
Bell’s theorem

Setting
Let us consider two 1/2-spin particles.

Two separated particles, upon which spin measurements can be 
performed.


a and b are the two directions of spin-measurement

A and B are the two outcomes, which can be either Y or N (up and 
down; + or - …)


Any theory of nature must accommodate this setting, otherwise it is 
not a theory of nature, since such a situation occurs in nature.

(A, a) (B, b)



Setting
p(A, B |a, b, λ)

This is the probability that in a measurement of spin of the left particle along 
direction a the outcome is A, and in a measurement of spin of the right 
particle along direction b the outcome is B. (p can also be 0 or 1, if the 
theory is deterministic)


 is the state of the two-particle system.


Classical mechanics:  = positions and momenta of the particles

Quantum mechanics:  = wave function

Bohmian mechanics:  = wave function and positions of the particles


We are not committing to any specific theory
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Setting
We also define

  = same as before, but with no measurement B

  = same as before, but with no measurement A

p(A |a, λ)
p(B |b, λ)

The definition of conditional probability implies:

p(A, B |a, b, λ) = p(A |B, a, b, λ) ⋅ p(B |a, b, λ)



Bell’s locality

p(A |B, a, b, λ) = p(A |a, λ)

When the two measurements are space-like separated from each 
other, what happens on one side cannot influence the other side.


Together with the rules of conditional probability, locality implies 

A B p(B |A, a, b, λ) = p(B |b, λ)

p(A, B |a, b, λ) = p(A |a, λ) ⋅ p(B |b, λ)

The theorem

Eλ(a, b) = p(Y, Y |a, b, λ) + p(N, N |a, b, λ) − p(Y, N |a, b, λ) − p(N, Y |a, b, λ)

Define:

Sum of agreements minus sun of disagreements.


Then, using Bell’s locality condition:

Eλ(a, b) = [p(Y |a, λ) − p(N |a, λ)][p(Y |b, λ) − p(N |b, λ)]

And:

Eλ(a, b) − Eλ(a, d) = [p(Y |a, λ) − p(N |a, λ)][(p(Y |b, λ) − p(N |b, λ)) − (p(Y |d, λ) − p(N |d, λ))]



The theorem

= 1 − 2p(N |a, λ) ∈ [−1, + 1]

|Eλ(a, b) − Eλ(a, d) | ≤ | (p(Y |b, λ) − p(N |b, λ)) − (p(Y |d, λ) − p(N |d, λ)) |

Therefore:

|Eλ(c, b) + Eλ(c, d) | ≤ | (p(Y |b, λ) − p(N |b, λ)) + (p(Y |d, λ) − p(N |d, λ)) |

r s

r s

Eλ(a, b) − Eλ(a, d) = [p(Y |a, λ) − p(N |a, λ)][(p(Y |b, λ) − p(N |b, λ)) − (p(Y |d, λ) − p(N |d, λ))]

The theorem
|Eλ(a, b) − Eλ(a, d) | + |Eλ(c, b) + Eλ(c, d) | ≤ |r − s | + |r + s |

So:

Taking the square we have:

[ |r − s | + |r + s | ]2 = 2r2 + 2s2 + 2 |r2 − s2 |

which is either equal to  or to ; in either case, it is less than or equal 
to 4, since . So:

4r2 4s2

r, s ∈ [−1, + 1]

|r − s | + |r + s | ≤ 2



The theorem
|Eλ(a, b) − Eλ(a, d) | + |Eλ(c, b) + Eλ(c, d) | ≤ 2

So we end up with:

This is Bell’s inequality, which is the direct consequence of Bell’s locality 
condition alone

|Eλ(a, b) − Eλ(a, d) | + |Eλ(c, b) + Eλ(c, d) | ≤ 2

p(A, B |a, b, λ) = p(A |a, λ) ⋅ p(B |b, λ)

The testability
Problem: not always we have full control of the state of the system ( ). 
Therefore the above inequalities are not always testable.


Solution:

, where  are controllable and  are uncontrollable degrees of 

freedom

λ

λ = (μ, ν) μ ν

Eμ(a, b) = ∫ E(μ,ν)(a, b)ρ(ν)dν

Probability distribution; it reflects our ignorance 

This is a physically measurable quantity

|Eλ(a, b) − Eλ(a, d) | + |Eλ(c, b) + Eλ(c, d) | ≤ 2



The testability
Then:

|Eμ(a, b) − Eμ(a, d) | + |Eμ(c, b) + Eμ(c, d) | ≤

≤ ∫ dνρ(ν)[ |E(μ,ν)(a, b) − E(μ,ν)(a, d) | + |E(μ,ν)(c, b) + E(μ,ν)(c, d) |]

≤ 2∫ dνρ(ν) = 2

The inequality still holds.

Application to QM
Let us consider a singlet state:

|ψ⟩ =
1

2
[ | ↑ ↓ ⟩ − | ↓ ↑ ⟩]

This state is rotationally invariant, so the spin relation above holds for any 
direction.

pAB
λ (a, b |Y, Y ) = pAB

λ (a, b |N, N ) =
1
2

sin2 θa,b

2

pAB
λ (a, b |Y, N ) = pAB

λ (a, b |N, Y ) =
1
2

cos2 θa,b

2

Then:   EAB
λ (a, b) = − cos θa,b



Application to QM
Then:

The inequality is violated. QM is nonlocal

|Eλ(a, b) − Eλ(a, d) | + |Eλ(c, b) + Eλ(c, d) | =

= |cos θa,b − cos θa,d | + |cos θc,b + cos θc,d |
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= 2 2 ≥ 2

Let us choose the four angles as in the picture

Nonlocality in QM
Where is the source of the nonlocality in QM?

Let is go back to the singlet state

Also the state of the other particles has changed, no matter how far it is. 
This is the source on nonlocality.

A makes a measurement along the direction a. With probability 1/2 the 
outcome is Y and the state changes to 

|ψ⟩ =
1

2
[ | ↑ ↓ ⟩ − | ↓ ↑ ⟩]

|ψ⟩ =
1

2
[ | ↑ ↓ ⟩ − | ↓ ↑ ⟩] ⟶ | ↑a ↓a ⟩
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