1  Schrodinger equations

For uy € S'(R?, C) the linear homogeneous Schrédinger equation is

iug + Au=0,u(0,z) = up(x). (1.1)

By applying F we transform the above problem into

at"i_l’g‘Qa: 0, a(()?g) :’170(6)

d iz|?

This yields (t,&) = e P G,(¢). We have e " = G(t,€) with G(t,2) = (2ti) 2e 1 .
This follows from the following generalization of (?7?) for Rez > 0

_ole2 _d iy 122
e 2 = (27z) 2/ e e 2 .
Rd

This formula follows from the fact that both sides are holomorphic in Re z > 0 and coincide
for z € Ry. Then taking the limit z — 2i for Rez > 0 and using the continuity of F in
S'(R4,C) we get

i|z|2
e P = (47ri)_g/ e 6w gy
R4
Then u(t,z) = (271)_%G(t, ) * ug(z). In particular, for ug € LP(R?,C) for p € [1,2] and by
Reisz’s interpolation defines for any ¢ > 0 an operator which we denote by
ile—y|?

Plug(a) = ity E [ )y (1.2)
R4

which is s.t. €'®f : LP(R?,C) — LP'(RY,C) for p € [1,2] and p’ = ;27 with ||e®fug| ,r <

1 1
(47rt)_d(5_?) ||uo||z» by Riesz interpolation.
Remark 1.1. Notice that for no p # gmaalrﬁge > 0 we have that e'©! defines a bounded
operator LP(R?, C) — LP(R?,C), see ST,
Remark 1.2. Notice that et : LP(R?) — LI(R%) is a bounded operator for all 1 < p < ¢ <
0.
Notice that (1.1) is time reversible. and if u(t, ) = e®tug(x), then v(t, z) = u(—t,z) =
“g(x) is a solution. A
Let now u(t, z) = e®ug(x), and for v, D € R? consider vo(x) = €' “ug(z — D). Then

eiA

2

v(t, x) = ePlyg(x) = eév'z*ivftu(t, x—tv—D).

In the sequel, given v, w € L*(R% C) we will use the notation

(v,w) = Re /Rd v(z)w(x)dx. (1.3) ’eq:scalar_Sch
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rem:admiss

thm:strich

Strichartz

In the sequel we will reinterpret the equation

iug + Au=f, u(0)=uge H (R (1.4)

in the integral form
t
u(t) — eltAuO o 1/ el(t_t/)Af(t/)dt/. (15)
0

To understand this formula we will need Strichartz’s inequalities.
We say that a pair (g, r) is admissible when

2 d d
—+—-=- (1.6) ’admissiblepairl‘
q r 2
2d . .
2<r< 73 2<r<wifd=12<r<ocifd=2). (1.7) ’admissiblepairz‘

Remark 1.3. The pair (00,2) is always admissible. The endpoint (2, 2) is admissible

d—
for d > 3 but the point (2, 00) is not for d = 2. The equality (1.6) needs to be true by the
parabolic scaling u(t, z) ~ u(\?t, A\z), which preserves the set of solutions to (1.1).

We have the following important result.
Theorem 1.4 (Strichartz’s estimates). The following facts hold.

(1) For every uy € L*(R?) we have ¢®tuy € LI(R, L (R?)) N CO(R, L*(RY)) for every
admissible (q,r). Furthermore, there exists a C' s.t.

||€iAtU0”Lq(R,U(Rd)) < Clluol| 2 (1.8)

(2) Let I be an interval and letty € 1. If (v, p) is an admissible pair and f € LY (I, L” (R%))
then for any admissible pair (q,r) the function

Tf(t) = / 00 f(s)ds (1.9)

to

belongs to LI(I, L™ (R%))NCO(I, L2(R?)) and there exists a constant C independent of
I and f s.t.
1T Flpaqr,eray) < ClFl L 1, Lo ey (1.10)

2 Keel and Tao’s proof of Strichartz estimates

-Tao
We will follow the argument by Keel and Tao { - We will assume that (X,dz) is a
measurable space and that H is a Hilbert space. We consider a family of operators
U(t): H— L*(X). We assume the following two hypotheses.



:taostrich

(1) There exists a C' > 0 s.t.

U@ fllrz < Cllf|lar for all f € H;
(2) there exist a 0 > 0 and a C' > 0 s.t. for all ¢ # s and all g € L'(X) we have
IU@)(U(s)) gllzee < Clt = s]7|gll 1
We say that a pair (q,r) is o—admissible when

2 20
_i_i

=0
q T (2.1) ’ sigadmissiblepair

r,q > 2 and (q,7,0) # (2,00,1).

20
o—1)"
Notice that (1) implies ||U*(t)F|[z2 < C|[F|[z2 by duality and that (U(t)h, f)2x) =

(h, (U@®)* fhy

Theorem 2.1 (Keel and Tao’s Strichartz estimates). If U(t) satisfies (1) and (2), and if
furthermore there exists an appropriate scaling operator in X and H, then we have

Particularly important, for o > 1 , is the point P = ( 2,

(3)
U (@) uoll Lar,zr(x)) < Coprlluoll -
(4)
| /R(U(S))*F(S)dSHH S CIF Lot g 1 (x))-
(5)

| [ U@ ) F()ds] w0y < Conarl Fllm ooy

t>s
for all admissible pairs (q,r) and (q,7).

(3) is called the homogeneous estimate and (5) the non-homogeneous estimate or also
the retarded estimate. (3) and (4) are equivalent by duality. The scaling operators are used
only in Sect. 2.2.

!Notice that since h — (U(t)h, f)r2(x) is continuous, an element f* € H remains defined such that
(U@, fyr2(xy = (hy [*) - The map f — f* is linear, bounded and (U(¢))"f := f".



onendpoint

2.1 Proof of the nonendpoint homogeneous estimate

We consider the case (¢,7) # P. The proof of this case predates the paper by Keel and
Tao.
It is elementary that (4) is equivalent to

/RQ (U ()" F(s), (U(£))*G(t)) y dtds

(indeed, if T': X — H is an operator from a Banach space X to a Hilbert space H, we have
|Tz||g < Cllz||x for all z € X if and only if | (T, Ty) ;| < C?||z| x|yl x for all z,y € X).
So we have to prove the above estimate. Furthermore, it is enough to prove the above
bound for

< CHFHLq’(R,Lr’(X))”GHLq’(R,Lr’(X))-

T(F,G) = / (U(s))*F(s), (U())*G()),; dtds. (2.2)

t>s
By (1) we know that (3) holds for ¢ = co and r = 2. So pointwise

(U ()" F(s), (U#)*G(#)) | = ‘<U(t)(U(3))*F(5)7G(t)>L2(X)‘

< NU@U () F(s)ll2x) 1G ) 2x) < CPIF ()| 2x) |G ()] 2 x) -
Furthermore
(W) F(s), (U C0) ] = [T U 6) F (), G o | < I0ET ) FS) e[GO )
< Clt—=s| 77 F ()l IG® L x)-

From the Riesz—Thorin Interpolation Theorem, see Theorem ?7?, we have (omitting the
constant) for any r € 2, o0]

* —o(1-2 —1-8(r,r
[T UE) Gl S 16— s DNEE) ) = I 520 B
where B(r,7) =0 —1— 7_
r

=9

Then we conclude

(U() (), UE) G gl S It = s NE() | o i) IGO 1 x0)-

Then for % — % = —f(r,r), using the Hardy,Littlewood Sobolev inequality, see Theorem 77

, which requires ¢ > ¢/,

TGS /R ¢ — 8|7 PEDNE ) oy dslla@) |Gl o g,z (x0) S IE o vt (ep 1 | o g, )y

Notice that % - % = —f(r,r) means
1—g:fa+1+2g<:>g+2ﬁzo
q r q r
and —S(r,r) > 0 means
r< 20 .
oc—1
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2.2 Proof of the endpoint homogeneous estimate

c:endpoint

Here we consider the endpoint case (¢,7) = P = (2, %), when o > 1.

The introduction of a scaling operator will simplify considerably the discussion. We
will denote it by D) for A > 0. We assume the following:
1. there exist operators Dy : H — H s.t. (Daf,Dxg)y =A"7(f,9)y
2. there exist operators Dy : L"(X) = L"(X) s.t | Dxfllzrx) = A7 | fllrx)
3. in all cases Dy' = Dy-1 and D} = A™7Dy 1.

Notice that for o = g, H = L?(R?%) and X = R? with L"(X) the standard Lebesgue spaces,

then Dy f(x) := f ()\%a:) satisfies the desired requirements. Notice that we used the same
notation for dilation operators in H and L"(X), but they are distinct operators.

Lemma 2.2. Let the function t — U(t) satisfy (1) and (2) in Sect. 2. Then t —
D)\U(Xt)Dy-1 satisfies (1) and (2) in Sect. 2 with exactly the same constants C'.

Proof. Indeed
IDAUA) Dy £l 2 = A3 [UA) Dy-1 fll 12 < CX"3|[Dy-1 fll = Cllf |
and from (D \U(As)Dy-1)* = Dx(U(As))*Dy-1,

[IDAUA) Dy-1(DAU(As) Dy-1)" f || oo [ DAU (M) (U (As))" Dx-1 f | os
= [[UA)(UAs))" Dy-1 fllee < CATft = s["|[Dy-1 fllr = Clt = [~ f| 1

O
After the above preliminary on scaling operators, expand
T(F,G) = 3. T5(F, G) where Tj(F, G) = / (U () F(s), (U(1)* (L)) 5y dtds.
t—29>s>t—27+1

JEZL

23
D ATE O S IF g2 1Gl 2 (2.4)

JEZ.

We will prove

We will prove the following.
n:keel 4.1| Lemma 2.3. For a fized constant C' dependent only on the constants in (1) —(2) Sect. 2.

we have

ITH(F,G)| < C2 IO oo |Gl oo (25
with (1/a,1/b) in a sufficiently small, but fixed neighborhood of (1/r,1/r), dependent only
ono.



Proof. Notice that
T;(F.G) = / | ~ {(U())"F(s), (U(t)"G(t))  dtds
t—27>s>t—27+1
= 9%igjo / (Do; (U(275))* Dy Do; F(275), Dy (U(271))* Dy—3 Doy G(27t) ) ,, dtds.
t—1>s5>t—-2
Suppose now that we have (2.4) in the particular case j = 0. Then we have

IT;(F, G)| < C2%2% || Dy F(25)|| 12 o [| Doy G(270) | 2y = C25297 2790+ TFT) | F|| Lt |Gl o o
= Czj(2+a_1_20+5+3> ”F||L2La’ HGHL2Lb’ = CQj(l_U+E+3)||FHL2La’ HG||L2Lb’ = szjﬁ(a’b)HFHL%u’ ”GHL2Lb’

where we recall §(a,b) =0 —1—-2 — 7.
So we have reduced to the case j = 0. Next we do another reduction. We claim that to
prove the case 7 = 0 it is enough to assume that F' and G are supported in time intervals

of length 1. Indeed, assuming this case, then we have

e[ w [ () FE)L O 0) G0}y ds

nel

1
2
< C E HFHLQ( n,n+1),Le HGHLQ( (n—2,n),L%) < C <: :HF”LQ((n n+1),L ) (Z ”GHL2 (n—2,n), e )

neL neZ neZ

[N

‘”(Z”F” ) (ZHGllmlm) = OVl o [

neZ nez

Hence, in the rest of the proof we will assume that F' and G are supported in time intervals
of length 1. To prove (2.5) for j = 0 we consider three cases:

(i) a=b=ox;
(ii) 2<a<rand b=2
(ili) a=2and 2 < b < 7.

Then the desired result follows by interpolation.
Let us start with (i). The proof is elementary and straightforward, because we have

To(F,G)) < / di / WO ). C0) e i

<c / dt / it — s IF) | IGE) 11 < C / dat / 1 ()0 |G(0)]] 5
t—1>s>t—2 t—1>s>t—2
< C|F|\\pipGllpipr £ C\Flp2p1 |Gl p2pr-



Let us now consider (ii). Here we will use the Strichartz estimates in Sect. 2.1. We have

|To(F,G)| < / | </t_1> >t_2(U(s))*F(s)ds, (U(t))*G(t)> |dt

9l H

<o)

U @) G )| dt
H

[ 1w®)y 6@ ud
H

/ (U(s))" F(s)ds
t—1>s5>t—2

t

/ (U(s))" F(s)ds
t—1>s>t—2

)

< ClGllpse sup‘
t H

/ (U ()" F(s)ds
t—1>s>t—2

where we used (1) in Sect. 2. Now, using the non endpoint Strichartz estimates in Sect.
2.1 (notice here 2 < a < r) we have, for (¢(a),a) admissible,

/ (U(s))" F(s)ds
t—1>s>t—2

This proves (ii) and by symmetry yields also (iii). O
Now we need to show that (2.5) implies (2.4). Obviously, we cannot just take a = b =r
and sum up, since (r,r) = 0. To give an intuition on how to overcome this problem, Keel

and Tao consider functions of the form
9(8)X 35 (1), (2.6)

with scalar functions f(t), g(s) and E(t) resp. E(s) sets of size 2¥ resp. ok Applying (2.5)
we obtain

< CHFHLq(a)’La’ < CHFHL?La"

sup ’

t H

B

k

F(t) =277 f(t)xpw(z) and G(s) =27+

IT;(F,G)| < C27 (o152 8) 27720277 257 || £ 12l 2
N_k_k

JOA=E=E | ) 2l 2

= 029 (F =G0 1l 22 g 2

G lCa T PATET 1S (27)

Notice now that we can adjust (a,b) s.t. for a fixed small € > 0 the last term equals
2 et=ao=elsel ) 2 g o (2.8)
whose sum for j € Z is finite.

To convert the above intuition in a proof we consider the following preliminary lemma.

n:keel 5.1| Lemma 2.4. Let p € (0,00). Then any f € LL can be written as

F=> cx

kEZ

Il
Q
[\
.
—
x‘q“
|
2
|
SIS}
N—
[\
L
Ed
+
=
N
/-\
\T\
S =

— Cg(k—ja)(

k 1
where meas(suppxr) < 2 2%, |xx| <27 and |kl < 27 || f]|Le-



Proof. Consider the distribution function A(«) = meas({|f(z)] > «}). Then for each k
consider

1

k
Qp 1= )\(élr)lEZka, Ck = 2pak7 Xk = aX(akH,ak}(‘f‘)f

Notice that {ay}rez is decreasing in k (since, the larger k, the larger is the set {a: M) <

2F1),

We show the desired properties. We have
suppxx € {2 : ap1 <[f(2)] < or} S{z: [f(@)] > apqa}
Then we get the 1st inequality:

meas(suppxx) < meas({z : |f(x)] > ar11}) = lini AMa) = sup{A(a) : a > appq}) < 28FL

a—)ak+1

Next, by |f(z)| < aj, in suppxk, we have
i |f(@)]

893

hSAES

Ixk(z)] <2 <2

Let now lim o« = inf ap = @ and lim «; = sup o = @. Then we claim that ¢ = 0 and
k—-+o00 keZ k——o0 kEZ

that |f(x)] < @ a.e. Indeed, suppose that |f(x)| > @ on a set of positive measure. There
there is o > @ with A(a) > 2% for some k € Z. Then oy, > a > @, which is a contradiction.
On the other hand, suppose we have 0 < a < . Then \(a) = oo, since otherwise A(a) < 2¥
for a k, and then a > ap > a > «, getting a contradiction. But by Chebyshev’s inequality,

00 > [|f[I7 = o’ Ae),

hence getting a contradiction. The above claim and the obvious fact that for any x we
have |f(z)| € (ag41, 0] for at most one k, prove f = ZCka (the claim guarantees the

kEZ
existence of one such k).

1
We have || f||z» < 27||ck|ler by

172, = / fPde = / S (sl = 3 Jewl? / ulPde < 3 JexlP2 Fmeas(suppx)

keZ keZ keZ
<2 el
kez

Next we have

Z lex|P = Z2kai = /

kcz kez Ry

aP (Z 2k5(a — ak)> do = / o (—F'(a))da

R+



:keel 5.1b

where

Fla):=> 2"H(ap—a)= » 2"< Z 2 < 2\ (ax

kEZ ap>a 2k <\«

Then, integrating by parts and using (?7),

S ekl =p / P F(a)da < 2p / P \(@)da = 2 |2,

keZ R+

1
so that gl < 27 |1f]11s.
O
Furthermore we have the following.

Lemma 2.5. Let 1 < q,r < oo and let f € L1, L) with I an interval. Then we can write
the expansion of Lemma 2.4

F=>art)x(t) (2.9)

keZ
with t — {cx(t)} a map in LI(I1, 7).

Proof. Formally this follows immediately from

Ier(®Hlzarery = H{ex@® e lay < 22 Ml Nzocr.

However one needs to argue that the function ¢ — {ck(t)} is measurable. By a density

argument it is enough to consider the case of simple functions f = Z X, (t)gj(x) with
Jj=1,..,n

E; mutually disjoints sets. Then (¢, «) = meas({|f(¢,z)| > a}) = Z XE; (t)Aj(a) with
j717 7

Aj the distribution function of g;. Then ay(t) = >2;_;  , XE (t)oag) with a,(c 7 defined like

in Lemma 2.4 for each g;. Then

. . E .
{a®y= Y xi; () {eV} for &) = 2000,

j=1l,...n
This is measurable in .
O
Consider now the
F(t) = filt)xe(t), G(s)=)_ gu(s)Xu(s). (2.10)
keZ keZ

|lem:keel 5.1b1




By (2.6)—(2.8) e have

Z T;(F,G)| < Z T (freXrs 95 X7)] < CZ gelk—jol—| JJ’kaHLng};HLf
J jikk jikk

=0 [ ST aEteiel=el el )y e gz -
kk J
We claim that for a fixed C' = C(o,¢)

3 gelk—iolelhiol < comeltFl(1 4 |k — R)). (2.11)

J

To prove this inequality, it is not restrictive to assume k& < k. Then the summation on the
left can be rewritten as

Z 92ejo—e(k+k) + Z 9—e(k—k) i Z o (k+k)—2ejo

jo<k k<jo<k k<jo

Then (here [t] € Z is the integer part of ¢ € R, defined by [t] <t < [t] + 1)

Z 226ja—€(k+E) — 2—5(k+E) Z 92ejo _ 2—5(19—&-%) 22250([5]73') =C.y 275(k+75)+25cr[§]
i =n =

1

_ s k (b —elk—F
< 0602 e(ktk)+2e0; _ 060_2 e(k—k) _ 0602 elk—k| where ng — 1_27—250-'

We have

3 oe(k-+R)=2ejo o ge(k+) S g o oe(b®) N~ g=2e0 ([ E]4145) _ 06025(16%)7250([5]“)

I~

E<j0’ JZ[%] +1 7=0
< 08025(k+};)*250§ - Cgazfs@;k) — 050278“67%‘-
Finally
Z 2—€(E—k) — 2—5(%—]4) Z 1= 2—6(E—k) E _ ﬁ 1) < 0__12_6('];_@ (E B k;)
~ - pu p <
k<josk [§]+1§ja§[§]
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Hence (2.11) is proved. From this we conclude that for a fixed C'

S IT(FG) < O3 2 H A+ o — B fel 2 92
J k.k

< ClHIal 2 e D22 H + 1k = kDllggll 2}
k 2(7)

=C (Z 271+ Ik!)> Ikl 22 Hle2(zy {1l g% 1| 2 o2z
k

where we used Lemma ?7. So, using r’ < 2,

Y ITEG) < CH{Ifillz e gl 2 e = ClIHe@ iz g e
j
< NI fwHle 2y N9 e 2yl 2z < CPINEN g 2 G 1l

which completes the proof of (2.4).

2.3  Proof of the non homogeneous estimate

ec:non hom

We need to prove that for all admissible pairs (g, ) and (g,7) we have

T(F,G)| < Cq,r,&,?”FHLq’(R,Lr’(X))HG||L§’(R,LF’(X))- (2.12)

We have already proved that this is true for (¢, ) = (¢, 7). Furthermore, proceeding like in

Lemma 2.3
1(7,.6)| < [ \< >S<U<s>>*F(s>ds, <U<t>>*G<t>>H\ d
< [1 [ @@ Feastul @) collud < swl [ @)y FEdsln [ 10060l

< CIGl 25w | / (U(s))" F(s)dsl .
>s

Then, by (4) in Theorem 2.1 (that is the dual homogenous estimates, which are already
proved) for any admissible pair (g, r)

sup | t (U(s))"F(s)ds||rr = sup | A(U(S))*F(S)X(—w,t>(S)dSHH < ClEX(—ootll o @,y < ClIFl L .1y
>s

So (2.12) holds for (g,7) = (00, 2) and any admissible pair (g, ). Obviously, symmetrically
(2.12) holds for (g,r) = (00,2) and any admissible pair (¢g,7). Finally, let us consider (g, r)

11



and (g,7) not in one of the cases already covered. Then it is not restrictive to assume that
(¢,7) = (agy, by,) for to € (0,1) where

o) =+ G7) o0 (2)

In the cases t = 0,1 the inequality holds, because these are cases considered above. By a
generalization of Riesz—Thorin, Theorem 7?7, the inequality holds also for the intermediate
t’s. O

3 The semilinear Schrodinger equation

There is a vast literature on semilinear Schrédinger equations. For a survey, with a concise
discussion of some physical motivations, we refer to . Here though, we consider only the
mathematical formalism and only the pure power semilinear Schrédinger equations

{iut —Au + MulP~lu for (t,7) € [0,00) x R?

u(0, )_uol(tg; ’ (3.1)

for A € R\{0} and p > 1. Here p < d* with d* = oo for d = 1,2 and d* = 42 for d > 3.
We collect here a number of facts needed later.

Lemma 3.1. We have the following facts.

(1) For 1 < p < d* we have the Gagliardo—Nirenberg inequality:

1
[ull o1 ray < Cpl|Vull 72 Rd)HuHL2 (R4) for i1 2

1 Q
Hoimg 62
(2) The map u — |u[P~ u is a locally Lipschitz from H'(RY) to H—'(R?).

2
(3) For v € WHPHL(R?, C) we have V(|uP~ u) = plulP'Vu + (p — 1)|ulP~? (u) Vu
and belonging to L5 (Rd C).

Proof. For (1) see Theorem ?7.
We turn (2). By (3.2) we know that v — |u[P"'u maps H'(RY) — LPTY(R?) —

L' ; (]Rd) Furthermore this map is locally Lipschitz:
"~ 1 — \U\p_lvH per < O (JulP ™ + o) (u — QI

< C'(llullfpn + Hvllml)llu o]l pp1

12



where we have used, for w = v — u,

1

d

\u|p—1u—|u\p—1v:/ (ot (4 1) di =
0

1 1 1
d p=1
/ lu 4 tw[P~ dtw + / (u+ tw)% ((ur +tw1)? + (up + two)?) T gt = / lu 4 tw[P~ dtw+
0 0 0
2 1 _
p—1 2 N
Z ; (u+ tw)T ((u1 + twi)” + (ug + twa)?) 2 2(uj + tw;)dtw,
j=1

which from |u + tw| < |u| + |v| for t € [0,1] and

—_ p—3

1 —
(u+tw) P ((wn + twn)” + (2 + t02)?) 7 2(y + twy)wy| < (p— Dl + toof " fu

yields
[P~ — JolP o] < p(ful + [0))P7Hu = o] < p2P7H (a0 |u - o],
where in the last step we used, for |u| > |v],
(Jul + Jol)P~t < 227 HufP~h < 227 (fufP~h o o).

Next, we show that we have an embedding L (RY) — H~Y(R?). Indeed, this is equivalent
to HY(R?) — LPTY(R?) with in turn is a consequence of (3.2).

We turn (3). First of all we claim that if G € C'(C,C) with G(0) = 0 and |VG| <
M < oo, then V(G(u)) = 0,G(u)Vu + 9gG(u)Vu in the sense of distributions. This claim
can be proved like Proposition 9.5 in [2] and we skip the proof here.
Let us now consider an increasing function g € C*° (R, R) s.t.

sTl for0<s<1

p—1
272 for s > 2

m2

C>®(R4,C) and all u € WHPTL(R? C) we have

and let us define G,,(u) = mP~1g ('“‘2) u for m € N. Then, by the claim, for all ¢ €

_ / G (1) D0 = / (0uGirn () + BuCin (1)057) . (3.3) [oq-chain a1

Let us take now the limit for m — co. We have

/ Gon(u) Dyp = / P~ B0 — / P~ B + / Gon(u) Dy,
|u|>m [u|>m

13



functional

Now we have

/ lulP~1u 9, e %% 0 by Dominated Convergence
|lu|>m
since X {ju|>m} () 7% 0 ae. by Chebyshev’s inequality. Similarly

[ Gnwog)< [ (Gutw el <2 [l oyl
lu|>m |u|>m |u|>m

— —
< 2P 1/|> [ulP|0;p] —— 20
ul>m

Next, we consider the limit of the r.h.s. of (3.3). For G(u) = |u|P~!u we have
/ (G ()51 + DG (1)O57) 9 / (0,G (w);u + 9aG (u);7)
- / (0uG(uw)Oju + OaG(u)d5u) ¢ + / (0uGin(u)0ju + FaGm(u)dju) ¢
|u|>m |lu|>m

Then, like before, the terms of the 2nd line converge to 0 as m — oo and so we conclude
that all p € C®°(R? C) and all u € WHPH (R, C) we have

2
- [rtuae= | <p|u|“aju+<p—1>|u“ () aw) 0

The fact of belonging to L% (]Rd C) follows immediately from Hoélder inequality.

O]
Important are the following quantities:
/ |Vu|*dx + / lu[P*da
Pj(u) = = Im djuudz (3.4)

2 Rd
Qu) = /R .

Here E(u) is the energy, Pj(u) for j = 1,...,d are the linear momenta and @(u) is the mass
or charge.

Remark 3.2. Notice that Q, P; € C®°(H(R?),R) while E € C1(H'(R?),R). We will show
that the above quantities are conserved for solutions in H!'(R%,C). Here E is the hamil-
tonian. The system is invariant under the transformation v — e for ¥ € R and the
transformations w(z1,...xj—1, 25, Tj41, ..., q) = w(T1,...Tj—1,Tj — T, Tj41, ..., 2q) for 7 € R.
The related Noether invariants are ) and P;.

14
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-NLSlocal] 3.1 The local existence

We will consider the following integral formulation of (3.1):

t
u(t) = e'Pug — i/\/ =By ()P Tu(s)ds. (3.5) |eq:INLS
0
Proposition 3.3 (Local well posedness in L2(R%)). For anyp € (1,1 +4/d) and any ug €
L?(R%) there exists T > 0 and a unique solution of (3.5) with

we C([=T,T], LA(RY) 0 LI([=T, T], [P+ (RY) with > + ——

d
g p+1 2 (3.6)

Furthermore, there exists a (decreasing) function T(-) : [0,4+00) — (0,+00] such that the
above T satisfies T > T'(||uol|z2) > 0.

Moreover, for any T' € (0,T) there exists a neighborhood V of ug in L*(R?) s.t. the map
vo — v(t), associating to each initial value its corresponding solution, sends

V = C([-T', T, L*RY) N LY([~T',T'), PTH(R?)) (3.7)

and is Lipschitz.
Finally, we have u € L%([~T,T], L’(R%)) for all admissible pairs (a,b).

Remark 3.4. We will prove later that for p € (1,1 + 2/d) that we can take T" = co always.

Proof. The proof is a fixed point argument. We set
B(T.a) = {v € C(I=T,T], A(RY) N LA(-T, ), " (RY)) -
ol = 110]l oo =22y + 0l oy, ot ey < a f

and we denote by ®(u) the r.h.s. of (3.5). Our first aim is to show that for 7" = T'(|luo||z2)
sufficiently small, then ® : E(T,a) — E(T,a) and it is a contraction.
By Strichartz’s estimates

o < APt
[@(u)l|7 < colluollz2 + col Alll|ul u”m'([_T,T],LLi?l)

= colluollz2 + oMWl gy 1o

We will see in a moment that

pe(1,1+4/d) < pq <q. (3.8)

Assuming this for a moment, by Holder we conclude that for a 6 > 0

1@ (u)llr < colluollzz + coT) Al g7y posry < colluollzz +co(2T)°A[a”.
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So for co(2T)?|\|aP~! < 1/2, which can be obtained by picking 7" small enough, we have
a
I2(w)llr < colluollze + 5 < a

if a > 2¢q||uo||z2. Hence ® (E(T,a)) C E(T,a). Let us fix here a = 2¢pl|ug||z2-
Now let us show that ® is a contraction for T" small enough. We have

O(u) — @ < colA\|||[ufPtu — vt
[@(u) = @) < colAlll[u]"™"u — [v] UHLq,([_ﬂT]’LPTﬂ)

-1 -1
< COcP“H(”“HIsz + HUH]E;DH)HU - ”HLPHHLq’(—T,T)

~1 -1
< COCP“(HUHIzq([,T,TLLpH + Hv”iq([,T,TLLp-H)HU - UHLP([—T,T],LPH)

where % + % = %. Since we are still assuming (3.8), we must have p < g, for p > g would

imply pq¢’ > ¢, contrary to (3.8). Then by Holder and for an appropriate 6 > 0
1©(u) = @(v) |7 < coCIA 2" T |u = 0| a7y, L0+1) < coCIAR2a" T |u = vl

So, for coC|A[2aP~1T? < 1, where a = 2co||ug| 2, We obtain that ® is a contraction and we
obtain the existence and uniqueness of the solution.

Next, let us prove (3.8). Obviously p¢’ < ¢ is equivalent to p/¢ < 1 —1/q, in turn to
(p+1)/g <1, thatisto1/g<1/(p+1). But 1/g=d/4—d/(2p+2), so the last inequality
is equivalent to
2d+4 4

94 =
d +d

d/4 < <g+1>/(p+1)<:>p+1<

and this yields the desired result.

We have proved the existence of a T" = T'(||ug||z2) with the desired properties. Fix
T’ € (0,T). Then there exists a neighborhood V of ug in L?(R?) such that for any vy € V
the corresponding solution w(t) is in C([-T",T"], L*(R%)) N L4([-T",T’], LP**(R?)) with
||v||7r < 2¢ql|vgl| 2. This is clear because with vg sufficiently close to ug, by 7" < T we can
assume

co(21")°|X|(2eollvoll2)? " < 1/260(2T)°|A|(2eofuol|2)” " < 1/2 and
caCIN2(2eo[vol| )P (") < caCIN[2(2eolluo| 2)P~'T°.

Using the equation and proceeding like above,

Ju = vl < colluo = voll 2 + coCIAIRT (Jfullf + ol ) = ]l

< colluo — voll 2 + coCIAI(2T")"2 ((2¢ollvollL2)P " + (2colluollL2)P ) lu — ]2
Adjusting T', we can assume that, in addition to the previous inequalities, T satisfies also

4eoC|N(2T)% (2¢o]uo || 2)P~t < 1/2.

16



thm:1lwpH1

Adjusting V', we can assume that,
(27" (2collvol )P~ < (21)° (2¢o|juo] £2)P
Then from the above we get
lu = vl < 2colluo — vol|r2

and this give the desired Lipschitz continuity.
Finally, the last statement follows from (3.5) and the Strichartz Estimates.
O

Proposition 3.5 (Local well posedness in H'(R%)). For any p € (1,d*) and any ug €
HY(R?) there exists T > 0 and a unique solution of (3.5) with

d d

uwe C([-T,T], H'(RY) N LY([-T, T], WP (R?)) with 24— — 3 (39

qg p+1

Furthermore, there exists a (decreasing) function T(-) : [0,400) — (0,+00] such that the
above T satisfies T > T(||uo||z1) > 0.

Moreover, for any T' € (0,T) there exists a neighborhood V' of ug in H'(R?) s.t. the map
vo — v(t), associating to each initial value its corresponding solution, sends

V = C([-T', T, L*(RY)) N LY([-T", "], W HPHH(RY))

and is Lipschitz.
Finally, we have u € L([~T,T], W *(R%)) for all admissible pairs (a,b).

Proof. The proof is similar to that of Proposition 3.3. The proof is a fixed point argu-
ment.This time we set

EMT,a) = {v e O([-T,T), H\(RY) N LY([~T, T], WP+ (RY)) -

oll¥ = [0l Loo (=1, 110 Ry + 10l Lo/, w1 mey) < a}

and, as before, use ®(u) for the r.h.s. of (3.5). We need to show that by taking 7" sufficiently
small then ® : EY(T,a) — E'(T,a) and is a contraction. The argument is similar to the
one in Proposition 3.3 and is based on the Strichartz estimates. We will only consider some
of the estimates. By Lemma 3.1 and Strichartz’s estimates, we have

o < p—1
IVl < colluolss + ol MVl s
= colluollz2 + col Alllull s [ 1)L IV ull o1, o)

where % + % = %. Notice that if 8 < ¢, we can proceed exactly like in Proposition 3.3.
However this works only for p € (1,1 + 4/d), which is not necessarily true here. Instead,
using the Sobolev Embedding we bound

<@n)F < (207 ()l

HUHL,B ([-T,T),Lpt1) ~ HUHLB( [-T,T),H!) ﬂ HuHLoo ([-T,1],HY)
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So, inserting this in the previous inequality we get

p—1
IV (w)l|r < colluollmr + colA(@T)F (Jufl )P, (3.10)

Here it is important to remark that the admissible pair (¢,p + 1) is s.t. ¢ > 2. Indeed, for
d = 1,2 it is always true that, if p + 1 < oo, then the ¢ in (3.27) is ¢ > 2. On the other
hand, for d > 3 recall that

d+2 2d
1 frl=—— 1= ——.
p+1<d + d—2+ 1_2

And so again, since (q,p + 1) differs from the endpoint admissible pair ( we nec-

2d

2a=3)
essarily have ¢ > 2 also if d > 3.

In turn, the fact that ¢ > 2 implies that the § in the above formulas is § < oo. This
implies that we can pick T small enough s.t. (27)P~'a?~! < 1/2, which from (3.10) yields
H@(u)Hg}) < ci|luo|lgr + a/2 < a for a > 2¢q]||ug| 1. From these arguments, it is easy to
conclude that there exists a T(||ug||g1) s.t. for T € (0, T(||uo|| 1)) we have ® (EX(T,a)) C
EY(T,a). Proceeding similarly and like in Proposition 3.3, it can be shown that there exists
a T1(||uollg1) s-t. for T € (0, T1(||uol| 1)) and a > 2¢q|up|| g1 the map @ is a contraction
inside E'(T,a). The Lipschitz continuity in terms of the initial data can be shown like in
Proposition 3.3 and the last statement follows from the Strichartz estimates.

O

Proposition 3.6 (Conservation laws). Let u(t) be a solution (3.5) as in Proposition 3.5.
Then all the three quantities in (3.4) are constant in t.

Proof. For u € C((—T,T1), H'(R%)) a maximal solution of (3.5) we will show that there
exists [=T,T] C (=T»,T1) where E(u(t)) = E(u(0)), Q(u(t)) = Q(u(0)) and Pj(u(t)) =
Pj(u(0)). In fact this shows that E(u(t)), Q(u(t)) and Pj(u(t)) are locally constant in ¢.
Since these functions are continuous in ¢, the set of t € (—T5,T1) where E(u(t)) = E(u(0))
is closed in (—T5,T}1); on the other hand, it is also open in (—T%,7T1) since E(u(t)) is
locally constant, and hence we have E(u(t)) = E(u(0)) for all t € (=T1%,71). Similarly
Q(u(t)) = Q(u(0)) and Pj(u(t)) = P;(u(0)) for all t € (=13, T1).

Step 1: truncations of the NLS. For ¢ € C°(R,[0,1]) a function with ¢ = 1
near 0 and with support contained in the ball Bga(0,70), consider ? the operators Q,, =
©(v/=2/n). The truncations Q,, (Ju[P~'u) are locally Lipschitz functions from H'(R%) into

- " 1 dy P51 mdy Qo 1 od S,
itself as they are compositions H*(R*) '—  H (R?%) = H'(R?)) of a locally Lipschitz
function, Lemma 3.1, and of bounded linear maps.

2Notice that using everywhere the projections P,, = X[0,n] %\/—A) would be a bad choice for this proof.
Difficulties would arise from the fact proved by C.Feffermann %] that P,, for d > 2 is bounded from L?(R?)
into itself only if p = 2. On the other hand it is elementary that the Qy are of the form p1x fora p € S(RY)

and so are uniformly bounded from L?(R?) into itself for all p and form a sequence converging strongly to
the identity operator.

18
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m:inv_NLS1

We consider the following truncations of the NLS

{iunt = —Pur, Auy + )\Qn(]Qnun]”_lQnun) for (t,x) € R x R4
Un(o) = Qnuo-

By the theory of ODE’s, there exists a maximal solution u, (t) € C*(=T}(n), Ta(n)), H' (R))
of (3.11) . Furthermore, if T5(n) < co then we must have blow up

(3.11)

lim  ||u,(t = 400 if TH(n) < 0o 3.12
i (1) »(n) (312

with a similar blow up phenomenon if 7 (n) < co.
To get bounds on this sequence of functions we consider invariants of motion. The following
will be proved later.

Claim 3.7. The following functions are invariants of motion of (3.11):

A

o L@

En(v) == HPW”OVUHLQ +—

Pj(v) with j =1, ...,d, (3.13)

Qv).

We assume Claim 3.7 and proceed. It is easy to check that u, = Pp, u,. We claim
that T1(n) = Ta(n) = oco. Indeed by Q(un(t)) = Q(Qnuo) < Q(up) we have

[un (Ol = Prrgun(®)|lmr < nrollun(t)l2 = nrol|Quuollze < nrolluollg2. (3.14)
Let us now fix M such that ||ug|/1 < M and let us set
O, :=sup{tT > 0 : |Ju, ()| ;n < 2M for |t| < 7.} (3.15)

Our main focus is now to prove that there exists a fixed T'(M) > 0 s.t. 6, > T (M) for all
n.

First of all we prove that u, € CO’%((—GH, 0,,), L?) with a fixed Holder constant C(M). By
an interpolation similar to Lemma 77

[[un(t) = un(s)llL2 < [lun(t) — un(s)‘ép [[un () — un(s)]l

’:MH
i

< x/iHunH%w((_enﬁn)mHumu LOO (onomy -y VIE= 3] (3.16)
M)\/|t — s| for t,s € (=0, 0,)
Now we want to prove
Hun(t)H?ql < HU0||§{1 + C(M)t® for some fixed b > 0 and for t € (—0,,6,). (3.17)
From Ep(un(t)) = En(Qnuo) and Q(un(t)) = Q(Qnuo) we get
ol + 25 [ 1QutaP e = [Quualfys + -2 [ [QRuop e

p+1
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Hence using Holder and Gagliardo—Nirenberg

2|\
Jun (O)]|71 < Nuoll7 + 20 | 1Quun ()P — |QEuo|PH | da
p+1 Jra

< [luollF +C/Rd(|Qnun(t)|”+ Qo l”)|Quun(t) — Qpuolda
< [luollF + ClllQuun ()P + IQ?@UOI”IIL% 1Quun(t) — Quuoll Lo+
< luollF + C1 (1Quun ()l + 1QR 0N 1) un(t) — Quuol|f lun(t) — Quuol 2

Then by (3.16) with s = 0, the Sobolev Embedding Theorem and (3.15) we get (3.17).
Now for T(M) defined s.t. C(M)T(M)® = 2M? (for the C(M) in (3.17)) from (3.17) we

get
[[tn ()| oo a0y, 1) < VM. (3.18)
Since v/3M < 2M this obviously means that T (M) < 6,, since, if we had 6,, < T(M) then,
by the fact that u, € C1(R, H'), the definition of 6,, in (3.15) would be contradicted.
Hence we have
lwnll Lo (T (an) T2 1Y) < 2M (3.19)

This completes step 1, up to Claim 3.7.

The proof of Claim 3.7 is rather elementary and involves applying to (3.11) (,upne),
( ,iuy) and < , Oz, un> and integration by parts. We will do this now, but then we will discuss
also the fact that Claim 3.7 is just a consequence of the fact that (3.11) is a hamiltonian
system with hamiltonian FE,, and that the invariance of () resp. P; just due to Nother
principle and the invariance with respect to multiplication by e resp. translation.

Indeed, applying (-, u,) to (3.11)

0= _<Pn7‘oAun7 unt> + >‘<Qn(|Qnun|p71Qnun)7 unt)

_ d
= _<Aun7unt> + A(’Qnun’p 1Qnun7 Qnunt> = %En(un)

Notice furthermore that, by u, = Py, un, we have

1 A
En(un) = §HV’LLnH%2 + ﬁ /Rd |Qnun|P+1d:U.

Similarly when we apply (-, iu,) to (3.11) we get
1d

5 ol ®llzz = =(Purg At i) + MQu(|QuttaP~ Quttn) ). (3:20)

We have to show that r.h.s. are equal to 0. We observe that the the 1st term is 0 because
the bounded operator iP,,,, A of L?(R?) into itself is antisymmetric: (iPy, A)* = =P A.
For the 2nd term we use

<Qn(|Qnun’p_lQnun)a 1un> = <’Qnun’p_1Qnuna 1Qnun> = )\Rei/Rd ‘Qnun‘p—i_ldw =0.
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This yields 4Q(u,(t)) = 0. In a similar fashion we can prove 4 P;(u,(t)) = 0.
These computations obscure somewhat the following simple facts. First of all, (3.11)
and, in a somewhat formal sense also (3.1), is a hamiltonian system. First of all, the

symplectic form is
QX,Y) = (iX,Y) (3.21)
=R dz. 3.22 'bilf
(F9) =R [ fa)glada (3.22)

Notice that €2 satisfies the following definition for X = L2(R%, C) or X = H'(R%,C).

where

Definition 3.8. Let X be a Banach space on R and let X’ be its dual. A strong symplectic
form is a 2-form w on X s.t. dw = 0 (i.e. w is closed) and s.t. the map X 5> 2 — w(x,-) € X’
is an isomorphism.

Definition 3.9 (Gradient). Let F' € C*(L?(R?, C),R). Then the gradient VF € C°(L?(R%, C), L?(R4,C))
is defined by

(VF(u),Y) = dF(u)Y for all u,Y € L*(R%,C).

Notice that

d (1 A
— NP V(u 4+ tY) |2 + —— Q. (u+tY)[PTid
i <2H o V(u )72 Pt 1 /Rd 1Qn(u )l $>

= (P, Su+ AQu(|Quu ' Quu), ).

(VE,(u),Y)

529

t=0

We are interested in hamiltonian vector fields.

Definition 3.10 (Hamiltonian vector field). Let w be a strong symplectic form on the
Banach space X and F € C'(X,R). We define the Hamiltonian vector field Xp with
respect to w by

W(Xp(u),Y) :=dF(u)Y for all u,Y € X.

From Q(Xp,Y) = (iXp,Y) = (VF,Y) we conclude Xp = —iVF. Then from (3.23) it
is straightforward to conclude that (3.11) is a hamiltonian system with hamiltonian E,,.

Definition 3.11 (Poisson bracket). Let w be a strong symplectic form in a Banach space
X and let F,G € C*(X,R). Then the Poisson bracket {F,G} is given by

{F,G}(u) == wu)(Xr(u), Xg(u)) = dF(u) Xg(u).

So, for  we have {F,G} = (VF,—-iVG) = (iVF,VG). Now notice that if F' €
C1(X,R) then

P (un0) = (T (n(0), (1)) = (VF (1)), -V Eu(a(1))) = {F, B}y (3:24)
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Notice now that the map u € eu leaves FE, invariant. In particular the last assertion
implies that

d d
0= —E, = —F,(e"
d,l? (U) 90 d’l9 (6 U’) 90

= <VEn(U),1U> = <VEn(u),1VQ(u)> = <IVQ(U)’VE71(U)> = {Q)EnHu

But then, since {Q, E,} = 0, by (3.24) we obviously have % (Q(un(t))) = 0.
Let us consider now, for { € j }?:1 the standard basis of R%, the transformation (e, F)(z) ==
F(z — \¥;). Obviously E, is invariant by this transformation and

d d
0= aEn(u) - = ﬁEn(T)\?ju) .
= —(VEn(u),0ju) = (VER(u),iVP;j(u)) = (iVP;(u), VE.(u)) = {F}, En}|,

But then, since {P;}, E,,} = 0, by (3.24) we obviously have < (P;(ux,(t))) = 0.
The above argument gives a link between group actions and invariants.

Step 2: Convergence u, — u. Let us consider I := [-T,T] C [-T(M),T(M)] N
(=T5,T1). Obviously we have

t

un(t) = 5 Quug — iA /O DD Q (| Quttn ()7~ Qi (5)) s,
Taking the difference with (3.5) we obtain
u(t) — up(t) = (1 — Qn)ug — i /O t DB (1 — Q) |u(s) P u(s)ds
=it [ IR () als) ~ 1Qus) Q) s
—ia [ IR, (Quul) P Qun(s) — [Quin () Q) s

Then we have

[ = wnllLacwrrery + [Ju = unll Lo 1y < coll(1 = Qn)uoll gt + ol A[[(1 = Qn)IU\”_IUHLq,( |, 2L

Wb
1 —1
+ colAll[[ul"" v — |Qnul” Q"””Lq'(Lwl*pTTl)
+CO‘)‘HHQnu‘p_1Qnu - |Qnun’p_1QnunH , 1 ptl -
L (I whr)
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and so, for a fixed ¥ > 0
lw = unll Loz wrmey + 1w = wnll oo 1,1y < coll (1= Qn)uoll g + ol Alll (1 - Qn)IU\pfluHLq, 1, 2L
e AN (Nl gy + 1Qual =ty ) 10— Qubull oz sy

+ coCIT (1Quel oy + 1QuttnlB vy ) 1@t = ) o vy
< coll(1 = Qu)uollm + ol A I(1 = Qulul ™ ull o

Iw> )
—1
+ COO|>‘||I|192||UHI£<>0(1,H1)||(1 - Qn)UHLq([,Wl,pH)

+ coCNIRTI (Il oy + (CO0) ) = il o i,
Then, taking T small so that coC|\|[27'|" <||uHLoo ray t (C(M))p_1> < 1/2 we conclude

v = unllLacrwrmty + 1w = unl| poo 1,1y < 2¢0|(1 — Qu)uol| 1+

2¢co[AllI(1 — Qn)IU\p_IUHLq, pwrEy 2c0C|A[1]"2]Jullf= (1= Qn)ull Loz wrpsn).

But now we have r.h.s."=° 0. Hence we have proved that there exist T > 0 s.t.

Jimlu = wnl| e (-r,7y,11) = 0. (3.25)

Now, taking the limit for n — +oo in Q(u,(t)) = Q(Qnuo) and Pj(un(t)) = Pj(Qnuo)
we obtain Q(u(t)) = Q(uo) and Pj(u(t)) = Pj(ug) for all t € [-T,T]. Similarly, taking
the limit for n — +o0 in E,(u,) = E,(Qpup) and with a little bit of work, we obtain
E(u(t)) = E(up) for all t € [-T,T].

]

thm: consL2| Corollary 3.12. Let u(t) be a solution (3.5) as in Proposition 3.3. Then Q(u(t)) = Q(uo).
In particular, the solutions in in Proposition 3.3 are globally defined.

Proof. As above it is enough to show that Q(u(t)) = Q(ug) for t € [T, T] for some T > 0.

So let us take the T in the statement of Proposition 3.3 and let us take 7" € (0,7"). There

exists a sequence u(g") € H' (R4, C) with ué") "0 wp in L2(RE,C). So for n > 1 we
(n)

have uy ' € V, the V in (3.7). In particular, for the corresponding solutions w, we have
u™ "%y in C([-T',T'), LA(R%)). Then, since Qu™ (1)) = Q(u{") for t € ([-T',T",
taking the limit we obtain Q(u(t)) = Q(ug) for t € ([-T1",T"]. Since T' € (0,T) is arbitrary
and t — Q(u(t)) is continuous, we have Q(u(t)) = Q(ug) for t € ([=T,T]. This implies that
t — Q(u(t)) is locally constant, and hence it is constant.

0
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3.2 The global existence

:NLSglobal

We start with the following observation.

em:blowupl | Lemma 3.13. Let u € C°((—S,T), H(R?)) be a maximal solution as of Proposition 3.5.

Then if T < oo we have
tlifrr% IVu(t)|| 2 (ray = 400 (3.26)

Analogously, lim,—s [[Vu(t)|| L2 (ray = +00 if S < 0.

em:subcrit | Remark 3.14. Notice that it is very important for this lemma that p < d*. Indeed, in the
energy critical case p = d*, the above statement is false.

Proof. Suppose by contradiction that there exists a solution with T' < oo for which there is
a sequence t; /T s.t. Hu(tj)HHl(]Rd) < M < oo. Then by Proposition 3.5 one can extend
u(t) beyond t; + T(M) > T and get a contradiction.

O

hm: corinls | Corollary 3.15. If A > 0 the solutions of Proposition 3.5 are globally defined.

Proof. Indeed if a solution has maximal interval of existence (—S5,7) with 7" < co, we must
have (3.26). But for A > 0 we have ||Vu(t)||r2 < 2E(u(t)) = 2E(up).
O

hm: cor2nls | Corollary 3.16. [fA <0 and 1 <p <1+ % the solutions of Proposition 3.5 are globally
defined.

Proof. We have

2l

o 1
o 1cp+1||v u(t)| (p+1) a)(p+1) for _

1
2B(u(t)) > [[Vu(t)| 2 ga) — L2 (ray ¥ 0”L2(Rd) P+l 2
Notice that

4 4
(p+1)—d<2<:>(p+1)—2<g<:>p<1+&.

N Q.

alp+1) =

But then, if (3.26) happens, we have

. . 2|\
QE(U()) = th/‘HJl“ 2E(u(t)) Z tll/(H% HVu(t)H%Q(Rd) <1 | | p+1Hv ( )HLZ R Lo

a2, (1~ a)(p+1>>
p+177

_ 1 2 _
= i [ Vu(0)3ag) = +00,

which is absurd. O
hm: cor3nls | Corollary 3.17. If A <0 and 1 <p <1+ % the solutions of Proposition 3.5 are globally
defined.
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2 .
Scritical] 3.3 The L? critical cases

We consider now equation (3.5) for p =1 + %. Notice that in this case (p+ 1,p+ 1) is an
admissible pair.

thm:critl2| Theorem 3.18. For any ug € L*(R?) there exists a unique mazimal solution of (3.5) with
p=1+ 3 with

d d
* 2 (mpd p+1 * +1 d .
u e C([0,T%), L2(RY) n L2F ([0, T%), L' (RY)) with % + =3 (3.27) [eq:1wpL2

qg p+1

Furthermore, the mass is preserved, we have u € L*(]0,T], LY(RY)) for any admissible pair,
if T € (0,7%).
There is continuity with respect to the initial data. And finally, if T* < oo, then

Tlirr% [wll Lao,17, 20 (Rey) = +00 for any admissible pair with b > p + 1. (3.28) ’eq:crit_blow_up_LQ
ﬁ * ) K

@l Proposition 3.19. There exists a 6 > 0 such that if for some T > 0 we have
1€ | Lo1.(0,7), Lot (Y < O
then there exists a unique solution
u € C([0,T], L>(RY) N LPTL([0, T), LPTH(RY)).

The mass is constant. Moreover, for any T' € (0,T) there exists a neighborhood V' of ug in
L?(R%) s.t. the map vy — v(t), associating to each initial value its corresponding solution,
sends

vV — C([0, T, L*(RY) N LP*L([0, T"], LP1(RY))

and is Lipschitz.
Finally, we have u € L*([0, T, L°(R?)) for all admissible pairs (a,b).

Proof. The proof is a fixed point argument. We set like before
B(T,6) = {v € LP([0,T], " (R) : [[0l] s (0,17, gy < 20}

and we denote by ®(u) the r.h.s. of (3.5).
By Strichartz’s estimates

1
12l s oy < 6+ ol Il Ml e
= 6+ colA Nl e o ey < 3+ ol A28 < 26,
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for 6 > 0 small enough, so that the map ® preserves E(7,0). Now we show that ® is a
contraction in E(T,J). We have

19(u) = @ ()| o1 jo,ryxray) < colMIuf™ o~ Ho]l

< coCIN (P~ + [P H]u —v||| »
WCINN(uP + o —oll e

([0 T]xR%))

< cCA| (HU||pp+1 (0.7)xRe)) T HUprH ([0.7]xRY) ) |w = vl Lo+1(0,77xR2))

< coCIA[2P 6P w — vl s (o 77 )

which is a contraction for § > 0 small enough. The remaining part is also similar to that
in Proposition 3.3. In particular, let us now discuss the fact that the conservation of mass.
The first observation is that if ug € H'(R?) then we have u € C([0,T], H'(R?)). In fact we
have u € C([0,7], H'(R?)) by Proposition 3.5 and if it is not possible to take 7 > 0, then
we will have a maximal interval of existence u € C([0,7), H'(R?)) with 7 € (0, T) and blow
up || Vu(s)|| g1 = +oo. But

IV ull Lot1 (0,5 xreyy < V€ uoll oo 5 xcray) + COWHUHLPH([O o)y 1Vl Lot (0,5 xr))

by Gronwall’s inequality implies

IVull Lo+t (0,5 xray) < V€ S uoll Lo+1([0 5] xrey) €XP <COW/ ull?s (0.5 xR &S ’) :
This inequality implies

Jim IVl Lo (o,5)xre)) = IVUll o1 (0,7 xR )) -

feeding this back in Strichartz inequality, we have
[Vl Loo (0,5, L2Re))) < [[Vuollp2wmey + COP\\HUHL;;H( 10,5)xRe) | Vel Lo+1 (0,5 xR))

which implies that it is not true that ||[Vu(s)||g1 ~— +o00. So we conclude that u €
C([0,T), H*(R%)) and that, energy, momenta and mass of u(t) are constant in [0, 7]. If now
ug ¢ HY(R?), we consider a sequence ug, € H'(R?) with ug, —— ug in L*(R%). For
any T € (0,T), we have by well posedness that for the corresponding solutions we have
Uy ~=2% u in C([0,T"], L*(RY)). Then Q(un) —= Q(u) in C([0,T"],R). Since Q(u,) are
constant functions, also Q(u) is constant in [0,7”] for all 7" < T.
itA T—0" -
Proof of Theorem 5.18. Clearly we have || uo|| Lp+1 ([0 1), Lr+1 (R2)) — 0, S0 We can
apply Proposition 3.19 for T' > 0 sufficiently small. There will be a maximal interval of
existence. We now prove the blow up result (3.28). Suppose that it is false, and that there
is a maximal solution in [0,7*) with 7% < oo and

||U”La([O,T*),Lb(]Rd)) < +oo for an admissible pair with b > p + 1. (3.29) ’eq:crit_blow_up_LQp:l
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Then if b > p+ 1, we have

3
¥~
—_
=

el Lo o 0o o1 )y S Nl e 0 70y 22 ey el o ) oy 0T 1=

[N
o=

So (3.29) holds also for b = p+ 1. Now, for s close to T we have from (3.5)
¢
B u(s) = u(t) +ix [ OB e u(t)ar.

This yields

s<T—T*~

e (tis)Au(s)HLP“'l([s7T]7LP+1(Rd)) < Hu”LP+1([s,T],LP+1(Rd)) + CWHUHierl([s,TLLp+1(Rd)) 0.
So we conclude that ||€i(t_S)AU(S)||Lp+1([S7T*+E]7Lp+1(Rd)) < 9, for s close enough to T and
for € > 0 small enough. But then the solution u can be extended beyond T™*.
O
Example 3.20. In the case A = —1 of the L%~ critical focusing NLS
iug = —Au — ‘u’%u in R x RY, (3.30) ’critical focusing NI

there are related solutions in H! (R, [0, 4+00))to

A+ —[p[F 1o =0. (3.31)

In 1-d they are explicit,

(B2 4+ 1)71
P(z) = g (3.32)

cosh -1 (B=x)

For d > 2 there are many types of solitons. For example, the ones in (3.32) are ground
states, and they are the only ones in d = 1. But in d > 2 there are also excited states.
Notice that if u(t,z) is a solution of (3.30), then also the following is a solution,

22
v(t,x) = i (1, ?) el

: i sv2
Since now, given a solution ¢(x) of (3.31), then u(t,x) = eT2V* sty —tv — D) is a
solution of (3.30), it follows, choosing v = D = 0, that

2

_4d x 22 i _d €T iz i
S(t,x) =t 2¢<;) e'ate t so also S(T —t,x) := (T —t) 2¢<T_t>e4<Tt)e T,

Obviously this for T > 0 has maximal positive lifespan 7. Then, for any admissible pair
(¢,7) with r > 2, we have

_d.d _2
IS(T = t,2) || pr ey = (T = )27 |9l pr(ray = (T — )" |l pr(ray & LU0, T).
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riticalH"1

thm:critH1

op:crtiHi11l

3.4 The H' critical cases
We consider now equation (3.5) for p =1+ ﬁ. We will consider the admissible pair
o 2d? 2
PP —2a+a 7T d-2

Theorem 3.21. For any ug € H'(R?) there exists a unique mazimal solution of (3.5) with
p=1+ 75 with

we C([0,7%), H'(RY) nC'([0,T*), H ' (R?)). (3.33)
Furthermore, the mass and energy are preserved, we have u € L%([0, T], WL*(R%)) for any

admissible pair, if T € (0,T%).
There is continuity with respect to the initial data in the following sense. If 0 < T’ < T* and

if Uon 2720 wg in H'(R?) then for the corresponding solutions we have we have uy, 0%
in LP([0,T"], HY(R%)) for any p < co.
And finally, if T* < oo, then
lim |[ul|ga(jo,r),26(ray) = +00 for any admissible pair with d > b > 2. (3.34)
ToT* o+

Proposition 3.22. There exists a 6 > 0 such that if for some T > 0 we have
1€ ol L (jo.1), w10 () < 6
then there exists a unique solution
u € C([0, 7], H' (RY) N LY([0,T), WH(R)).

Moreover, for any T' € (0,T) there exists a neighborhood V of ug in L*(R?) s.t. the map
vo — v(t), associating to each initial value its corresponding solution, sends

vV — C([0,T"), L*(RY) n LY ([0, T"), WP (RY)

and is Lipschitz.
Finally, we have u € L*([0,T], W *(R%)) for all admissible pairs (a,b) and mass and
energy are preserved.

Proof (sketch). The proof is by a contraction argument. We set like before
B(T,8) = {v € (0, T), W (RY) : [Vl ooy woey < 20

and we denote by ®(u) the r.h.s. of (3.5). Let us open a small parenthesis now, and let us
pick an admissible pair (a,b) with b € (2,d). Notice that (v, p) has this property. Now let
4

us set b* = % = % — é and let (a, #) be an admissible pair such that % = % + %
4
I 1 @
AR
2 4 1 1
2 11y 3.35
B+d—2<b d> (3:35)

’ eq:crit_blow_up_H1

|claim:crtiH110




Here notice that for b* = oo, that is when b = d, then 8 = 2, and if b* = d 2, for b = 2,
we have 6 = d2d2, which is the endpoint. So for b € (2,d) we have the intermediate cases
2 < B < 75%. We claim that

+ 42 (3.36)

122, 4 a1 1
T a2 \2 )

This can be checked by considering the endpoints, since from the 2nd line in (3.35)—(3.36)
we see that the curve with parameter 1/b

(15)- (a3 ()

Looking at b = 2, then as we mentioned, we have the endpoint («, §) = <2

is straight.

2d
y d—2> 5 which
makes (3.36) true because o/ =2 and a = O
For b = d and the corresponding value a = d 3

which implies a = oo, and so (3.36) becomes

then as we mentioned b* = oo, s0 8 = ' = 2,

which is obviously correct.
The implication of this numbers is that by Strichartz estimates and by the Chain Rule in
Lemma 3.1, we have

[®(u >||La ([0,T),W1.8(R4)) < HeitAUOHLa ([0,T), W18 (R4)) ‘|‘CO|)\|HUP_1 <V>“HLa’([o,T),Wlﬂ/(Rd))
< HeltAUOHLa ([0,7),W1.8(Rd)) T COWHUHLa ([0.T],L*) HUHLa([o,T),WLﬁ(Rd))
< Helt UOHLa ([0,7), W18 (Rd)) T Co\)\’”UHLa ([0,T],W1:b) HUHLa([O,T),WLﬂ(Rd))

Now, returning to case (p,7), it turns out that for (a,b) = (p,~) we have (o, 8) = (p,7),
which is left to be checked as an exercise. So, in this case

12 () | 1 0,7y, o ) < €200l 1 (jo ), wrroe (ray) + Ol Ml 0.7y w0 ety
Hence in E(T, ) we have
H@(u)HL’y([O,T)’Wl,p(Rd)) < &+ cp|A|2PP < 26,

for § > 0 small enough, so that the map ® preserves E(7T,¢). In a similar fashion we prove
that ® is a contraction in F(T,d). We skip the proof on the conservation of mass, energy
and momenta.
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Proof of Theorem 3.21. Clearly we have ||€itAUOHL'«/([O’T)’Wl,p(Rd)) 107, 0, so we can
apply Proposition 3.22 for T' > 0 sufficiently small. There will be a maximal interval of
existence. We now prove the blow up result (3.34), but only in the case (a,b) = (v, p).
Suppose that it is false, and that there is a maximal solution in [0,7™) with 7" < co and

”UHLaqogw)Jvlb(Rd» < +o0. (3.37) ’eq:crit_blow_up_Hlpn

But then

ll Lo (s 7 w28 Ry < 1€ u(8) | ooy o may) + C{)‘)“HuHi;(l[QTLWLb)HUHLO‘([O,T),Wlﬁ(Rd))

s<T—T*~

and the fact that |jul/? ( 0, implies

e [SvT]ﬂwl’b(Rd))

[w() | o (o 1y w18 () < 21T U() | L 77,008 ()

for s <T < T* close to s. This implies in fact that also

HUHLO‘([O,T*),Wlaﬁ(Rd)) < +00. (3.38) ’eq:crit_blow_up_HlpJ

Then, by
¢
=)0y (s) = u(t) + i/\/ OBy () Pt )dt

12 0u() | o (om0 ey < Nl (o, o Ry + Ci)‘)“HUHZZ(I[S7T]7W1,b)||u||L0‘([s,T),W1vﬁ(]Rd))

<T—T*—
= 0.

So we can arrange ||ei(t_S)Au(s)HLA,([S,T*%LWLP(W)) < 0, for s close enough to 7™ and for
€ > 0 arbitrarily small. But then the solution w can be extended beyond T*.

We skip here the discussion of the well posedness.

4 The dispersive equation

dispersive

Here we will consider dispersive equations

(4.1) ’eq:NLSdispersive

iuy = —Au + |ulP~tu for (t,2) € [0, 00) x RY
u(0, ) = ug(x)

with 1+4/d < p < d*.
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scatt_disp| Theorem 4.1. Consider the unique solution u € C°(R, H'(RY)). Then

u e LYR, WY (RY)) for any admissible pair (4.2)

and there exist uyx € H'(R?) s.t

i ) = 2ty = 0. (43

Here the key deep statement is (4.2). In fact, (4.2) implies easily (4.3), as we show now
in the case +. So, assume (4.2), and in particular let

d d
we LRy, W) wit 24 L= (4.4)

q
From (3.5) with A = 1, we have

t
e Bu(t) = ug — i/ e 52 u(s) [P u(s)ds,
0
so that, for t; < to, we have

. . t2 1
e uty) e ) = =i e AP s

t1
Then
. . ta
e u(ta) = e uttr) | < | [ e pulo) u(s)ds
t1 H1
< Hu”La ([t1,t2],LPT1) Hu”L‘l([tl,tz],W17P+1) (45)
where % + % = %. It can be checked that a > g. Otherwise o < ¢ and so

<5 ept+l<yg

ISR
'Q‘p—l

So, from p > 1+ %, (¢,p + 1) is an admissible pair with both entries > 2 + %. But
(2 + ,2+ ) is an admissible pair, so we get an absurd and we conclude o > q.
So, let us (a, B) be admissible. We claim that

1_17’

— — — with 7 € [0, 1]. (4.6) ’admissiblepairSl

p+1 B d
Assuming this, (4.5) can be majorized yielding

t1<to——+o0

le = u(ty) — e 1 Bu(tr) i < collullfaly, o s lullzagen oo 0.
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thm:decay

_lem_zeros

This implies that there exists

_ —itA 7l md
Uy = t_lgrnooe u(t) in H*(R?).

Then we have
etPuy —u(t) = —i/ =By ()P u(s)ds.
t

As above,

t—+
we —u®)llm < Mul2l, s [l pogrosywimss 550,

”eitA
which proves the limit (4.3).
Turning to the proof of (4.6), obviously a > ¢ implies 5 < p + 1 so that

1

_1 7
p+1 B d

with 7 > 0. Since 2 < B <p+1 < +o0o, for d = 1,2 we have 7 < 1. For d > 3 we have
2<B8<p+1<y 2d Slnced2d2—%—a,

117 d-2 11
p+1 B d 2d 2 d
which implies 7 < 1 by
17 11
d 2 B

As we indicated above, in Theorem 4.1, the deep statement in (4.2). The proof is rather
complicated. For this we will need the following which we will discuss only for dimension
d>3.

Theorem 4.2. Let d > 3. Then given a solution u € C°(R, H'(RY)) we have
tim[u(t) | sy = O for all 2 < v < 20 (4.7)
t—:fl:n u LT(Rd = or a T d— .

This deep result implies (4.2) rather easily as we see now. We will use the following
elementary lemma.

Lemma 4.3. consider a function f(x) = a—xz+bx® forx >0, a,b >0, a > 1. We assume
that there are 0 < xg < x1 s.t. f(xo) = f(x1) = 0, which is the case if b is small. Let now
¢ € C(1,]0,+00)) be such that ¢(t) < a+ bp“(t) for allt € I and that there exists a point
to € I s.t. ¢(to) < xg. Then ¢(t) < xg for allt € 1

32
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roof _moraw

lem:morl |

Proof. Since f(¢(t)) > 0 for all ¢, and ¢ is continuous, the image of ¢ is either in [0, zg] or
in [x1,+00). Obviously, the first case needs to occur. O
Proof that Theorem 4.2 implies (4.2) (sketch). Consider

t
u(t) = =8y (S) — i / )8 () [P u(s)ds,
S

Then by the Strichartz estimates

Jullzaqs ey < ClhuS) e +C [l Nz |,

Sit)
1)q —
= U +0 ([ WAL O ity os)

1
i{
o P O 1 AP
Here

p—§=p+1—q>0<:>p>1—l-4/d.

S—+o00

From Theorem 4.2, applied to r = p+ 1, we know HUHZ;O by T 0. Furthermore,

((S:),L%
using conservation of mass and energy, there is a uniform upper bound for ||u(S)|| 1. There
exists a constant Cy > 0 s.t. for any € > 0 there is Sg > 0 such that for any Sy < 5 < t,

9
HUHLQ((S,t),lePH) <Cp+ 6|!U!!2;([5¢]7W1,p+1)-

Picking € > 0 sufficiently small, by Lemma 4.3 we conclude that there exists a fixed constant
Xp s.t.

||u||L‘1((S,t),W1*p+1) < Xy for any Sop < S <t

In particular we can take ¢ = co. Since we know that u € L] (R, W'PT1), we conclude that
ull o, wirt1)y < +00. Time reversibility of the NLS, yields the same result for negative
times. The Strichartz estimates, yield u € L*(R, W1#) for any admissible pair.

5 Proof of Theorem 4.2

Lemma 5.1. Let p € [1,00) and g < d with 0 < g < p. Then we have

ju(o)p p
S < (2 ) Wl 19l o (5.1)
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Proof. The general case u € W1P(R?) reduces to the special case u € C°(R?). In fact,
if (5.1) is valid for all u € C’OO(]Rd), then for a u € WIP(RY) with u ¢ C°(R?), we can

consider a sequence C®(R%) > u, D2F0 win WP (R%). Then, up to subsequence, we
n—-+0oo

have u, () (=2 u(z) for a.a. = € R?, see p. 94 T hen, by Fathou’s Lemma

p p
/ Mx)’d:ﬁgliminf/ [un ()] dx
Re || n—oo Jga  |a|d
. p p
< tim (72 e 90y = (2 ) Wl 1l

So we will prove (5.1) for u € C°*(RY). Let z(z) := || 92. Then

Voz=V(a[™) a+ |20V x = —qla] L

]

el +dle]™ = (d = q)|«| ™7,

Integrating the identity
ufPV -2 =V - (JulP2) = plulP "Vl - 2

we obtain for arbitrary r > 0

p
(d—q)/ [u(z) dx = V- (lulPz) dw—p/ |u[P~ IV |u| - zdx
|z|>r || >r || >r

||

p=1l|y
< —p/ [uP~IV|ul - zdx < p/ de,
|| >r

|z|>r ‘m|q_1

where we used

V- (JufPz) da = _/ ufPz - ﬁds . _/ [P 97 1dS < 0.
jol>r jol=r v jol=r

Using 1 — % + % + % = 1 and Holder inequality, we have

plg—1)

r=1|y
pf MGy [ Vs
|| >r |x’q || >r | ’q

qg—1

W \'T e
=7 /|:L‘>T‘|x’qu HUHLP(RCI)HVUHLP(Rd)'

u(@)?
/w da < ll e 1V,

and, taking » — 0", we obtain (5.1).

This yields
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’/LL( )’ d$ < C HU/H (5 2) eq '1110121
‘r|3 - d HQ(Rd). : :

Proof. We proceed as above for ¢ = 3 and p = 2, to obtain

2
(d— 3)/ [ul) dx < —p/ |u[P7IV |u| - zdx < 2/ |u]|Vu]dx
|z|>r |J}’3 |z|>r |$|2

|z|>r
W N (e
<2 / —=dr / dr | .
|z|>r ‘iL'|2 |z|>r ‘$|2

In the 2nd line we apply (5.1) for p = ¢ = 2 to both v and Vu, to obtain

1 1
Ju(z)|? / ul®  \? / [Vul>  \* 2 2
d—3 dr <2 —=d d <2 ——
( )/|x>7“ ep = > |]2 ! > 122 v | =2{ o= ) IVull 2@ [V ull L2 ra

Then (5.2) follows sending r — 0. O
Let ug € H2. Then u € C°([0,T), H?) by the theory by Kato. Then equation (4.1)
holds also in a differential sense as

iuy = —Au + |[ulP"tu in L2(R%,C).

Notice that u € C1([0,T), L?). Let us now consider the quadratic form

1/, d—1
5 <1 <((‘)7, + 27") u,u> . (5.3) ’1em.quadrmor_1

Notice that it is well defined and self-adjoint. Then, taking the derivative for u € C°([0,T), H?)N
C([0,T), L?) we have

d. /. d—1 B d—1\
£2 <1<8r+2r>u,u>——<<8r+2T>u,1u>

which can be proved assuming first u € C°°([0,T), H?) and then proceeding by a density
argument. In our case we get

d._ .,/ d—1
i (o5 ) ) -
d—1 d—1
((o+ 5 )iy == ((0+ Gt Jumbut b ). G
2r 2r

The equality (5.4) is crucial, indeed we will use it to prove

d . p—1 [ |uf*
a > (] _ ' iri .
g (Oru,iu) > (d 1)p+ ] /Rd " dz, (5.5) ’eq v1r1al_1d1sp‘
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which is crucial in our argument.
The first observation to obtain (5.5), is that the following is true,

d—1 .. 1d
<<87«+ 27") u,1u> o (Oru, iu) . (5.6) |7.6.9

1 . x -
iat Re (iuw,) + =V - (; Re (1uu))

1 - 1 A 1 x N | i | -
= §Re (1uuT)+M+2 (V;) Re (iuw) —}—M—}— iRe (ivw,)

d—1
= Re (1uﬂr) + 277. Re (1uﬂ) ,

Indeed, notice that

(NN

so that integrating in = we obtain exactly (5.6).
The next step to prove (5.5), is the following inequality.

2in:7.6.10] Claim 5.3. Let u € H2(R% C). Then

<(ar + 4 1> . Au> <. (5.7)

r

Proof. The proof is based on the identity

V-Re{Vu <ur + dz_rlu>} = Re{Au (ur + d;ﬁ%)} -V {;—T|Vu|2} (5.8)
# (U SP) - (9 - ) -

which we check now. We have

_ o, d—1_\ _ . d—-1_ o [Tk o fd—=1_
V'Re{Vu <Ur+ 5 u)}_Re{Au (uT—i— o u>}+Re{8ju8] (raku)}—l—Re{@Ju(‘)] <2ru>}

= Re{ Au (@ + = -k ~|Vul* - Re { =529, -
Re{ u(u — u>}+2r8k|Vu] + |Vl Re { . Oudyi | + IVl

Y

— %ﬂRe{a uT )

) a-1 e N\ e U O Y
_Re{m (ur—i— - u)}+ak (SEIvul) = [VuPoy (55) + = + ==Vl

-0y (U B - oy ().

Now we use

n(3)- 4!
()45



to conclude

r

-1 2 r2
:Re{Au<ur—|—d U>}+5k (ﬁ]Vu|2>+M
2r 2r

which is (5.8). Now, applying the Divergence Theorem to (5.8) and Lemma 5.1, we have

- d—1)(d— 2
O, + u u, Au ) < _/ 1 (‘VU’Q o ’ur‘2) dr — M lim / de
2r Rd T 4 a—=0t Jpsq T3

o _od—=1_ |Vul?> d—1 |ul?
1 f - @, — — — | dS.
e /r:a [Re{u (u T u)} > i@

Let us now suppose that u € C°(R? C). Then

lim |Vu|?dS =0
a—0% JoB(z,a)

Similarly, for d > 3 and u € C*°(R?, C) we have

2
lim &ds =0

a—0t Jr—q a?

Hence, for d > 3 and u € C*°(R?,C) we obtain 5.1, we have

- d—1)(d—- 2
ar_’_d 1 u, Au S_/ 1(|VU’2—‘UT|2)d$—()(3)/ dego
2r Rd T 4 Rd T3
(5.9) |eq:limitl

For u € H2(R%,C) and, u & C=(R? C) considered a sequence u, ——» u in H2(R%, C), we
have

— _ _ 2
2r RA T 4

R4 TS

which in the limit converges to (5.9).
For d = 3 then u € C°(R?) and so

lim |u = 47|u(0)|?,

245
a—0% J5B(0,a) a?

so that we obtain
d—1 1
(0455 )t} = = [ (VP = ) do =210
2r R3T
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The next step to prove inequality (5.5) is the following identity,

d—1 —1p—1 p+1
(o 55t ) = S5 [0 10

d—1 _ d—1 lulPtt 1 p=1
p—1, \ _ 1 2 24
<(ar+ 2T>u,|U\ u> o LS [ e e
_d—-1 |u [P
2 /]Rd r +2p+1/6 |u\) Hda
_dl/ |up+1_d1/ |u|p+1_d1p1/ [P+
2 Jga T p+lJga 7 2 p+1lJga v
So now we can prove (5.5). Indeed, from (5.6), (5.4), (5.6) and (5.10), we obtain
1d d—1 d—1
Lt a . _ a@—1 i _ a@—1 . p—1
5 7t (Oru, iu) <(8r+ o >u, 1u> <(8r+ o >u, A+ |ul u>
d—1 _ d—1p—1 |u [P+
< {0+ —— Py = — 7
(e ) =R L

which yields (5.5).

Lemma 5.4. We have

| [P 2 p+1 23 p+1
Lt [ < 2 Pl Vallusim oy < 57 gl zagus (o)

511

Indeed

furthermore, we have u(t) "=2° 0 in H'(RY).

Proof. To get (5.11) it is enough to integrate. We skip the proof of the weak limit. O
We now start directly to prove Theorem 4.2.

Lemma 5.5. We have
/| o T (5.12)
z|>tlog
Proof. We consider for M > 0

% for |[z] < M

0 =
() { 1 for |z| > M
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Then 6y € WH(R?) with | VOus||z~ < 1/M. Now we have u € CO(R, H') N CY (R, H™1).
Then, it can be proved, by a density argument, that ¢t — 27 (9pru(t), u(t)) € AC([-T,T))
for any T' > 0 with

d

a2_1 <9Mu(t), u(t)> = <9Mu(t)7 u(t» :

Since we have i1(t) = —Au + [u[P~tu in D'(R, H~!), we have

%2 HOaru(t), ut)| = [(Oaru(t),itdu = ifulP~u)| = [(Oaru(t),idu)] < [[Vull 2|l 2 VOl o
< IVull g2l 21 VOarll e < CM T
Then it follows, for a C' independent from M,

(Orru(t), u(t)) < CM 't + (Orruo, ug) -

Setting M = tlogt, we obtain by dominated convergence
L JHOPE < B,
T og

C
_+/ 2 |w |dﬂs+/ |u0\2dxm>0
log ¢ |z|<tlogt tlogt |z|>tlogt

Finally

Hu(t)HLP+1(|m|2thgt) < ||u(t)”%2(\a:|>tlogt)||u( )HLd*Jrl(Rd

«a t o8]
< C”u(t)HL2(|x|2tlogt)Hvu( )HLZ (R9) < ClHu( )||L2(|:(:\2tlogt) =

—— 0.

Lemma 5.6. For anye >0 ,t>1 and 7 > 0 there exists ty > max(t,27) s.t
luPdads < e. (5.13) |eq:step21

Proof. The starting point is Lemma 5.4. We have

ulPH! * ds
oo>/dt/ [u Z/ / ulPTtda
R R T 2 slogs |z|<slogs

e t+2(k+1)7
/ ( ) ds / |u|p+1dx
_o Jt+2kT slogs |z|<slogs

M

o0

v

1 t+2(k+1)
/ ds/ lu[P dz.
(t + Z(k + 1)7—) 10g(t + Q(k + 1)T) t+2kT |z|<slog s

Eod

=0
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From this inequality we derive

t+2(k+1)7
liminf/ ds/ lu[Pdx = 0,
k=400 Jitokr |z|<slog s

because otherwise the series would diverge. Hence for any € > 0 there exists kg arbitrarily

large with
t+2(ko+1)T
/ ds/ lulPde < e.
t+2koT |z|<slogs

So for tg =t + 2(ko + 1)7 we obtain (5.13).

Lemma 5.7. For any €,a,b € Ry there exists tg > max(a,b) s.t.
sup  JJu(s)| pp+1 < e (5.14)

SG[to—b,to]

Proof. We have

t
u(t) = ePug — i/ =By (s)|P~ Tu(s)ds
0

t—7 1
:eitAuo —i/ ei(t_S)A|u(S)|p_lu(s)ds—i/ ei(t_S)A|u(S)]p_1u(s)ds
0 t

—T

w(t,T) Z(t,T)

et ug + w(t, ) + z(t, 7).

Now we consider each of the last three terms.

Claim 5.8. We have
e || a1 =25 0. (5.15)

41
Proof. Indeed, if ug € LPT, then

1

: D 5 S
T e R I
p

0.

il
The general case follows from the special one using the fact that H! N L% is dense in
H'. O

Claim 5.9. There is a constant C' independent from ¢t and 7 s.t.

d(p—1)—2max(1,p—1)

(e, Pl < O7 TR (5.16)
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Proof. We define

[ xifp>2
175 iftp<2

Then we have

t—1 _d(l_l> »
lewo(t, 7l < /0 (t—5) G e ds.

Here we claim

1 1

i(3-3)>1 (5.17)

This is obvious by d > 3 if ¢ = co. Otherwise, for p < 2

11 1 2-p\ d P
d<2 q) d<2 5 ) 2(p )>1l<—=p> —i—d,

where the last inequality follows from p > 1 + %. So we have

_g(i_1
ot Pllze < OG0 sup ()2, (5.18)
S

We claim now that 2 < pg’ < p+ 1. Indeed, for p > 2 we have ¢’ = 1 and the claim holds.
If p < 2 then

1 1 2 - p
q q 2 2

so that pg’ = 2. So in all cases we have H! < LP? and we can uniformly bound the last
factor on the right in (5.18).
Next, we claim ||w(t,7)|| 2 < 2||uol| 2, which follows from

w(t, ) = —i/otT )8 ()P u(s)ds = 4 (—i/OtT ei(tTS)A\u(s)plu(s)ds>
— O (u(t ) ei(th)AuO) — Byt — 1) — eltPuy.
Finally, we claim p+ 1 < q. This is obviously the case if ¢ = co. Otherwise p < 2, and then
q>p+1<:>23p >p+le=2>(p+1)2-p) =2+p—p

where the last inequality follows from p > 1 and so from p — p? < 0. Finally by Holder
inequality
I l1-a «

1—
It Dllzesr < ol D" [ IZe where J= = ==+ =
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[N
|
-
|

p

(519

—d 11 +
lw(t, )| e+r < OT (i=74)

(ST
U

We now examine the exponent in (5.19). If ¢ = oo the exponent equals
dlp—1) —2max(l,p—1)

11 ):_d(p—l)—2(p—1):_
2(p+1)

—(d-2) (=~ ——_
( ) (2 p+1 2(p+1)
In the case g < oo, then
(2 )( ) =ben (55)
- e —
2 p+1 5 7 p—1
o dp—1)— —1—2max1p—1)
2(p+ 1) 2(p+1) '
So we have proved that the exponent in (5.19) is exactly the one in (5.16), which is then
U

proved.

We now consider

t
(1) = —i / =21 ()P Ly (5)ds.
t—T1

(520

We have
t ,d<l,i)
etz < [ (6= o))l s
t—T1

Notice that p < d*, that is p+ 1 < d is equivalent to d (7 — —) < 1. Indeed,
1 _d—1_1 1

- > =
p+1 2d 2 d
We now pick ¢ € (1, %). Notice that this implies gd (% — %) < 1. Then

1
< ¢ _ —dq(%—pﬁ)d /i ! pd' g
[2(t, )l o1 S ) (t—s) s t ullpsrds

1
t rd
o ([l as )

9

42



for some a > 0. Now we claim ¢'p > p + 1 or, equivalently, 2 7 <5 +1 Indeed
qg 2 p+1 q q p+1 q 2 p+1
20+1)—(p+1)d+2d D 2—(p+1)d—|—2d D
= = < ,
2(p+1) p+1 2(p+1) p+1

where the last inequality holds because

2
2—(p+1)d—|—2d:2—pd—i—d<0<:>p>1—!—8,

with the latter true because, in our case, p > 1+ %.
From ¢'p > p + 1 it follows that

t @
l2(t, 7l oss < C7° ( / ||u||iti1ds)

/ ds/ |u|p+1dﬂc+/ ds/ \u|p+1d;1:
t—7 |z|>slog s t—T |z|<slog s

m
SQMCTM-M( sup |lu(s )‘LP+1(x|>slogs)> +orC 0 (/ ds/ ’u‘P'de) .
sEt—T,t] t—7 |z|<slog s
(521

Let us take now 7 > b such that

d(p—1)—2max(1,p—1)

Jwot, Dllen < Cr 20 < (5.22)

Next, using Lemma 5.5 and Claim 5.8 let us take ¢; > max(a, b) such that for ¢ > ¢;

1"
itA 5 € -
Helt uol|pp+1 +21CT +p ( sup ||lu(s )||Lp+1 |m|>slogs)> < 1 (5.23)

sEt—T,t]

Using Lemma 5.6 there exists to > t; + 27 such that for ¢ € [tg,to — 7]

1
28O0 / ds/ \u|p+1daz < MO0 / / lulPtde | < <
t—7 |z|<slog s to—21 |z|<slogs 4

(5.24)

O]

Making careful choices, we conclude the proof of Lemma 5.7.

We now move to complete the proof of Theorem 4.2.
Let us fix € > 0. Pick t > 7 > 0. Then, in view of u(t) = e*®ug + w(t,7) + z(t,7), we have
that by Claims 5.8-5.9 there exists t; > 0 and 7. with

d(p—1)—2max(1,p—1)
. — €
lu()l| 1 < € uol| o1 + O ey 2t T)llery < 5+ N2t 7)o,
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where we chose [|e"®ug||ppr1 < £ for t >t and

_d(p—1)—2max(1l,p—1)

o S e (525)

In turn by (5.20)

t 1 _d(p—1)

—d(%—ﬁ) P =3 P
(t—s) P ullppads < CTe sup |u(s) e

2t 7)o < /

t—Te SE[t—Te ]

From Lemma 5.7 we know that there exists tp > max(t;, 7¢) s.t.

- (520

sup u(s)||pr1 <
SE[to—Te,to}

> o

Consider now
te =sup{t > to: ||u(s)||pp+1 < e for all s € [tg — 7, ]},

where (5.26) guarantees that the set on the right hand side is non empty.
If te = +00 we will have proved the desired result. So, let us suppose that . < co. Then,
by u € C°(R, H'), we have ||u(tc)||;»+1 = €. Then we have

d(p—1)
€ € TS5 (pr1)
€< -+ |2t )l < =+ Cre 2P sup JJu(s)|f 40,
2 2 Se[te_’f—eyte}

so that we conclude
€ 1_3(1’*1)
€< 3 + <C’7’6 (et )ep_1> €.

We now need to check that it is possible to choose 7, such that both
1 d(p—1) 1

or b o <1 (5.7

and (5.25) are true. This will lead to a contradiction. Suppose that for 7. which satisfies
(5.25) inequality (5.27) is false. This implies

1 1_ dp=1) d(p—1) _ d(p=1)®—2(p—1) max(1,p—1)

_ 1—
50 <7 2TVl — oygp-ly 2t 2t , (5.28) |contradict_1

where we substituted ¢?~! using the equality (5.25). We will show now that the exponent
of 7. is negative, so that taking 7. > 1 formula (5.28) leads to a contradiction. Taking a
unique fraction in the exponent and focusing on the numerator, we have

2(p+1) —d(p—1) —d(p—1)* + 2(p — 1) max(1,p — 1)

=(p-1)2max(l,p—1)—d—dp—1))+2(p+1)
=(—-1)(@2max(l,p—-1)+2-dp—1))—dlp—1)-2(p—1)+2(p+1)
=(p-1)(2max(l,p—1)+2—-d(p—1)) —dp—1) +4. (5.29)
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For p — 1 <1 the quantity in line (5.29) becomes
(p-—1)@—dp-1) —dlp-1)+4=pAd—-dp-1) <0

by p > 1+ 4/d and this completes the proof for p — 1 < 1.
For p — 1 > 1 the quantity in line (5.29) becomes

P-1)Q2p-1)+2-dp—-1))—dp—1)+4
=(p-1)2—=(d-=2)(p—1)—dp—1)+4.
For d > 4

pP-1@2-(d=2)(p—-1) —dp—1)+4
<@-1DE2-20p-1)-4p-1)+4=-20p—-1p-4(p—-2) <0.

Finally, for d = 3 and p — 1 > 1 the quantity in line (5.29) becomes, for « = p — 1,

P-DQEP-D+2-3p-1)-3p-1)+4
= —a? —a+4=:—qa).

Now, ¢(a) = 0 for ay = —1/2 + \/Tﬁ This means that ¢(o) < 0 for p — 1 > @
The completion of the proof of Theorem 4.2 for the remaining cases, that is d = 3 and
2<p§@isn0tinh%]z’.

O
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