signs	are	allowed



Geometry	of	spacetime	-	Minkowski	space

In	analogy	with	Euclidean	geometry,	we	define	4-vectors




where	the	components	 	depend	on	the	reference	frame	and	are	related	to	
those	in	another	frame	by	Lorentz	transformations:	 


Then	we	define	again


Scalar	product:	 

‘Norm’:	 	(not	always	positive)

Distance:	 	(not	always	positive)


p ↔ pμ

pμ

p′￼μ = Λμ
νpν

p ⋅ q = pμημνqν

p2 = pμημνpν

(p − q)2

Geometry	of	spacetime	-	Minkowski	space

We	show	that	length	and	direction	of	4-vectors	do	not	change:

∥p∥2 = pμημνpν → ∥p′￼∥2 = p′￼μημνp′￼ν = Λμ
α pαημνΛν

β pβ = (Λμ
αημνΛν

β)pα pβ

= (ΛTηΛ)αβ pα pβ = ηαβ pα pβ = ∥p∥2

Let	us	show	that	 	(matrix	identity)	ΛTηΛ = η

Same	for	scalar	product	and	distance



Geometry	of	spacetime	-	Minkowski	space

Let	us	rewrite

Lorentz boost of an electric charge, the charge is at rest in one
frame or the other.

is running over a row index of the matrix representing Λ−1. Thus, in terms of matrices, this transformation should be thought of as the inverse transpose of
Λ acting on the column vector Aμ. That is, in pure matrix notation,

This means exactly that covariant vectors (thought of as column matrices) transform according to the dual representation of the standard representation of the
Lorentz group. This notion generalizes to general representations, simply replace Λ with Π(Λ).

If A and B are linear operators on vector spaces U and V, then a linear operator A ⊗ B may be defined on the tensor product of U and V, denoted U ⊗ V
according to[20]

               (T1)

From this it is immediately clear that if u and v are a four-vectors in V, then u ⊗ v ∈ T2V ≡ V ⊗ V transforms as

               (T2)

The second step uses the bilinearity of the tensor product and the last step defines a 2-tensor on component form, or rather, it just renames the tensor u ⊗ v.

These observations generalize in an obvious way to more factors, and using the fact that a general tensor on a vector space V can be written as a sum of a
coefficient (component!) times tensor products of basis vectors and basis covectors, one arrives at the transformation law for any tensor quantity T. It is given
by[21]

               (T3)

where Λχʹ
ψ is defined above. This form can generally be reduced to the form for general n-component objects given above with a single matrix (Π(Λ))

operating on column vectors. This latter form is sometimes preferred; e.g., for the electromagnetic field tensor.

Lorentz transformations can also be used to illustrate that the magnetic field B and electric field E
are simply different aspects of the same force — the electromagnetic force, as a consequence of
relative motion between electric charges and observers.[22] The fact that the electromagnetic field
shows relativistic effects becomes clear by carrying out a simple thought experiment.[23]

An observer measures a charge at rest in frame F. The observer will detect a static electric
field. As the charge is stationary in this frame, there is no electric current, so the observer
does not observe any magnetic field.
The other observer in frame F′ moves at velocity v relative to F and the charge. This observer
sees a different electric field because the charge moves at velocity −v in their rest frame. The
motion of the charge corresponds to an electric current, and thus the observer in frame F′ also
sees a magnetic field.

The electric and magnetic fields transform differently from space and time, but exactly the same
way as relativistic angular momentum and the boost vector.

The electromagnetic field strength tensor is given by

in SI units. In relativity, the Gaussian system of units is often preferred over SI units, even in texts
whose main choice of units is SI units, because in it the electric field E and the magnetic induction
B have the same units making the appearance of the electromagnetic field tensor more
natural.[24] Consider a Lorentz boost in the x-direction. It is given by[25]

where the field tensor is displayed side by side for easiest possible reference in the manipulations below.

The general transformation law (T3) becomes

Tensors

Transformation of the electromagnetic field

γ =
1

1 − β2
β =

v
c

Then:

ΛTηΛ =

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

=

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

−γ βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

=

−γ2 + βγ2 0 0 0
0 γ2 − βγ2 0 0
0 0 1 0
0 0 0 1

=

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Geometry	of	spacetime	-	four	vectors

Spacetime	event:	 .	

Its	components	transform	with	the	Lorentz	trnafotremahions,		therefore	it	is	a	
4-vector.


The	metric	does	not	have	a	definite	signature,	therefore	three	types	of	events	
are	possible.	


Let	us	consider	two	events	 	and	 	and	let	 .

xμ = (ct, x)

xA xB I = xB − xA



Geometry	of	spacetime	-	four	vectors

1. Space-like	separated	events:	 


Example:	 :	two	events	that	occur	simultaneously	( )	in	
frame	O,	at	a	distance	 	along	the	x	axis.	Then	in	another	frame	O’:




They	are	not	simultaneous	anymore.


The	order	of	events	depends	on	the	reference	frame.	This	does	not	conflict	
with	causality	because	the	two	events	cannot	be	connected.	In	fact	the	
average	speed	would	be	 	since	

I2 > 0

I = (0,Δx,0,0) Δt = 0
Δx

Δt′￼= γΔt − βΔx/c = − βΔx/c ≠ 0

(Δx/Δt)2 > c2 I > 0

Geometry	of	spacetime	-	four	vectors

2.	Time-like	separated	events:	 


Example:	 :	two	events	that	occur	in	the	same	place	( )	in	
frame	O,	at	different	times.	Then	in	another	frame	O’:




The	time	ordering	is	preserved.	No	problem	with	causality,	it	is	a	fact	that	one	
occurs	before	the	other.


3.	Light-like	separated	events:	 

Events	that	are	connect	by	a	ray	of	light

I2 < 0

I = (Δt,0,0,0) Δx = 0

Δt′￼= γΔt − βΔx/c = γΔt

I2 = 0



Geometry	of	spacetime	-	
spacetime	diagram

Subdivision	of	Minkowski	
spacetime	with	respect	to	an	
event	in	four	disjoint	sets.	The	
light	cone,	the	absolute	future,	
the	absolute	past,	and	
elsewhere.	

Geometry	of	spacetime	-	four	velocity

The	velocity	 	it	is	not	a	good	definition	of	4-velocity	because	it	does	not	
have	the	right	transformation	properties.	A	good	definition	is:





where	 	is	the	proper	time	of	the	particle.	The	relation	to	the	usual	velocity	is:


				(nothing	new)	and									 


It	is	easy	to	see	that:	 ,	which	is	invariant.	


dxμ/dt

ημ =
dxμ

dτ
τ

η0 =
dx0

dτ
= c

dt
dτ

= γc η =
dx
dτ

= γu

η2 = − c2



Geometry	of	spacetime	-	four	momentum

The	4-momentum	is	defined	as:	 


The	previous	calculations	show	that	it	is	a	4-vector,	i.e.	that	its	components	
transform	as:	 


(it	is	not	for	granted	that	every	object	with	4	components	si	a	4-vector)


The	length	is:	 

which	is	invariant.

pμ = (E/c, p) = mημ = mdxμ/dτ

p′￼μ = Λμ
νpν

p2 = − E2/c2 + p2 = − m2c2

Geometry	of	spacetime	-	Minkowski	force

The	Minkowski	force	is	defined	as:





Then:


				and						

Kμ =
dpμ

dτ

K0 =
1
c

dE
dτ

K = γ
dp
dt

= γF
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FIGURE 12.34 

Because v_ is greater than v+, the Lorentz contraction of the spacing between 
negative charges is more severe than that between positive charges; in this frame, 
therefore, the wire carries a net negative charge! In fact, 

(12.78) 

where 

(12.79) 

and )..0 is the charge density of the positive line in its own rest system. That's not 
the same as A, of course-inS they're already moving at speed v, so 

)., = YAo, (12.80) 

where 

(12.81) 
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12.3 • RELATIVISTIC ELECTRODYNAMICS 

12.3.1 • Magnetism as a Relativistic Phenomenon 
Unlike Newtonian mechanics, classical electrodynamics is already consistent 
with special relativity. Maxwell's equations and the Lorentz force law can be ap-
plied legitimately in any inertial system. Of course, what one observer interprets 
as an electrical process another may regard as magnetic, but the actual particle 
motions they predict will be identical. To the extent that this did not work out 
for Lorentz and others, who studied the question in the late nineteenth century, 
the fault lay with the nonrelativistic mechanics they used, not with the electro-
dynamics. Having corrected Newtonian mechanics, we are now in a position to 
develop a complete and consistent formulation of relativistic electrodynamics. 
I emphasize that we will not be changing the rules of electrodynamics in the 
slightest-rather, we will be expressing these rules in a notation that exposes and 
illuminates their relativistic character. As we go along, I shall pause now and then 
to rederive, using the Lorentz transformations, results obtained earlier by more 
laborious means. But the main purpose of this section is to provide you with a 
deeper understanding of the structure of electrodynamics-laws that had seemed 
arbitrary and unrelated before take on a kind of coherence and inevitability when 
approached from the point of view of relativity. 

To begin with, I'd like to show you why there had to be such a thing as mag-
netism, given electrostatics and relativity, and how, in particular, you can calculate 
the magnetic force between a current-carrying wire and a moving charge with-
out ever invoking the laws of magnetism.23 Suppose you had a string of positive 
charges moving along to the right at speed v. I'll assume the charges are close 
enough together so that we may treat them as a continuous line charge A. Super-
imposed on this positive string is a negative one, -A proceeding to the left at the 
same speed v. We have, then, a net current to the right, of magnitude 

I= 2Av. (12.76) 

Meanwhile, a distance s away there is a point charge q traveling to the right 
at speed u < v (Fig. 12.34a). Because the two line charges cancel, there is no 
electrical force on q in this system (S). 

However, let's examine the same situation from the point of view of system S, 
which moves to the right with speed u (Fig. 12.34b ). In this reference frame, q 
is at rest. By the Einstein velocity addition rule, the velocities of the positive and 
negative lines are now 

V=fU 
V±= ----=-

1 =f vufc2 • 
(12.77) 

23This and several other arguments in this section are adapted from E. M. Purcell's Electricity and 
Magnetism, 2d ed. (New York: McGraw-Hill, 1985). 
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I= 2Av. (12.76) 

Meanwhile, a distance s away there is a point charge q traveling to the right 
at speed u < v (Fig. 12.34a). Because the two line charges cancel, there is no 
electrical force on q in this system (S). 

However, let's examine the same situation from the point of view of system S, 
which moves to the right with speed u (Fig. 12.34b ). In this reference frame, q 
is at rest. By the Einstein velocity addition rule, the velocities of the positive and 
negative lines are now 

V=fU 
V±= ----=-

1 =f vufc2 • 
(12.77) 

23This and several other arguments in this section are adapted from E. M. Purcell's Electricity and 
Magnetism, 2d ed. (New York: McGraw-Hill, 1985). 
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Because v_ is greater than v+, the Lorentz contraction of the spacing between 
negative charges is more severe than that between positive charges; in this frame, 
therefore, the wire carries a net negative charge! In fact, 

(12.78) 

where 

(12.79) 

and )..0 is the charge density of the positive line in its own rest system. That's not 
the same as A, of course-inS they're already moving at speed v, so 

)., = YAo, (12.80) 

where 

(12.81) 
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It takes some algebra to put Y± into simple form: 

1 
Y± = ----;::::========= 

j1- c\-(v =f u)2(1 =f vujc2)-2 

(12.82) 

The net line charge in S, then, is 

(12.83) 

Conclusion: As a result of unequal Lorentz contraction of the positive and nega-
tive lines, a current-carrying wire that is electrically neutral in one inertial system 
will be charged in another. 

Now, a line charge Atot sets up an electric field 

A tot E= --, 
2nEos 

so there is an electrical force on q in S, to wit: 

A.v qu 
nEoc2s J1- u2 jc2 · 

F=qE= (12.84) 

But if there's a force on q in S, there must be one in S; in fact, we can calculate 
it by using the transformation rules for forces. Since q is at rest inS, and F is 
perpendicular to u, the force inS is given by Eq. 12.67: 

- A.v qu 
F = y'1- u2 jc2 F = - ---. 

nEoc2 s 
(12.85) 

The charge is attracted toward the wire by a force that is purely electrical in S 
(where the wire is charged, and q is at rest), but distinctly nonelectrical in S 
(where the wire is neutral). Taken together, then, electrostatics and relativity im-
ply the existence of another force. This "other force" is, of course, magnetic. In 
fact, we can cast Eq. 12.85 into more familiar form by using c2 = (EoJLo)-1 and 
expressing A.v in terms of the current (Eq. 12.76): 

(JLol) 
F = -qu 2ns · (12.86) 

The term in parentheses is the magnetic field of a long straight wire, and the 
force is precisely what we would have obtained by using the Lorentz force law in 
systemS. 
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(summation over v implied), where A is the Lorentz transformation matrix. If S 
is moving in the x direction at speed v, A has the form 

( 
A-- 0 

0 

-yfi 0 0 ) 
y 0 0 
0 1 0 ' 
0 0 1 

(12.114) 

and is the entry in row JL, column v. A (second-rank) tensor is an object with 
two indices, which transforms with two factors of A (one for each index): 

(12.115) 

A tensor (in 4 dimensions) has 4 x 4 = 16 components, which we can display in 
a 4 x 4 array: 

However, the 16 elements need not all be different. For instance, a symmetric 
tensor has the property 

tJLv = tvJL (symmetric tensor). (12.116) 

In this case there are 10 distinct components; 6 of the 16 are repeats (t01 = 
tw, to2 = t2o, to3 = t3o, t12 = t21, tB = t31, t23 = t32). Similarly, an 
antisymmetric tensor obeys 

tJLv = -tvJL (antisymmetric tensor). (12.117) 

Such an object has just 6 distinct elements-of the original 16, six are repeats 
(the same ones as before, only this time with a minus sign) and four are zero 
(t 00 , t 11 , t22 , and t 33 ). Thus, the general antisymmetric tensor has the form 

Let's see how the transformation rule (Eq. 12.115) works, for the six distinct 
components of an antisymmetric tensor. Starting with fl1, we have 

but according to Eq. 12.114, 0 unless A.= 0 or 1, and = 0 unless a = 0 
or 1. So there are four terms in the sum: 

Like	for	4-vectors,	components	change,	but	the	generalization	of	length	and	
direction	remains	invariant	(for	example	 )	tμνtμν
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On the other hand, t00 = t 11 = 0, while t 01 = -t10, so 

I'll let you work out the others-the complete set of transformation rules is 

j01 = 101, 

j23 = t23, 
j02 = y(t02- f3t12), 
j31 = y(t31 + f3t03), (12.118) 

These are precisely the rules we obtained on physical grounds for the electromag-
netic fields (Eq. 12.109)-in fact, we can construct the field tensor FJLv by direct 
comparison:25 

F 01 = Ex, F02 =- Ey, 03 Ez 12 31 23 F = - , F = B F = B F = B C C C - Z• - Y• - X• 

Written as an array, 

0 
-Exfc 
-Ey/c 
-Ezfc 

(12.119) 

Thus relativity completes and perfects the job begun by Oersted, combining the 
electric and magnetic fields into a single entity, FJLv. 

If you followed that argument with exquisite care, you may have noticed that 
there was a different way of imbedding E and B in an antisymmetric tensor: In-
stead of comparing the first line of Eq. 12.109 with the first line of Eq. 12.118, 
and the second with the second, we could relate the first line of Eq. 12.109 to the 
second line of Eq. 12.118, and vice versa. This leads to dual tensor, GJLv: 

(12.120) 

GJLv can be obtained directly from FJLv by the substitution Ejc -+ B, B-+ 
-Ejc. Notice that this operation leaves Eq. 12.109 unchanged-that's why both 
tensors generate the correct transformation rules for E and B. 

Problem 12.49 Work out the remaining five parts to Eq. 12.118. 

Problem 12.50 Prove that the symmetry (or antisymmetry) of a tensor is preserved 
by Lorentz transformation (that is: if t11-v is symmetric, show that [11-v is also sym-
metric, and likewise for antisymmetric ). 

25 Some authors prefer the convention F 01 =Ex, F 12 = cBz, and so on, and some use the opposite 
signs. Accordingly, most of the equations from here on will look a little different, depending on the 
text. 

Let	us	define

Then	it	is	not	difficult	to	see	that	under	a	boost	along	the	x	direction
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y 
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FIGURE 12.40 

where n is the number of turns per unit length, and I is the current. In system S, 
the length contracts, son increases: 

ii = yn. (12.107) 

On the other hand, time dilates: The S clock, which rides along with the solenoid, 
runs slow, so the current (charge per unit time) in S is given by 

- 1 
I= - I. 

y 

The two factors of y exactly cancel, and we conclude that 

Bx = Bx. 

Like E, the component of B parallel to the motion is unchanged. 
Here, then, is the complete set of transformation rules: 

Two special cases warrant particular attention: 
1. IfB = 0 inS, then 

or, since v = v :i, 

- 1 -B = - 2 (v x E). 
c 

(12.108) 

(12.109) 

(12.110) 

This	is	the	way	E	and	B	transform	according	to	special	relativity
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The	lesson	here	is	that	E	and	B	are	not	independent	quantities,	but	
components	of	the	same		object,	which	is	the	electromagnetic	tensor	 .	
What	is	E	in	one	frame	can	be	B	in	another	frame	-	as	we	saw	before	-	as	it	
happens	from	any	component	of	a	vector/tensor.

Fμν
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Question:	if	E	and	B	are	components	of	a	larger	tensor,	and	can	mix	with	each	
other,	why	did	people	think	they	were	independent	3-vectors?
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Thus relativity completes and perfects the job begun by Oersted, combining the 
electric and magnetic fields into a single entity, FJLv. 

If you followed that argument with exquisite care, you may have noticed that 
there was a different way of imbedding E and B in an antisymmetric tensor: In-
stead of comparing the first line of Eq. 12.109 with the first line of Eq. 12.118, 
and the second with the second, we could relate the first line of Eq. 12.109 to the 
second line of Eq. 12.118, and vice versa. This leads to dual tensor, GJLv: 

(12.120) 

GJLv can be obtained directly from FJLv by the substitution Ejc -+ B, B-+ 
-Ejc. Notice that this operation leaves Eq. 12.109 unchanged-that's why both 
tensors generate the correct transformation rules for E and B. 

Problem 12.49 Work out the remaining five parts to Eq. 12.118. 

Problem 12.50 Prove that the symmetry (or antisymmetry) of a tensor is preserved 
by Lorentz transformation (that is: if t11-v is symmetric, show that [11-v is also sym-
metric, and likewise for antisymmetric ). 

25 Some authors prefer the convention F 01 =Ex, F 12 = cBz, and so on, and some use the opposite 
signs. Accordingly, most of the equations from here on will look a little different, depending on the 
text. 

Answer:	because	they	behave	like	independent	three	vectors	under	rotations



The	Field	Tensor

Le	us	consider	a	rotation	along	the	z	axis:	Λμ
ν =

1 0 0 0
0 cos θ sin θ 0
0 −sin θ cos θ 0
0 0 0 1Then	(c	=	1):

Ex = F01 → E′￼x = F′￼01 = Λ0
αΛ1

βFαβ

= Λ0
0Λ1

0F01 + Λ0
0Λ1

2F02

= Ex cos θ + Ey sin θ

which	is	how	3-vectors	behave	under	rotations
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where Vo is the rest volume of the cloud. Because one dimension (the one along 
the direction of motion) is Lorentz-contracted, 

(12.121) 

and hence 

(12.122) 

Comparing this with Eqs. 12.40 and 12.42, we recognize here the components 
of proper velocity, multiplied by the invariant p0 • Evidently charge density and 
current density go together to make a 4-vector: 

whose components are 

We'll call it the current density 4-vector. 
The continuity equation (Eq. 5.29), 

ap 
V·J=- -

at' 

(12.123) 

(12.124) 

expressing the local conservation of charge, takes on a nice compact form when 
written in terms of J J..L. For 

3 . 
v. J = aJx + aJy + aJz = L aJ:, 

ax ay az i=l axz 

while 

ap 1 aJ0 aJ0 

at= -;;Tt = ax0 • 
(12.125) 

Thus, bringing ap j at over to the left side (in the continuity equation), we have: 

(12.126) 

with summation over JL implied. Incidentally, aJf-L ;axJ..L is the four-dimensional 
divergence of Jf-L, so the continuity equation states that the current density 
4-vector is divergenceless. 
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Maxwell’s	equations
12.3 Relativistic Electrodynamics 

As for Maxwell's equations, they can be written 

apJLv 
-- = uoJIL axv fA' ' 

aGJLv 
-- =0 axv ' 

567 

(12.127) 

with summation over v implied. Each of these stands for four equations--one for 
every value of J-L. If J-L = 0, the first equation reads 

or 

apov apoo apol apo2 apo3 
-- =-- +-- +-- +--axv axo ax 1 ax2 ax3 

1 (aEx aEy aEz) 1 = - - + - + - = - (V·E) 
c ax ay az c 

1 
V ·E= - p. 

Eo 

This, of course, is Gauss's law. If J-L = 1, we have 

Combining this with the corresponding results for J-L = 2 and J-L = 3 gives 

aE 
V x B = J-LoJ + J-LoEo - , at 

which is Ampere's law with Maxwell's correction. 
Meanwhile, the second equation in 12.127, with J-L = 0, becomes 
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On the other hand, t00 = t 11 = 0, while t 01 = -t10, so 

I'll let you work out the others-the complete set of transformation rules is 

j01 = 101, 

j23 = t23, 
j02 = y(t02- f3t12), 
j31 = y(t31 + f3t03), (12.118) 

These are precisely the rules we obtained on physical grounds for the electromag-
netic fields (Eq. 12.109)-in fact, we can construct the field tensor FJLv by direct 
comparison:25 

F 01 = Ex, F02 =- Ey, 03 Ez 12 31 23 F = - , F = B F = B F = B C C C - Z• - Y• - X• 

Written as an array, 

0 
-Exfc 
-Ey/c 
-Ezfc 

(12.119) 

Thus relativity completes and perfects the job begun by Oersted, combining the 
electric and magnetic fields into a single entity, FJLv. 

If you followed that argument with exquisite care, you may have noticed that 
there was a different way of imbedding E and B in an antisymmetric tensor: In-
stead of comparing the first line of Eq. 12.109 with the first line of Eq. 12.118, 
and the second with the second, we could relate the first line of Eq. 12.109 to the 
second line of Eq. 12.118, and vice versa. This leads to dual tensor, GJLv: 

(12.120) 

GJLv can be obtained directly from FJLv by the substitution Ejc -+ B, B-+ 
-Ejc. Notice that this operation leaves Eq. 12.109 unchanged-that's why both 
tensors generate the correct transformation rules for E and B. 

Problem 12.49 Work out the remaining five parts to Eq. 12.118. 

Problem 12.50 Prove that the symmetry (or antisymmetry) of a tensor is preserved 
by Lorentz transformation (that is: if t11-v is symmetric, show that [11-v is also sym-
metric, and likewise for antisymmetric ). 

25 Some authors prefer the convention F 01 =Ex, F 12 = cBz, and so on, and some use the opposite 
signs. Accordingly, most of the equations from here on will look a little different, depending on the 
text. 
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12.3 Relativistic Electrodynamics 

As for Maxwell's equations, they can be written 

apJLv 
-- = uoJIL axv fA' ' 

aGJLv 
-- =0 axv ' 

567 

(12.127) 

with summation over v implied. Each of these stands for four equations--one for 
every value of J-L. If J-L = 0, the first equation reads 

or 

apov apoo apol apo2 apo3 
-- =-- +-- +-- +--axv axo ax 1 ax2 ax3 

1 (aEx aEy aEz) 1 = - - + - + - = - (V·E) 
c ax ay az c 

1 
V ·E= - p. 

Eo 

This, of course, is Gauss's law. If J-L = 1, we have 

Combining this with the corresponding results for J-L = 2 and J-L = 3 gives 

aE 
V x B = J-LoJ + J-LoEo - , at 

which is Ampere's law with Maxwell's correction. 
Meanwhile, the second equation in 12.127, with J-L = 0, becomes 
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(the third of Maxwell's equations), whereas JL = 1 yields 

aa1v aG10 aG11 aG12 aG13 
-- = -- +-- +-- +--axv ax0 ax 1 ax2 ax3 

= aBx - aEz + aEy = (aB + v X E) = 0. 
c at c ay c az c at x 

So, combining this with the corresponding results for JL = 2 and JL = 3, 

aB 
V xE= - -

at' 
which is Faraday's law. In relativistic notation, then, Maxwell's four rather cum-
bersome equations reduce to two delightfully simple ones. 

In terms of FJLv and the proper velocity 17JL, the Mink:owski force on a charge 
q is given by 

(12.128) 

For if JL = 1, we have 

Kl = q1JvFlv = q( _ 11o plO + 17 1 p11 + 112 p12 + 1J3 F13) 

= q [ -c (-Ex)+ Uy (Bz) + Uz (-By)] 
y'1- u2 jc2 c y'1- u2 jc2 y'1- u2 jc2 

q [E+(uxB)]x, 
.j1- u2 jc2 

with a similar formula for JL = 2 and JL = 3. Thus, 

K = q [E + (u x B)], 
.j1- u2 jc2 

(12.129) 

and therefore, referring back to Eq. 12.69, 

F = q[E + (u x B)], 

which is the Lorentz force law. Equation 12.128, then, represents the Lorentz 
force law in relativistic notation. I'll leave for you the interpretation of the zeroth 
component (Prob. 12.55). 

Problem 12.53 Obtain the continuity equation (Eq. 12.126) directly from Maxwell's 
equations (Eq. 12.127). 

Problem 12.54 Show that the second equation in Eq. 12.127 can be expressed in 
terms of the field tensor p•v as follows: 

(12.130) 
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Lorentz	force	law
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terms of the field tensor p•v as follows: 

(12.130) 
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Problem 12.55 Work out, and interpret physically, the JL = 0 component of the 
electromagnetic force law, Eq. 12.128. 

12.3.5 • Relativistic Potentials 
From Chapter 10, we know that the electric and magnetic fields can be expressed 
in terms of a scalar potential V and a vector potential A: 

a A 
E=-VV-at, B=VxA. 

As you might guess, V and A together constitute a 4-vector: 

I Att = (V jc, Ax, Ay, Az)· I 

In terms of this 4-vector potential, the field tensor can be written 

(12.131) 

(12.132) 

(12.133) 

(Observe that the differentiation is with respect to the covariant vectors xtt and 
xv; remember, that changes the sign of the zeroth component: x0 = - x0 • See 
Prob. 12.56.) 

To check that Eq. 12.133 is equivalent to Eq. 12.131, let's evaluate a few terms 
explicitly. For J-t = 0, v = 1, 

01 aA1 aA0 aAx 1 av 
F = - - - =--- - --

axo ax1 a(ct) c ax 

= (aA + vv) 
c at x 

That (and its companions with v = 2 and v = 3) is the first equation in Eq. 12.131. 
For J-t = 1, v = 2, we get 

12 aA2 a A 1 aAy a Ax 
F = - - - = - - - = (V X A)z = Bz 

ax1 ax2 ax ay ' 

which (together with the corresponding results for F 23 and F 31 ) is the second 
equation in Eq. 12.131. 

The potential formulation automatically takes care of the homogeneous Max-
well equation (aGttv jaxv = 0). As for the inhomogeneous equation (aFttv jaxv = 
J-toftt), that becomes 

- -- - - -- - J-toltt a (aAv) a (aAtt) 
axtt axv axv axv - . (12.134) 
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- -- - - -- - J-toltt a (aAv) a (aAtt) 
axtt axv axv axv - . (12.134) 570 Chapter 12 Electrodynamics and Relativity 

This is an intractable equation as it stands. However, you will recall that the poten-
tials are not uniquely determined by the fields-in fact, it's clear from Eq. 12.133 
that you could add to Att the gradient of any scalar function A.: 

a .A Att ----+ AW = Att + --, 
axtt 

(12.135) 

without changing Fttv. This is precisely the gauge invariance we noted in 
Chapter 10; we can exploit it to simplify Eq. 12.134. In particular, the Lorenz 
gauge condition (Eq. 10.12) 

1 av 
V·A=---

c2 at 
becomes, in relativistic notation, 

aAtt 
- =0. axtt 

In the Lorenz gauge, therefore, Eq. 12.134 reduces to 

I 02 AM= -f.LoJM' 

where 0 2 is the d' Alembertian, 

2 a a 2 1 a2 
0 = -- =V - --. 

axv axv c2 at2 

(12.136) 

(12.137) 

(12.138) 

Equation 12.137 combines our previous results into a single 4-vector equation-it 
represents the most elegant formulation of Maxwell's equations.27 

Problem 12.56 You may have noticed that the four-dimensional gradient operator 
a;ax11 functions like a covariant 4-vector-in fact, it is often written aiL, for short. 
For instance, the continuity equation, aiL J IL = 0, has the form of an invariant product 
of two vectors. The corresponding contravariant gradient would be a11 = a;axw 
Prove that a11 ljJ is a (contravariant) 4-vector, if l/J is a scalar function, by working out 
its transformation law, using the chain rule. 

Problem 12.57 Show that the potential representation (Eq. 12.133) automatically 
satisfies aGILv jaxv = 0. [Suggestion: Use Prob. 12.54.] 

Problem 12.58 Show that the Lienard-Wiechert potentials (Eqs. 10.46 and 10.47) 
can be expressed in relativistic notation as 

27Incidentally, the Coulomb gauge is bad, from the point of view of relativity, because its defining 
condition, V · A = 0, is destroyed by Lorentz transformation. To restore this condition, it is necessary 
to perform an appropriate gauge transformation every time you go to a new inertial system, in addition 
to the Lorentz transformation itself. In this sense, AIL is not a true 4-vector, in the Coulomb gauge. 



Example:	Field	generated	by	a	moving	charge

O O’
v

t

x’

x

t’

u

u'

In	O’	the	particle	is	at	rest:


											 


																			

The	charge	is	assumed	to	sit	at	the	origin	of	O’.


E′￼=
q
r′￼3

(x′￼, y′￼, z′￼) r′￼= x′￼2 + y′￼2 + z′￼2

B′￼= 0

We	compute	the	fields	when	the	charge	passes	at	the	origin	of	O:		

Example:	Field	generated	by	a	moving	charge

O O’
v

t

x’

x

t’

u	=	v

u’	=	0







Bx = B′￼x

By = γ(B′￼y − βE′￼z /c)

Bz = γ(B′￼z − βE′￼y /c)







Bx = 0
By = − γvE′￼z /c2

Bz = γvE′￼y /c2







Ex = E′￼x

Ey = γ(E′￼y + vB′￼z)

Ez = γ(E′￼z − vB′￼y)







Ex = qx′￼/r′￼3 = γqx/r′￼3

Ey = γE′￼y = γqy/r′￼3

Ez = γE′￼z = γqz /r′￼3
E = γq(x, y, z)/r′￼3

B = v × E/c2

In	O:		 We	need	to	express	r’	in	terms	of	r:	



Example:	Field	generated	by	a	moving	charge
xWe	need	to	express	r’	in	terms	of	r:	

r′￼2 = γ2x2 + y2 + z2 =

= γ2r2 − (γ2 − 1)(y2 + z2) =

θ

= γ2r2[1 − (v2/c2)sin2 θ]

(y,z)

In	conclusion:

E =
qr

γ2r3[1 − (v2/c2)sin2 θ]3/2 B =
v × E

c2



Geometry	of	spacetime	-	vectors
We	have	to	define	the	length.	This	is	done	mathematically	by	defining	a	
metric	

An illustration comparing the
taxicab metric to the Euclidean
metric on the plane: According to
the taxicab metric the red, yellow,
and blue paths have the same
length (12). According to the
Euclidean metric, the green path
has length , and is
the unique shortest path.

Metric (mathematics)
In mathematics, a metric or distance function is a function
that defines a distance between each pair of point elements of a
set. A set with a metric is called a metric space.[1] A metric
induces a topology on a set, but not all topologies can be
generated by a metric. A topological space whose topology can be
described by a metric is called metrizable.

One important source of metrics in differential geometry are
metric tensors, bilinear forms that may be defined from the
tangent vectors of a differentiable manifold onto a scalar. A
metric tensor allows distances along curves to be determined
through integration, and thus determines a metric.

Definition
Notes
Examples
Equivalence of metrics
Metrics on vector spaces
Metrics on multisets
Generalized metrics

Extended metrics
Pseudometrics
Quasimetrics
Metametrics
Semimetrics
Premetrics
Pseudoquasimetrics
Important cases of generalized metrics

See also
Notes
References
External links

A metric on a set X is a function (called distance function or simply distance)

Contents

Definition

,

where  is the set of non-negative real numbers and for all , the following three
axioms are satisfied:

1. identity of indiscernibles
2. symmetry
3. subadditivity or triangle inequality

These axioms also imply the non-negativity or separation condition:

 for all 

Namely, applying axioms 1, 3, and 2 in that order yields 
 which implies .

Non-negativity and axiom 1 together define what is called a positive-definite function.

A metric is called an ultrametric if it satisfies the following stronger version of the triangle
inequality where points can never fall 'between' other points:

for all 

A metric d on X is called intrinsic if any two points x and y in X can be joined by a curve with
length arbitrarily close to d(x, y).

A metric d on a group G (written multiplicatively) is said to be left-invariant (resp. right
invariant) if we have

 [resp. ]

for all x, y, and z in G.

These conditions express intuitive notions about the concept of distance. For example, that the
distance between distinct points is positive and the distance from x to y is the same as the distance
from y to x. The triangle inequality means that the distance from x to z via y is at least as great as
from x to z directly. Euclid in his work stated that the shortest distance between two points is a
line; that was the triangle inequality for his geometry.

The discrete metric: if x = y then d(x,y) = 0. Otherwise, d(x,y) = 1.
The Euclidean metric is translation and rotation invariant.
The taxicab metric is translation invariant.
More generally, any metric induced by a norm is translation invariant.
If  is a sequence of seminorms defining a (locally convex) topological vector space E,

Notes

Examples

Geometry	of	spacetime	-	vectors
Relation	between	metric	and	norm	in	a	vector	space

Given a normed vector space  we can define a metric on X by

.

The metric d is said to be induced by the norm .

Conversely if a metric d on a vector space X satisfies the properties

 (translation invariance)
 (homogeneity)

then we can define a norm on X by

Similarly, a seminorm induces a pseudometric (see below), and a homogeneous, translation
invariant pseudometric induces a seminorm.

We can generalize the notion of a metric from a distance between two elements to a distance
between two nonempty finite multisets of elements. A multiset is a generalization of the notion of a
set such that an element can occur more than once. Define  if  is the multiset consisting
of the elements of the multisets  and , that is, if  occurs once in  and once in  then it occurs
twice in . A distance function  on the set of nonempty finite multisets is a metric[2] if

1.  if all elements of  are equal and  otherwise (positive definiteness), that
is, (non-negativity plus identity of indiscernibles)

2.  is invariant under all permutations of  (symmetry)
3.  (triangle inequality)

Note that the familiar metric between two elements results if the multiset  has two elements in 1
and 2 and the multisets  have one element each in 3. For instance if  consists of two
occurrences of , then  according to 1.

A simple example is the set of all nonempty finite multisets  of integers with 
. More complex examples are information distance

in multisets;[2] and normalized compression distance (NCD) in multisets.[3]

There are numerous ways of relaxing the axioms of metrics, giving rise to various notions of
generalized metric spaces. These generalizations can also be combined. The terminology used to
describe them is not completely standardized. Most notably, in functional analysis pseudometrics
often come from seminorms on vector spaces, and so it is natural to call them "semimetrics". This
conflicts with the use of the term in topology.

Metrics on multisets

Generalized metrics

Extended metrics



Geometry	of	spacetime	-	vectors

In	an	Euclidean	space,	the	norm	is	defined	as	follows:

Illustration for n=3, repeated application of the
Pythagorean theorem yields the formula

Euclidean distance
In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" straight-line distance
between two points in Euclidean space. With this distance, Euclidean space becomes a metric space. The
associated norm is called the Euclidean norm. Older literature refers to the metric as the Pythagorean
metric. A generalized term for the Euclidean norm is the L2 norm or L2 distance.

Definition
One dimension
Two dimensions
Three dimensions
n dimensions

Squared Euclidean distance
Applied Examples

See also
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The Euclidean distance between points p and q is the length of the line segment connecting them (denoted [1]).

In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points in Euclidean n-space, then the Euclidean distance (d) from p to q, or from
q to p, is given by the Pythagorean formula:[2][3]

  (1)

The position of a point in a Euclidean n-space is a Euclidean vector. Hence p and q may be represented as Euclidean vectors, starting from the origin of the
space (initial point) with their tips (terminal points) ending at the two points. The Euclidean norm (a.k.a, Euclidean length), or the magnitude of a
vector, measures the length of the vector:[2]

where the last expression involves the dot product.

When the vector described as a directed line segment from the origin of the Euclidean space (vector tail) to a point in that space (vector tip), its length is
actually the distance from its tail to its tip. The Euclidean norm of a vector is seen to be just the Euclidean distance between its tail and its tip.

The relationship between points p and q may involve a direction (for example, from p to q), and when it does, this relationship can itself be represented by a
vector, given by

In a two- or three-dimensional space (n = 2, 3), this can be visually represented as an arrow from p to q. In any space, it can be regarded as the position of q
relative to p. It may also be called a displacement vector, if p and q represent two positions of some moving point.

The Euclidean distance between p and q is just the Euclidean length of this displacement vector:

  (2)

which is equivalent to equation 1, and also to:

In the context of Euclidean geometry, a metric is established in one dimension by fixing two points on a line, and choosing one to be the origin. The length of
the line segment between these points defines the unit of distance, and the direction from the origin to the second point is defined as the positive direction.
This line segment may be translated along the line to build longer segments, whose lengths correspond to multiples of the unit distance. In this manner, real
numbers can be associated to points on the line (as the distance from the origin to the point), and these are the Cartesian coordinates of the points on what
may now be called the real line. An alternate way to establish the metric, instead of choosing two points on the line, is to choose one point to be the origin, a
unit of length, and a direction along the line to call positive. The second point is then uniquely determined, as the point on the line that is at a distance of one
positive unit from the origin.
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Definition

One dimension

And	the	scalar	product	is	defined	as	

p ⋅ q = p1q1 + p2q2 + … + pnqn


