
1 Schrödinger equations
sec:Segal

For u0 ∈ S ′(Rd,C) the linear homogeneous Schrödinger equation is

iut +△u = 0 , u(0, x) = u0(x). (1.1) linear_SE

By applying F we transform the above problem into

ût + i|ξ|2û = 0 , û(0, ξ) = û0(ξ).

This yields û(t, ξ) = e−it|ξ|2 û0(ξ). We have e−it|ξ|2 = Ĝ(t, ξ) with G(t, x) = (2ti)−
d
2 e

i|x|2
4t .

This follows from the following generalization of (??) for Re z > 0

e−z
|ξ|2
2 = (2πz)−

d
2

∫
Rd

e−iξ·xe−
|x|2
2z dx.

This formula follows from the fact that both sides are holomorphic in Re z > 0 and coincide
for z ∈ R+. Then taking the limit z → 2i for Re z > 0 and using the continuity of F in
S ′(Rd,C) we get

e−i|ξ|2 = (4πi)−
d
2

∫
Rd

e−iξ·xe
i|x|2
4 dx.

Then u(t, x) = (2π)−
d
2G(t, ·) ∗ u0(x). In particular, for u0 ∈ Lp(Rd,C) for p ∈ [1, 2] and by

Reisz’s interpolation defines for any t > 0 an operator which we denote by

ei△tu0(x) = (4πit)−
d
2

∫
Rd

e
i|x−y|2

4t u0(y)dy (1.2) eq:schsgroup

which is s.t. ei△t : Lp(Rd,C) → Lp′(Rd,C) for p ∈ [1, 2] and p′ = p
p−1 with ∥ei△tu0∥Lp′ ≤

(4πt)
−d( 1

2
− 1

p′ )∥u0∥Lp by Riesz interpolation.

rem:scr Remark 1.1. Notice that for no p ̸= 2 and t > 0 we have that ei△t defines a bounded
operator Lp(Rd,C) → Lp(Rd,C), see

hormander
[8].

rem:heat Remark 1.2. Notice that e△t : Lp(Rd) → Lq(Rd) is a bounded operator for all 1 ≤ p ≤ q ≤
∞.

Notice that (1.1) is time reversible. and if u(t, x) = ei△tu0(x), then v(t, x) = u(−t, x) =
ei△tu0(x) is a solution.

Let now u(t, x) = ei△tu0(x), and for v, D ∈ Rd consider v0(x) = ei
v
2
·xu0(x−D). Then

v(t, x) := ei△tv0(x) = e
i
2
v·x−iv

2

4
tu(t, x− tv −D).

In the sequel, given v, w ∈ L2(Rd,C) we will use the notation

⟨v, w⟩ = Re

∫
Rd

v(x)w(x)dx. (1.3) eq:scalar_Sch
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In the sequel we will reinterpret the equation

iut +△u = f , u(0) = u0 ∈ H1(Rd) (1.4) eq:LinSh

in the integral form

u(t) = eit△u0 − i

∫ t

0
ei(t−t′)△f(t′)dt′. (1.5) eq:sduhxsidw

To understand this formula we will need Strichartz’s inequalities.
We say that a pair (q, r) is admissible when

2

q
+

d

r
=

d

2
(1.6) admissiblepair1

2 ≤ r ≤ 2d

d− 2
(2 ≤ r ≤ ∞ if d = 1, 2 ≤ r < ∞ if d = 2). (1.7) admissiblepair2

rem:admiss Remark 1.3. The pair (∞, 2) is always admissible. The endpoint (2,
2d

d− 2
) is admissible

for d ≥ 3 but the point (2,∞) is not for d = 2. The equality (1.6) needs to be true by the
parabolic scaling u(t, x) u(λ2t, λx), which preserves the set of solutions to (1.1).

We have the following important result.

thm:strich Theorem 1.4 (Strichartz’s estimates). The following facts hold.

(1) For every u0 ∈ L2(Rd) we have ei△tu0 ∈ Lq(R, Lr(Rd)) ∩ C0(R, L2(Rd)) for every
admissible (q, r). Furthermore, there exists a C s.t.

∥ei△tu0∥Lq(R,Lr(Rd)) ≤ C∥u0∥L2 . (1.8) strich1

(2) Let I be an interval and let t0 ∈ I. If (γ, ρ) is an admissible pair and f ∈ Lγ′
(I, Lρ′(Rd))

then for any admissible pair (q, r) the function

T f(t) =

∫ t

t0

ei△(t−s)f(s)ds (1.9) strich2

belongs to Lq(I, Lr(Rd))∩C0(I, L2(Rd)) and there exists a constant C independent of
I and f s.t.

∥T f∥Lq(I,Lr(Rd)) ≤ C∥f∥Lγ′ (I,Lρ′ (Rd)). (1.10) strich3

2 Keel and Tao’s proof of Strichartz estimates
sec:Strichartz

We will follow the argument by Keel and Tao
Kl-Tao
[7]. We will assume that (X, dx) is a

measurable space and that H is a Hilbert space. We consider a family of operators
U(t) : H → L2(X). We assume the following two hypotheses.
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(1) There exists a C > 0 s.t.

∥U(t)f∥L2 ≤ C∥f∥H for all f ∈ H;

(2) there exist a σ > 0 and a C > 0 s.t. for all t ̸= s and all g ∈ L1(X) we have

∥U(t)(U(s))∗g∥L∞ ≤ C|t− s|−σ∥g∥L1 .

We say that a pair (q, r) is σ–admissible when

2

q
+

2σ

r
= σ

r, q ≥ 2 and (q, r, σ) ̸= (2,∞, 1).

(2.1) sigadmissiblepair

Particularly important, for σ > 1 , is the point P =

(
2,

2σ

σ − 1

)
.

Notice that (1) implies ∥U∗(t)F∥L2 ≤ C∥F∥L2 by duality and that ⟨U(t)h, f⟩L2(X) =

⟨h, (U(t))∗f⟩H 1

thm:taostrich Theorem 2.1 (Keel and Tao’s Strichartz estimates). If U(t) satisfies (1) and (2), and if
furthermore there exists an appropriate scaling operator in X and H, then we have

(3)
∥U(t)u0∥Lq(R,Lr(X)) ≤ Cq,r∥u0∥H .

(4)

∥
∫
R
(U(s))∗F (s)ds∥H ≤ C∥F∥Lq′ (R,Lr′ (X)).

(5)

∥
∫
t>s

U(t)(U(s))∗F (s)ds∥Lq(R,Lr(X)) ≤ Cq,r,q̃,r̃∥F∥Lq̃′ (R,Lr̃′ (X)).

for all admissible pairs (q, r) and (q̃, r̃).

(3) is called the homogeneous estimate and (5) the non–homogeneous estimate or also
the retarded estimate. (3) and (4) are equivalent by duality. The scaling operators are used
only in Sect. 2.2.

1Notice that since h → ⟨U(t)h, f⟩L2(X) is continuous, an element f∗ ∈ H remains defined such that
⟨U(t)h, f⟩L2(X) = ⟨h, f∗⟩H . The map f → f∗ is linear, bounded and (U(t))∗f := f∗.

3



2.1 Proof of the nonendpoint homogeneous estimate
sec:nonendpoint

We consider the case (q, r) ̸= P . The proof of this case predates the paper by Keel and
Tao.
It is elementary that (4) is equivalent to∣∣∣∣∫

R2

⟨(U(s))∗F (s), (U(t))∗G(t)⟩H dtds

∣∣∣∣ ≤ C∥F∥Lq′ (R,Lr′ (X))∥G∥Lq′ (R,Lr′ (X)).

(indeed, if T : X → H is an operator from a Banach space X to a Hilbert space H, we have
∥Tx∥H ≤ C∥x∥X for all x ∈ X if and only if | ⟨Tx, Ty⟩H | ≤ C2∥x∥X∥y∥X for all x, y ∈ X).
So we have to prove the above estimate. Furthermore, it is enough to prove the above
bound for

T (F,G) :=

∫
t>s

⟨(U(s))∗F (s), (U(t))∗G(t)⟩H dtds. (2.2) eq:TFG

By (1) we know that (3) holds for q = ∞ and r = 2. So pointwise

|⟨(U(s))∗F (s), (U(t))∗G(t)⟩H | =
∣∣∣⟨U(t)(U(s))∗F (s), G(t)⟩L2(X)

∣∣∣
≤ ∥U(t)(U(s))∗F (s)∥L2(X)∥G(t)∥L2(X) ≤ C2∥F (s)∥L2(X)∥G(t)∥L2(X).

Furthermore

|⟨(U(s))∗F (s), (U(t))∗G(t)⟩H | =
∣∣∣⟨U(t)(U(s))∗F (s), G(t)⟩L2(X)

∣∣∣ ≤ ∥U(t)(U(s))∗F (s)∥L∞(X)∥G(t)∥L1(X)

≤ C|t− s|−σ∥F (s)∥L1(X)∥G(t)∥L1(X).

From the Riesz–Thorin Interpolation Theorem, see Theorem ??, we have (omitting the
constant) for any r ∈ 2,∞]

∥U(t)(U(s))∗F (s)∥Lr(X) . |t− s|−σ(1− 2
r )∥F (s)∥Lr′ (X) = |t− s|−1−β(r,r)∥F (s)∥Lr′ (X)

where β(r, r̃) := σ − 1− σ

r
− σ

r̃
.

Then we conclude

|⟨(U(s))∗F (s), (U(t))∗G(t)⟩H | . |t− s|−1−β(r,r)∥F (s)∥Lr′ (X)∥G(t)∥Lr′ (X).

Then for 1
q′ −

1
q = −β(r, r), using the Hardy,Littlewood Sobolev inequality, see Theorem ??

, which requires q > q′,

|T (F,G)| . ∥
∫
R
|t− s|−1−β(r,r)∥F (s)∥Lr′ (X)ds∥Lq(R)∥G∥Lq′ (R,Lr′ (X)) . ∥F∥Lq′ (R,Lr′ (X))∥G∥Lq′ (R,Lr′ (X)).

Notice that 1
q′ −

1
q = −β(r, r) means

1− 2

q
= −σ + 1 + 2

σ

r
⇔ 2

q
+

2σ

r
= σ

and −β(r, r) > 0 means

r <
2σ

σ − 1
.
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2.2 Proof of the endpoint homogeneous estimate
sec:endpoint

Here we consider the endpoint case (q, r) = P = (2, 2σ
σ−1), when σ > 1.

The introduction of a scaling operator will simplify considerably the discussion. We
will denote it by Dλ for λ > 0. We assume the following:

1. there exist operators Dλ : H → H s.t. ⟨Dλf,Dλg⟩H = λ−σ ⟨f, g⟩H

2. there exist operators Dλ : Lr(X) → Lr(X) s.t ∥Dλf∥Lr(X) = λ−σ
r ∥f∥Lr(X)

3. in all cases D−1
λ = Dλ−1 and D∗

λ = λ−σDλ−1 .

Notice that for σ = d
2 , H = L2(Rd) and X = Rd with Lr(X) the standard Lebesgue spaces,

then Dλf(x) := f(λ
1
2x) satisfies the desired requirements. Notice that we used the same

notation for dilation operators in H and Lr(X), but they are distinct operators.

lem:resc Lemma 2.2. Let the function t → U(t) satisfy (1) and (2) in Sect. 2. Then t →
DλU(λt)Dλ−1 satisfies (1) and (2) in Sect. 2 with exactly the same constants C.

Proof. Indeed

∥DλU(λt)Dλ−1f∥L2 = λ−σ
2 ∥U(λt)Dλ−1f∥L2 ≤ Cλ−σ

2 ∥Dλ−1f∥H = C∥f∥H

and from (DλU(λs)Dλ−1)∗ = Dλ(U(λs))∗Dλ−1 ,

∥DλU(λt)Dλ−1(DλU(λs)Dλ−1)∗f∥L∞∥DλU(λt)(U(λs))∗Dλ−1f∥L∞

= ∥U(λt)(U(λs))∗Dλ−1f∥L∞ ≤ Cλ−σ|t− s|−σ∥Dλ−1f∥L1 = C|t− s|−σ∥f∥L1 .

After the above preliminary on scaling operators, expand

T (F,G) =
∑
j∈Z

Tj(F,G) where Tj(F,G) :=

∫
t−2j>s>t−2j+1

⟨(U(s))∗F (s), (U(t))∗G(t)⟩H dtds.

(2.3) eq:keel 21

We will prove ∑
j∈Z

|Tj(F,G)| . ∥F∥L2Lr′∥G∥L2Lr′ . (2.4) eq:keel 22

We will prove the following.

lem:keel 4.1 Lemma 2.3. For a fixed constant C dependent only on the constants in (1) –(2) Sect. 2.
we have

|Tj(F,G)| ≤ C2−jβ(a,b)∥F∥L2La′∥G∥L2Lb′ . (2.5) eq:keel 23

with (1/a, 1/b) in a sufficiently small, but fixed neighborhood of (1/r, 1/r), dependent only
on σ.
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Proof. Notice that

Tj(F,G) =

∫
t−2j>s>t−2j+1

⟨(U(s))∗F (s), (U(t))∗G(t)⟩H dtds

= 22j2jσ
∫
t−1>s>t−2

〈
D2j (U(2js))∗D2−jD2jF (2js), D2j (U(2jt))∗D2−jD2jG(2jt)

〉
H
dtds.

Suppose now that we have (2.4) in the particular case j = 0. Then we have

|Tj(F,G)| ≤ C22j2jσ∥D2jF (2js)∥L2La′∥D2jG(2jt)∥L2Lb′ = C22j2jσ2−j(1+ σ
a′+

σ
b′ )∥F∥L2La′∥G∥L2Lb′

= C2j(2+σ−1−2σ+σ
a
+σ

b )∥F∥L2La′∥G∥L2Lb′ = C2j(1−σ+σ
a
+σ

b )∥F∥L2La′∥G∥L2Lb′ = C2−jβ(a,b)∥F∥L2La′∥G∥L2Lb′

where we recall β(a, b) = σ − 1− σ
a − σ

b .
So we have reduced to the case j = 0. Next we do another reduction. We claim that to

prove the case j = 0 it is enough to assume that F and G are supported in time intervals
of length 1. Indeed, assuming this case, then we have

|T0(F,G)| ≤
∑
n∈Z

∣∣∣∣∫
n+1>t>n

dt

∫
t−1>s>t−2

⟨(U(s))∗F (s), (U(t))∗G(t)⟩H ds

∣∣∣∣
≤ C

∑
n∈Z

∥F∥L2((n,n+1),La′ )∥G∥L2((n−2,n),Lb′ ) ≤ C

(∑
n∈Z

∥F∥2
L2((n,n+1),La′ )

) 1
2
(∑

n∈Z
∥G∥2

L2((n−2,n),La′ )

) 1
2

= C
√
2

(∑
n∈Z

∥F∥2
L2((n,n+1),La′ )

) 1
2
(∑

n∈Z
∥G∥2

L2((n−1,n),Lb′ )

) 1
2

= C
√
2∥F∥L2La′∥G∥L2Lb′ .

Hence, in the rest of the proof we will assume that F and G are supported in time intervals
of length 1. To prove (2.5) for j = 0 we consider three cases:

(i) a = b = ∞;

(ii) 2 ≤ a < r and b = 2;

(iii) a = 2 and 2 ≤ b < r.

Then the desired result follows by interpolation.
Let us start with (i). The proof is elementary and straightforward, because we have

|T0(F,G)| ≤
∫

dt

∫
t−1>s>t−2

| ⟨U(t)(U(s))∗F (s), G(t)⟩L2(X) |ds

≤ C

∫
dt

∫
t−1>s>t−2

|t− s|−σ∥F (s)∥L1∥G(t)∥L1 ≤ C

∫
dt

∫
t−1>s>t−2

∥F (s)∥L1∥G(t)∥L1

≤ C∥F∥L1L1∥G∥L1L1 ≤ C∥F∥L2L1∥G∥L2L1 .
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Let us now consider (ii). Here we will use the Strichartz estimates in Sect. 2.1. We have

|T0(F,G)| ≤
∫

|
〈∫

t−1>s>t−2
(U(s))∗F (s)ds, (U(t))∗G(t)

〉
H

|dt

≤
∫ ∥∥∥∥∫

t−1>s>t−2
(U(s))∗F (s)ds

∥∥∥∥
H

∥(U(t))∗G(t)∥Hdt

≤ sup
t

∥∥∥∥∫
t−1>s>t−2

(U(s))∗F (s)ds

∥∥∥∥
H

∫
∥(U(t))∗G(t)∥Hdt

≤ C∥G∥L1L2 sup
t

∥∥∥∥∫
t−1>s>t−2

(U(s))∗F (s)ds

∥∥∥∥
H

,

where we used (1) in Sect. 2. Now, using the non endpoint Strichartz estimates in Sect.
2.1 (notice here 2 ≤ a < r) we have, for (q(a), a) admissible,

sup
t

∥∥∥∥∫
t−1>s>t−2

(U(s))∗F (s)ds

∥∥∥∥
H

≤ C∥F∥Lq(a)′La′ ≤ C∥F∥L2La′ .

This proves (ii) and by symmetry yields also (iii).
Now we need to show that (2.5) implies (2.4). Obviously, we cannot just take a = b = r

and sum up, since β(r, r) = 0. To give an intuition on how to overcome this problem, Keel
and Tao consider functions of the form

F (t) = 2−
k
r′ f(t)χE(t)(x) and G(s) = 2−

k̃
r′ g(s)χ

Ẽ(s)
(x), (2.6) eq:atoms0

with scalar functions f(t), g(s) and E(t) resp. Ẽ(s) sets of size 2k resp. 2k̃. Applying (2.5)
we obtain

|Tj(F,G)| ≤ C2−j(σ−1−σ
a
−σ

b )2−
k
r′ 2

k
a′ 2−

k̃
r′ 2

k̃
b′ ∥f∥L2∥g∥L2

= C2−j( 2σ
r
−σ

a
−σ

b )2−(k+k̃)(�1− 1
r )+���(k+k̃)− k

a
− k̃

b ∥f∥L2∥g∥L2

= C2−j( 2σ
r
−σ

a
−σ

b )+k( 1
r
− 1

a)+k̃( 1
r
− 1

b )∥f∥L2∥g∥L2

= C2(k−jσ)( 1
r
− 1

a)+(k̃−jσ)( 1
r
− 1

b )∥f∥L2∥g∥L2 . (2.7) eq:atoms1

Notice now that we can adjust (a, b) s.t. for a fixed small ε > 0 the last term equals

C2−ε|k−jσ|−ε|k̃−jσ|∥f∥L2∥g∥L2 (2.8) eq:atoms2

whose sum for j ∈ Z is finite.
To convert the above intuition in a proof we consider the following preliminary lemma.

lem:keel 5.1 Lemma 2.4. Let p ∈ (0,∞). Then any f ∈ Lp
x can be written as

f =
∑
k∈Z

ckχk

where meas(suppχk) ≤ 2 2k, |χk| ≤ 2
− k

p and ∥ck∥ℓp ≤ 2
1
p ∥f∥Lp .

7



Proof. Consider the distribution function λ(α) = meas({|f(x)| > α}). Then for each k
consider

αk := inf
λ(α)<2k

α , ck := 2
k
pαk , χk :=

1

ck
χ(αk+1,αk](|f |)f.

Notice that {αk}k∈Z is decreasing in k (since, the larger k, the larger is the set {α : λ(α) <
2k}).
We show the desired properties. We have

suppχk ⊆ {x : αk+1 < |f(x)| ≤ αk} ⊆ {x : |f(x)| > αk+1}.

Then we get the 1st inequality:

meas(suppχk) ≤ meas({x : |f(x)| > αk+1}) = lim
α→α+

k+1

λ(α) = sup{λ(α) : α > αk+1}) ≤ 2k+1.

Next, by |f(x)| ≤ αk in suppχk, we have

|χk(x)| ≤ 2
− k

p
|f(x)|
αk

≤ 2
− k

p .

Let now lim
k→+∞

αk = inf
k∈Z

αk = α and lim
k→−∞

αk = sup
k∈Z

αk = α. Then we claim that α = 0 and

that |f(x)| ≤ α a.e. Indeed, suppose that |f(x)| > α on a set of positive measure. There
there is α > α with λ(α) > 2k for some k ∈ Z. Then αk ≥ α > α, which is a contradiction.
On the other hand, suppose we have 0 < α < α. Then λ(α) = ∞, since otherwise λ(α) < 2k

for a k, and then α ≥ αk ≥ α > α, getting a contradiction. But by Chebyshev’s inequality,

∞ > ∥f∥pLp ≥ αpλ(α),

hence getting a contradiction. The above claim and the obvious fact that for any x we

have |f(x)| ∈ (αk+1, αk] for at most one k, prove f =
∑
k∈Z

ckχk (the claim guarantees the

existence of one such k).

We have ∥f∥Lp ≤ 2
1
p ∥ck∥ℓp by

∥f∥pLp =

∫
|f |pdx =

∫ ∑
k∈Z

|ck|p|χk|pdx =
∑
k∈Z

|ck|p
∫

|χk|pdx ≤
∑
k∈Z

|ck|p2−kmeas(suppχk)

≤ 2
∑
k∈Z

|ck|p

Next we have∑
k∈Z

|ck|p =
∑
k∈Z

2kαp
k =

∫
R+

αp
(∑

2kδ(α− αk)
)
dα =

∫
R+

αp(−F ′(α))dα
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where

F (α) :=
∑
k∈Z

2kH(αk − α) =
∑
αk>α

2k ≤
∑

2k≤λ(α)

2k ≤ 2λ(α).

Then, integrating by parts and using (??),∑
k∈Z

|ck|p = p

∫
R+

αp−1F (α)dα ≤ 2p

∫
R+

αp−1λ(α)dα = 2∥f∥pLp ,

so that ∥ck∥ℓp ≤ 2
1
p ∥f∥Lp .

Furthermore we have the following.

lem:keel 5.1b Lemma 2.5. Let 1 ≤ q, r < ∞ and let f ∈ Lq(I, Lr
x) with I an interval. Then we can write

the expansion of Lemma 2.4

f =
∑
k∈Z

ck(t)χk(t) (2.9) lem:keel 5.1b1

with t → {ck(t)} a map in Lq(I, `r).

Proof. Formally this follows immediately from

∥{ck(t)}∥Lq(I,ℓr) = ∥∥{ck(t)}∥ℓr∥Lq(I) ≤ 2
1
p ∥∥f∥Lr

x
∥Lq(I).

However one needs to argue that the function t → {ck(t)} is measurable. By a density

argument it is enough to consider the case of simple functions f =
∑

j=1,...,n

χEj (t)gj(x) with

Ej mutually disjoints sets. Then λ(t, α) = meas({|f(t, x)| > α}) =
∑

j=1,...,n

χEj (t)λj(α) with

λj the distribution function of gj . Then αk(t) =
∑

j=1,...,n χEj (t)α
(j)
k with α

(j)
k defined like

in Lemma 2.4 for each gj . Then

{ck(t)} =
∑

j=1,...,n

χEj (t){c
(j)
k } for c

(j)
k = 2

k
pα

(j)
k .

This is measurable in t.

Consider now the

F (t) =
∑
k∈Z

fk(t)χk(t) , G(s) =
∑
k∈Z

gk(s)χ̃k(s). (2.10) eq;kt29
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By (2.6)–(2.8) e have∑
j

|Tj(F,G)| ≤
∑
j,k,k̃

|Tj(fkχk, gk̃χ̃k̃
)| ≤ C

∑
j,k,k̃

2−ε|k−jσ|−ε|k̃−jσ|∥fk∥L2
t
∥g

k̃
∥L2

t

= C
∑
k,k̃

∑
j

2−ε|k−jσ|−ε|k̃−jσ|
 ∥fk∥L2

t
∥g

k̃
∥L2

t
.

We claim that for a fixed C = C(σ, ε)∑
j

2−ε|k−jσ|−ε|k̃−jσ| ≤ C2−ε|k−k̃|(1 + |k − k̃|). (2.11) eq:youngKT

To prove this inequality, it is not restrictive to assume k ≤ k̃. Then the summation on the
left can be rewritten as∑

jσ≤k

22εjσ−ε(k+k̃) +
∑

k<jσ≤k̃

2−ε(k̃−k) +
∑
k̃<jσ

2ε(k+k̃)−2εjσ.

Then (here [t] ∈ Z is the integer part of t ∈ R, defined by [t] ≤ t < [t] + 1)

∑
jσ≤k

22εjσ−ε(k+k̃) = 2−ε(k+k̃)
∑
j≤[ kσ ]

22εjσ = 2−ε(k+k̃)
∞∑
j=0

22εσ([
k
σ ]−j) = Cεσ 2−ε(k+k̃)+2εσ[ kσ ]

≤ Cεσ2
−ε(k+k̃)+2εσ k

σ = Cεσ2
−ε(k̃−k) = Cεσ2

−ε|k−k̃| where Cεσ =
1

1− 2−2εσ
.

We have∑
k̃<jσ

2ε(k+k̃)−2εjσ ≤ 2ε(k+k̃)
∑

j≥
[
k̃
σ

]
+1

2−2εjσ = 2ε(k+k̃)
∞∑
j=0

2
−2εσ

([
k̃
σ

]
+1+j

)
= Cεσ2

ε(k+k̃)−2εσ
([

k̃
σ

]
+1

)

≤ Cεσ2
ε(k+k̃)−2εσ k̃

σ = Cεσ2
−ε(k̃−k) = Cεσ2

−ε|k−k̃|.

Finally

∑
k<jσ≤k̃

2−ε(k̃−k) = 2−ε(k̃−k)
∑

[ kσ ]+1≤jσ≤
[
k̃
σ

] 1 = 2−ε(k̃−k)

([
k̃

σ

]
−
[
k

σ

]
− 1

)
≤ σ−12−ε(k̃−k)(k̃ − k)
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Hence (2.11) is proved. From this we conclude that for a fixed C∑
j

|Tj(F,G)| ≤ C
∑
k,k̃

2−ε|k−k̃|(1 + |k − k̃|)∥fk∥L2
t
∥g

k̃
∥L2

t

≤ C∥{∥fk∥L2
t
}∥ℓ2(Z)

∥∥∥∥∥∥{
∑
k̃

2−ε|k−k̃|(1 + |k − k̃|)∥g
k̃
∥L2

t
}

∥∥∥∥∥∥
ℓ2(Z)

≤ C

(∑
k

2−ε|k|(1 + |k|)

)
∥{∥fk∥L2

t
}∥ℓ2(Z)∥{∥gk∥L2

t
}∥ℓ2(Z)

where we used Lemma ??. So, using r′ ≤ 2,∑
j

|Tj(F,G)| ≤ C ′∥{∥fk∥L2
t
}∥ℓ2(Z)∥{∥gk∥L2

t
}∥ℓ2(Z) = C ′∥∥{fk}∥ℓ2(Z)∥L2

t
∥∥{gk}∥ℓ2(Z)∥L2

t

≤ C ′′∥∥{fk}∥ℓr′ (Z)∥L2
t
∥∥{gk}∥ℓr′ (Z)∥L2

t
≤ C ′′′∥∥F∥Lr′

x
∥L2

t
∥∥∥G∥Lr′

x
∥L2

t

which completes the proof of (2.4).

2.3 Proof of the non homogeneous estimate
sec:non hom

We need to prove that for all admissible pairs (q, r) and (q̃, r̃) we have

|T (F,G)| ≤ Cq,r,q̃,r̃∥F∥Lq′ (R,Lr′ (X))∥G∥Lq̃′ (R,Lr̃′ (X)). (2.12) eq:29KT

We have already proved that this is true for (q, r) = (q̃, r̃). Furthermore, proceeding like in
Lemma 2.3

|T (F,G)| ≤
∫ ∣∣∣∣〈∫

t>s
(U(s))∗F (s)ds, (U(t))∗G(t)

〉
H

∣∣∣∣ dt
≤
∫

∥
∫
t>s

(U(s))∗F (s)ds∥H∥(U(t))∗G(t)∥Hdt ≤ sup
t

∥
∫
t>s

(U(s))∗F (s)ds∥H
∫

∥(U(t))∗G(t)∥Hdt

≤ C∥G∥L1L2 sup
t

∥
∫
t>s

(U(s))∗F (s)ds∥H ,

Then, by (4) in Theorem 2.1 (that is the dual homogenous estimates, which are already
proved) for any admissible pair (q, r)

sup
t

∥
∫
t>s

(U(s))∗F (s)ds∥H = sup
t

∥
∫
R
(U(s))∗F (s)χ(−∞,t)(s)ds∥H ≤ C∥Fχ(−∞,t)∥Lq′ (R,Lr′ ) ≤ C∥F∥Lq′ (R,Lr′ ).

So (2.12) holds for (q̃, r̃) = (∞, 2) and any admissible pair (q, r). Obviously, symmetrically
(2.12) holds for (q, r) = (∞, 2) and any admissible pair (q̃, r̃). Finally, let us consider (q, r)
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and (q̃, r̃) not in one of the cases already covered. Then it is not restrictive to assume that
(q̃, r̃) = (at0 , bt0) for t0 ∈ (0, 1) where(

1

at
,
1

bt

)
= t

(
1

q
,
1

r

)
+ (1− t)

(
1

∞
,
1

2

)
.

In the cases t = 0, 1 the inequality holds, because these are cases considered above. By a
generalization of Riesz–Thorin, Theorem ??, the inequality holds also for the intermediate
t’s.

3 The semilinear Schrödinger equation
sec:NLS

There is a vast literature on semilinear Schrödinger equations. For a survey, with a concise
discussion of some physical motivations, we refer to

sulem
[13]. Here though, we consider only the

mathematical formalism and only the pure power semilinear Schrödinger equations{
iut = −△u+ λ|u|p−1u for (t, x) ∈ [0,∞)× Rd

u(0, x) = u0(x)
(3.1) eq:NLS

for λ ∈ R\{0} and p > 1. Here p < d∗ with d∗ = ∞ for d = 1, 2 and d∗ = d+2
d−2 for d ≥ 3.

We collect here a number of facts needed later.

lem:misc Lemma 3.1. We have the following facts.

(1) For 1 < p < d∗ we have the Gagliardo–Nirenberg inequality:

∥u∥Lp+1(Rd) ≤ Cp∥∇u∥αL2(Rd)∥u∥
1−α
L2(Rd)

for
1

p+ 1
=

1

2
− α

d
. (3.2) eq:gn

(2) The map u → |u|p−1u is a locally Lipschitz from H1(Rd) to H−1(Rd).

(3) For u ∈ W 1,p+1(Rd,C) we have ∇(|u|p−1u) = p|u|p−1∇u + (p − 1)|u|p−1

(
u

|u|

)2

∇u

and belonging to L
p+1
p (Rd,C).

Proof. For (1) see Theorem ??.
We turn (2). By (3.2) we know that u → |u|p−1u maps H1(Rd) → Lp+1(Rd) →

L
p+1
p (Rd). Furthermore this map is locally Lipschitz:

∥|u|p−1u− |v|p−1v∥
L

p+1
p

≤ C∥(|u|p−1 + |v|p−1)(u− v)∥
L

p+1
p

≤ C ′(∥u∥p−1
Lp+1 + ∥v∥p−1

Lp+1)∥u− v∥Lp+1

12



where we have used, for w = v − u,

|u|p−1u− |v|p−1v =

∫ 1

0

d

dt

(
|u+ tw|p−1(u+ tw)

)
dt =∫ 1

0
|u+ tw|p−1dtw +

∫ 1

0
(u+ tw)

d

dt

(
(u1 + tw1)

2 + (u2 + tw2)
2
) p−1

2 dt =

∫ 1

0
|u+ tw|p−1dtw+

2∑
j=1

∫ 1

0
(u+ tw)

p− 1

2

(
(u1 + tw1)

2 + (u2 + tw2)
2
) p−3

2 2(uj + twj)dtwj

which from |u+ tw| ≤ |u|+ |v| for t ∈ [0, 1] and∣∣∣∣(u+ tw)
p− 1

2

(
(u1 + tw1)

2 + (u2 + tw2)
2
) p−3

2 2(uj + twj)wj

∣∣∣∣ ≤ (p− 1)|u+ tw|p−1|w|

yields ∣∣|u|p−1u− |v|p−1v
∣∣ ≤ p(|u|+ |v|)p−1|u− v| ≤ p2p−1(|u|p−1 + |v|p−1)|u− v|,

where in the last step we used, for |u| ≥ |v|,

(|u|+ |v|)p−1 ≤ 2p−1|u|p−1 ≤ 2p−1(|u|p−1 + |v|p−1).

Next, we show that we have an embedding L
p+1
p (Rd) ↪→ H−1(Rd). Indeed, this is equivalent

to H1(Rd) ↪→ Lp+1(Rd) with in turn is a consequence of (3.2).
We turn (3). First of all we claim that if G ∈ C1(C,C) with G(0) = 0 and |∇G| ≤

M < ∞, then ∇(G(u)) = ∂uG(u)∇u+ ∂uG(u)∇u in the sense of distributions. This claim
can be proved like Proposition 9.5 in

brezis
[2] and we skip the proof here.

Let us now consider an increasing function g ∈ C∞(R+,R) s.t.

g(s) =

 s
p−1
2 for 0 ≤ s ≤ 1

2
p−1
2 for s ≥ 2

and let us define Gm(u) = mp−1g
(
|u|2
m2

)
u for m ∈ N. Then, by the claim, for all ϕ ∈

C∞
c (Rd,C) and all u ∈ W 1,p+1(Rd,C) we have

−
∫

Gm(u) ∂jϕ =

∫
(∂uGm(u)∂ju+ ∂uGm(u)∂ju) ϕ. (3.3) eq:chain d--1

Let us take now the limit for m → ∞. We have∫
Gm(u) ∂jϕ =

∫
|u|p−1u ∂jϕ−

∫
|u|≥m

|u|p−1u ∂jϕ+

∫
|u|≥m

Gm(u) ∂jϕ.
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Now we have ∫
|u|≥m

|u|p−1u ∂jϕ
m→∞−−−−→ 0 by Dominated Convergence

since χ{|u|≥m}(x)
m→∞−−−−→ 0 a.e. by Chebyshev’s inequality. Similarly∣∣∣∣∣

∫
|u|≥m

Gm(u) ∂jϕ

∣∣∣∣∣ ≤
∫
|u|≥m

|Gm(u) ∂jϕ| ≤ 2p−1

∫
|u|≥m

mp−1|u| ∂jϕ|

≤ 2p−1

∫
|u|≥m

|u|p|∂jϕ|
m→∞−−−−→ 0

Next, we consider the limit of the r.h.s. of (3.3). For G(u) = |u|p−1u we have∫
(∂uGm(u)∂ju+ ∂uGm(u)∂ju) ϕ =

∫
(∂uG(u)∂ju+ ∂uG(u)∂ju)

−
∫
|u|≥m

(∂uG(u)∂ju+ ∂uG(u)∂ju) ϕ+

∫
|u|≥m

(∂uGm(u)∂ju+ ∂uGm(u)∂ju) ϕ.

Then, like before, the terms of the 2nd line converge to 0 as m → ∞ and so we conclude
that all ϕ ∈ C∞

c (Rd,C) and all u ∈ W 1,p+1(Rd,C) we have

−
∫

|u|p−1u ∂jϕ =

∫ (
p|u|p−1∂ju+ (p− 1)|u|p−1

(
u

|u|

)2

∂ju

)
ϕ.

The fact of belonging to L
p+1
p (Rd,C) follows immediately from Hölder inequality.

Important are the following quantities:

E(u) =
1

2

∫
Rd

|∇u|2dx+
λ

p+ 1

∫
Rd

|u|p+1dx

Pj(u) =
1

2
Im

∫
Rd

∂juudx

Q(u) =

∫
Rd

|u|2dx.

(3.4) eq:energyfunctional

Here E(u) is the energy, Pj(u) for j = 1, ..., d are the linear momenta and Q(u) is the mass
or charge.

rem:energyfunctional Remark 3.2. Notice that Q,Pj ∈ C∞(H1(Rd),R) while E ∈ C1(H1(Rd),R). We will show
that the above quantities are conserved for solutions in H1(Rd,C). Here E is the hamil-
tonian. The system is invariant under the transformation u → eiϑu for ϑ ∈ R and the
transformations u(x1, ...xj−1, xj , xj+1, ..., xd) → u(x1, ...xj−1, xj − τ, xj+1, ..., xd) for τ ∈ R.
The related Noether invariants are Q and Pj .
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3.1 The local existence
sec:NLSlocal

We will consider the following integral formulation of (3.1):

u(t) = eit△u0 − iλ

∫ t

0
ei(t−s)△|u(s)|p−1u(s)ds. (3.5) eq:INLS

thm:lwpL2 Proposition 3.3 (Local well posedness in L2(Rd)). For any p ∈ (1, 1 + 4/d) and any u0 ∈
L2(Rd) there exists T > 0 and a unique solution of (3.5) with

u ∈ C([−T, T ], L2(Rd)) ∩ Lq([−T, T ], Lp+1(Rd)) with
2

q
+

d

p+ 1
=

d

2
. (3.6) eq:lwpL2

Furthermore, there exists a (decreasing) function T (·) : [0,+∞) → (0,+∞] such that the
above T satisfies T ≥ T (∥u0∥L2) > 0.
Moreover, for any T ′ ∈ (0, T ) there exists a neighborhood V of u0 in L2(Rd) s.t. the map
v0 → v(t), associating to each initial value its corresponding solution, sends

V → C([−T ′, T ′], L2(Rd)) ∩ Lq([−T ′, T ′], Lp+1(Rd)) (3.7) eq:lwpL2--

and is Lipschitz.
Finally, we have u ∈ La([−T, T ], Lb(Rd)) for all admissible pairs (a, b).

Remark 3.4. We will prove later that for p ∈ (1, 1 + 2/d) that we can take T = ∞ always.

Proof. The proof is a fixed point argument. We set

E(T, a) =
{
v ∈ C([−T, T ], L2(Rd)) ∩ Lq([−T, T ], Lp+1(Rd)) :

∥v∥T := ∥v∥L∞([−T,T ],L2(Rd)) + ∥v∥Lq([−T,T ],Lp+1(Rd)) ≤ a
}

and we denote by Φ(u) the r.h.s. of (3.5). Our first aim is to show that for T = T (∥u0∥L2)
sufficiently small, then Φ : E(T, a) → E(T, a) and it is a contraction.
By Strichartz’s estimates

∥Φ(u)∥T ≤ c0∥u0∥L2 + c0|λ|∥|u|p−1u∥
Lq′ ([−T,T ],L

p+1
p )

= c0∥u0∥L2 + c0|λ|∥u∥pLpq′ ([−T,T ],Lp+1)

We will see in a moment that

p ∈ (1, 1 + 4/d) ⇐⇒ pq′ < q. (3.8) eq:lwpL21

Assuming this for a moment, by Hölder we conclude that for a θ > 0

∥Φ(u)∥T ≤ c0∥u0∥L2 + c0(2T )
θ|λ|∥u∥p

Lq([−T,T ],Lp+1)
≤ c0∥u0∥L2 + c0(2T )

θ|λ|ap.
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So for c0(2T )
θ|λ|ap−1 < 1/2, which can be obtained by picking T small enough, we have

∥Φ(u)∥T ≤ c0∥u0∥L2 +
a

2
≤ a

if a ≥ 2c0∥u0∥L2 . Hence Φ (E(T, a)) ⊆ E(T, a). Let us fix here a = 2c0∥u0∥L2 .
Now let us show that Φ is a contraction for T small enough. We have

∥Φ(u)− Φ(v)∥T ≤ c0|λ|∥|u|p−1u− |v|p−1v∥
Lq′ ([−T,T ],L

p+1
p )

≤ c0C|λ|∥(∥u∥p−1
Lp+1 + ∥v∥p−1

Lp+1)∥u− v∥Lp+1∥Lq′ (−T,T )

≤ c0C|λ|(∥u∥p−1
Lq([−T,T ],Lp+1 + ∥v∥p−1

Lq([−T,T ],Lp+1)∥u− v∥Lρ([−T,T ],Lp+1)

where p−1
q + 1

ρ = 1
q′ . Since we are still assuming (3.8), we must have ρ < q, for ρ ≥ q would

imply pq′ ≥ q, contrary to (3.8). Then by Hölder and for an appropriate θ > 0

∥Φ(u)− Φ(v)∥T ≤ c0C|λ|2ap−1T θ∥u− v∥Lq([−T,T ],Lp+1) ≤ c0C|λ|2ap−1T θ∥u− v∥T .

So, for c0C|λ|2ap−1T θ < 1, where a = 2c0∥u0∥L2 , we obtain that Φ is a contraction and we
obtain the existence and uniqueness of the solution.

Next, let us prove (3.8). Obviously pq′ < q is equivalent to p/q < 1 − 1/q, in turn to
(p+1)/q < 1, that is to 1/q < 1/(p+1). But 1/q = d/4− d/(2p+2), so the last inequality
is equivalent to

d/4 <

(
d

2
+ 1

)
/(p+ 1) ⇔ p+ 1 <

2d+ 4

d
= 2 +

4

d

and this yields the desired result.
We have proved the existence of a T = T (∥u0∥L2) with the desired properties. Fix

T ′ ∈ (0, T ). Then there exists a neighborhood V of u0 in L2(Rd) such that for any v0 ∈ V
the corresponding solution v(t) is in C([−T ′, T ′], L2(Rd)) ∩ Lq([−T ′, T ′], Lp+1(Rd)) with
∥v∥T ′ ≤ 2c0∥v0∥L2 . This is clear because with v0 sufficiently close to u0, by T ′ < T we can
assume

c0(2T
′)θ|λ|(2c0∥v0∥L2)p−1 < 1/2c0(2T )

θ|λ|(2c0∥u0∥L2)p−1 < 1/2 and

c0C|λ|2(2c0∥v0∥L2)p−1(T ′)θ < c0C|λ|2(2c0∥u0∥L2)p−1T θ.

Using the equation and proceeding like above,

∥u− v∥T ′ ≤ c0∥u0 − v0∥L2 + c0C|λ|(2T ′)θ
(
∥u∥p−1

T ′ + ∥v∥p−1
T ′

)
∥u− v∥T ′

≤ c0∥u0 − v0∥L2 + c0C|λ|(2T ′)θ2
(
(2c0∥v0∥L2)p−1 + (2c0∥u0∥L2)p−1

)
∥u− v∥T ′ .

Adjusting T , we can assume that, in addition to the previous inequalities, T satisfies also

4c0C|λ|(2T )θ(2c0∥u0∥L2)p−1 < 1/2.
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Adjusting V , we can assume that,

(2T ′)θ(2c0∥v0∥L2)p−1 < (2T )θ(2c0∥u0∥L2)p−1.

Then from the above we get

∥u− v∥T ′ ≤ 2c0∥u0 − v0∥L2

and this give the desired Lipschitz continuity.
Finally, the last statement follows from (3.5) and the Strichartz Estimates.

thm:lwpH1 Proposition 3.5 (Local well posedness in H1(Rd)). For any p ∈ (1, d∗) and any u0 ∈
H1(Rd) there exists T > 0 and a unique solution of (3.5) with

u ∈ C([−T, T ],H1(Rd)) ∩ Lq([−T, T ],W 1,p+1(Rd)) with
2

q
+

d

p+ 1
=

d

2
. (3.9) eq:lwpH11

Furthermore, there exists a (decreasing) function T (·) : [0,+∞) → (0,+∞] such that the
above T satisfies T ≥ T (∥u0∥H1) > 0.
Moreover, for any T ′ ∈ (0, T ) there exists a neighborhood V of u0 in H1(Rd) s.t. the map
v0 → v(t), associating to each initial value its corresponding solution, sends

V → C([−T ′, T ′], L2(Rd)) ∩ Lq([−T ′, T ′],W 1,p+1(Rd))

and is Lipschitz.
Finally, we have u ∈ La([−T, T ],W 1,b(Rd)) for all admissible pairs (a, b).

Proof. The proof is similar to that of Proposition 3.3. The proof is a fixed point argu-
ment.This time we set

E1(T, a) =
{
v ∈ C([−T, T ],H1(Rd)) ∩ Lq([−T, T ],W 1,p+1(Rd)) :

∥v∥(1)T := ∥v∥L∞([−T,T ],H1(Rd)) + ∥v∥Lq([−T,T ],W 1,p+1(Rd)) ≤ a
}

and, as before, use Φ(u) for the r.h.s. of (3.5). We need to show that by taking T sufficiently
small then Φ : E1(T, a) → E1(T, a) and is a contraction. The argument is similar to the
one in Proposition 3.3 and is based on the Strichartz estimates. We will only consider some
of the estimates. By Lemma 3.1 and Strichartz’s estimates, we have

∥∇Φ(u)∥T ≤ c0∥u0∥H1 + c0|λ|∥|u|p−1∇u∥
Lq′ ([−T,T ],L

p+1
p )

= c0∥u0∥L2 + c0|λ|∥u∥p−1
Lβ([−T,T ],Lp+1)

∥∇u∥Lq([−T,T ],Lp+1).

where p−1
β + 1

q = 1
q′ . Notice that if β < q, we can proceed exactly like in Proposition 3.3.

However this works only for p ∈ (1, 1 + 4/d), which is not necessarily true here. Instead,
using the Sobolev Embedding we bound

∥u∥p−1
Lβ([−T,T ],Lp+1)

. ∥u∥p−1
Lβ([−T,T ],H1)

≤ (2T )
p−1
β ∥u∥p−1

L∞([−T,T ],H1)
≤ (2T )

p−1
β (∥u∥(1)T )p−1.
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So, inserting this in the previous inequality we get

∥∇Φ(u)∥T ≤ c0∥u0∥H1 + c0|λ|(2T )
p−1
β (∥u∥(1)T )p. (3.10) eq:lwpH12

Here it is important to remark that the admissible pair (q, p+ 1) is s.t. q > 2. Indeed, for
d = 1, 2 it is always true that, if p + 1 < ∞, then the q in (3.27) is q > 2. On the other
hand, for d ≥ 3 recall that

p+ 1 < d∗ + 1 =
d+ 2

d− 2
+ 1 =

2d

d− 2
.

And so again, since (q, p + 1) differs from the endpoint admissible pair (2,
2d

d− 2
), we nec-

essarily have q > 2 also if d ≥ 3.
In turn, the fact that q > 2 implies that the β in the above formulas is β < ∞. This
implies that we can pick T small enough s.t. (2T )p−1ap−1 < 1/2, which from (3.10) yields

∥Φ(u)∥(1)T ≤ c1∥u0∥H1 + a/2 ≤ a for a ≥ 2c1∥u0∥H1 . From these arguments, it is easy to
conclude that there exists a T (∥u0∥H1) s.t. for T ∈ (0, T (∥u0∥H1)) we have Φ

(
E1(T, a)

)
⊆

E1(T, a). Proceeding similarly and like in Proposition 3.3, it can be shown that there exists
a T1(∥u0∥H1) s.t. for T ∈ (0, T1(∥u0∥H1)) and a ≥ 2c1∥u0∥H1 the map Φ is a contraction
inside E1(T, a). The Lipschitz continuity in terms of the initial data can be shown like in
Proposition 3.3 and the last statement follows from the Strichartz estimates.

thm:consl Proposition 3.6 (Conservation laws). Let u(t) be a solution (3.5) as in Proposition 3.5.
Then all the three quantities in (3.4) are constant in t.

Proof. For u ∈ C((−T2, T1),H
1(Rd)) a maximal solution of (3.5) we will show that there

exists [−T, T ] ⊂ (−T2, T1) where E(u(t)) = E(u(0)), Q(u(t)) = Q(u(0)) and Pj(u(t)) =
Pj(u(0)). In fact this shows that E(u(t)), Q(u(t)) and Pj(u(t)) are locally constant in t.
Since these functions are continuous in t, the set of t ∈ (−T2, T1) where E(u(t)) = E(u(0))
is closed in (−T2, T1); on the other hand, it is also open in (−T2, T1) since E(u(t)) is
locally constant, and hence we have E(u(t)) = E(u(0)) for all t ∈ (−T2, T1). Similarly
Q(u(t)) = Q(u(0)) and Pj(u(t)) = Pj(u(0)) for all t ∈ (−T2, T1).

Step 1: truncations of the NLS. For ϕ ∈ C∞
c (R, [0, 1]) a function with ϕ = 1

near 0 and with support contained in the ball BRd(0, r0), consider
2 the operators Qn =

ϕ(
√
−△/n). The truncations Qn(|u|p−1u) are locally Lipschitz functions from H1(Rd) into

itself as they are compositions H1(Rd)
|u|p−1u→ H−1(Rd)

Qn→ H1(Rd)) of a locally Lipschitz
function, Lemma 3.1, and of bounded linear maps.

2Notice that using everywhere the projections Pn = χ[0,n](
√
−△) would be a bad choice for this proof.

Difficulties would arise from the fact proved by C.Feffermann
F
[6] that Pn for d ≥ 2 is bounded from Lp(Rd)

into itself only if p = 2. On the other hand it is elementary that the Qn are of the form ρ 1
n
∗ for a ρ ∈ S(Rd)

and so are uniformly bounded from Lp(Rd) into itself for all p and form a sequence converging strongly to
the identity operator.
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We consider the following truncations of the NLS{
iunt = −Pnr0△un + λQn(|Qnun|p−1Qnun) for (t, x) ∈ R× Rd

un(0) = Qnu0.
(3.11) eq:NLStr

By the theory of ODE’s, there exists a maximal solution un(t) ∈ C1(−T1(n), T2(n)),H
1(Rd))

of (3.11) . Furthermore, if T2(n) < ∞ then we must have blow up

lim
t↗T2(n)

∥un(t)∥H1 = +∞ if T2(n) < ∞ (3.12) eq:bup1

with a similar blow up phenomenon if T1(n) < ∞.
To get bounds on this sequence of functions we consider invariants of motion. The following
will be proved later.

claim:inv_NLS1 Claim 3.7. The following functions are invariants of motion of (3.11):

En(v) :=
1

2
∥Pnr0∇v∥2L2 +

λ

p+ 1

∫
Rd

|Qnv|p+1dx

Pj(v) with j = 1, ..., d,

Q(v).

(3.13) eq:inv_NLS

We assume Claim 3.7 and proceed. It is easy to check that un = Pnr0un. We claim
that T1(n) = T2(n) = ∞. Indeed by Q(un(t)) = Q(Qnu0) ≤ Q(u0) we have

∥un(t)∥H1 = ∥Pnr0un(t)∥H1 ≤ nr0∥un(t)∥L2 = nr0∥Qnu0∥L2 ≤ nr0∥u0∥L2 . (3.14) eq:bounder

Let us now fix M such that ∥u0∥H1 < M and let us set

θn := sup{τ > 0 : ∥un(t)∥H1 < 2M for |t| < τ.} (3.15) deftheta

Our main focus is now to prove that there exists a fixed T (M) > 0 s.t. θn ≥ T (M) for all
n.
First of all we prove that un ∈ C0, 1

2 ((−θn, θn), L
2) with a fixed Hölder constant C(M). By

an interpolation similar to Lemma ??

∥un(t)− un(s)∥L2 . ∥un(t)− un(s)∥
1
2

H1∥un(t)− un(s)∥
1
2

H−1

≤
√
2∥un∥

1
2

L∞((−θn,θn),H1)
∥unt∥

1
2

L∞((−θn,θn),H−1)

√
|t− s|

≤ C(M)
√
|t− s| for t, s ∈ (−θn, θn)

(3.16) eq:planch1

Now we want to prove

∥un(t)∥2H1 ≤ ∥u0∥2H1 + C(M)tb for some fixed b > 0 and for t ∈ (−θn, θn). (3.17) eq:engr

From En(un(t)) = En(Qnu0) and Q(un(t)) = Q(Qnu0) we get

∥un(t)∥2H1 +
2λ

p+ 1

∫
Rd

|Qnun|p+1dx = ∥Qnu0∥2H1 +
2λ

p+ 1

∫
Rn

|Q2
nu0|p+1dx.
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Hence using Hölder and Gagliardo–Nirenberg

∥un(t)∥2H1 ≤ ∥u0∥2H1 +
2|λ|
p+ 1

∫
Rd

∣∣ |Qnun(t)|p+1 − |Q2
nu0|p+1

∣∣ dx
≤ ∥u0∥2H1 + C

∫
Rd

(|Qnun(t)|p + |Q2
nu0|p)|Qnun(t)−Q2

nu0|dx

≤ ∥u0∥2H1 + C∥|Qnun(t)|p + |Q2
nu0|p∥

L
p+1
p
∥Qnun(t)−Q2

nu0∥Lp+1

≤ ∥u0∥2H1 + C1

(
∥Qnun(t)∥pLp+1 + ∥Q2

nu0∥
p
Lp+1

)
∥un(t)−Qnu0∥αḢ1∥un(t)−Qnu0∥1−α

L2

Then by (3.16) with s = 0, the Sobolev Embedding Theorem and (3.15) we get (3.17).
Now for T (M) defined s.t. C(M)T (M)b = 2M2 (for the C(M) in (3.17)) from (3.17) we
get

∥un(t)∥L∞([−T (M),T (M)],H1) ≤
√
3M. (3.18) eq:conv--0

Since
√
3M < 2M this obviously means that T (M) < θn since, if we had θn ≤ T (M) then,

by the fact that un ∈ C1(R,H1), the definition of θn in (3.15) would be contradicted.
Hence we have

∥un∥L∞([−T (M),T (M)],H1) < 2M (3.19) eq:conv0

This completes step 1, up to Claim 3.7.
The proof of Claim 3.7 is rather elementary and involves applying to (3.11) ⟨ , unt⟩,

⟨ , iun⟩ and
〈
, ∂xjun

〉
and integration by parts. We will do this now, but then we will discuss

also the fact that Claim 3.7 is just a consequence of the fact that (3.11) is a hamiltonian
system with hamiltonian En and that the invariance of Q resp. Pj just due to Nöther
principle and the invariance with respect to multiplication by eiϑ resp. translation.

Indeed, applying ⟨·, unt⟩ to (3.11)

0 = −⟨Pnr0△un, unt⟩+ λ⟨Qn(|Qnun|p−1Qnun), unt⟩

= −⟨△un, unt⟩+ λ⟨|Qnun|p−1Qnun,Qnunt⟩ =
d

dt
En(un).

Notice furthermore that, by un = Pnr0un, we have

En(un) =
1

2
∥∇un∥2L2 +

λ

p+ 1

∫
Rd

|Qnun|p+1dx.

Similarly when we apply ⟨·, iun⟩ to (3.11) we get

1

2

d

dt
∥un(t)∥L2 = −⟨Pnr0△un, iun⟩+ λ⟨Qn(|Qnun|p−1Qnun), iun⟩. (3.20) eq:truncmass

We have to show that r.h.s. are equal to 0. We observe that the the 1st term is 0 because
the bounded operator iPnr0△ of L2(Rd) into itself is antisymmetric: (iPnr0△)∗ = −iPnr0△.
For the 2nd term we use

⟨Qn(|Qnun|p−1Qnun), iun⟩ = ⟨|Qnun|p−1Qnun, iQnun⟩ = λRe i

∫
Rd

|Qnun|p+1dx = 0.
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This yields d
dtQ(un(t)) = 0. In a similar fashion we can prove d

dtPj(un(t)) = 0.
These computations obscure somewhat the following simple facts. First of all, (3.11)

and, in a somewhat formal sense also (3.1), is a hamiltonian system. First of all, the
symplectic form is

Ω(X,Y ) := ⟨iX,Y ⟩ (3.21) eq:Omega

where

⟨f, g⟩ = Re

∫
Rd

f(x)g(x)dx. (3.22) eq:bilf

Notice that Ω satisfies the following definition for X = L2(Rd,C) or X = H1(Rd,C).

Definition 3.8. Let X be a Banach space on R and let X ′ be its dual. A strong symplectic
form is a 2-form ω on X s.t. dω = 0 (i.e. ω is closed) and s.t. the map X ∋ x → ω(x, ·) ∈ X ′

is an isomorphism.

Definition 3.9 (Gradient). Let F ∈ C1(L2(Rd,C),R). Then the gradient∇F ∈ C0(L2(Rd,C), L2(Rd,C))
is defined by

⟨∇F (u), Y ⟩ = dF (u)Y for all u, Y ∈ L2(Rd,C).

Notice that

⟨∇En(u), Y ⟩ = d

dt

(
1

2
∥Pnr0∇(u+ tY )∥2L2 +

λ

p+ 1

∫
Rd

|Qn(u+ tY )|p+1dx

)∣∣∣∣
t=0

(3.23) eq:grad E_n

=
〈
−Pnr0△u+ λQn(|Qnu|p−1Qnu), Y

〉
.

We are interested in hamiltonian vector fields.

Definition 3.10 (Hamiltonian vector field). Let ω be a strong symplectic form on the
Banach space X and F ∈ C1(X,R). We define the Hamiltonian vector field XF with
respect to ω by

ω(XF (u), Y ) := dF (u)Y for all u, Y ∈ X.

From Ω(XF , Y ) = ⟨iXF , Y ⟩ = ⟨∇F, Y ⟩ we conclude XF = −i∇F . Then from (3.23) it
is straightforward to conclude that (3.11) is a hamiltonian system with hamiltonian En.

Definition 3.11 (Poisson bracket). Let ω be a strong symplectic form in a Banach space
X and let F,G ∈ C1(X,R). Then the Poisson bracket {F,G} is given by

{F,G}(u) := ω(u)(XF (u), XG(u)) = dF (u)XG(u).

So, for Ω we have {F,G} = ⟨∇F,−i∇G⟩ = ⟨i∇F,∇G⟩. Now notice that if F ∈
C1(X,R) then

d

dt
(F (un(t))) = ⟨∇F (un(t)), u̇n(t)⟩ = ⟨∇F (un(t)),−i∇En(un(t))⟩ = {F,En}|un(t)

(3.24) eq:var ham
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Notice now that the map u ∈ eiϑu leaves En invariant. In particular the last assertion
implies that

0 =
d

dϑ
En(u)

∣∣∣∣
ϑ=0

=
d

dϑ
En(e

iϑu)

∣∣∣∣
ϑ=0

= ⟨∇En(u), iu⟩ = ⟨∇En(u), i∇Q(u)⟩ = ⟨i∇Q(u),∇En(u)⟩ = {Q,En}|u

But then, since {Q,En} = 0, by (3.24) we obviously have d
dt (Q(un(t))) = 0.

Let us consider now, for {−→e j}dj=1 the standard basis of Rd, the transformation (τλ−→e j
F )(x) :=

F (x− λ−→e j). Obviously En is invariant by this transformation and

0 =
d

dλ
En(u)

∣∣∣∣
λ=0

=
d

dλ
En(τλ−→e j

u)

∣∣∣∣
λ=0

= −⟨∇En(u), ∂ju⟩ = ⟨∇En(u), i∇Pj(u)⟩ = ⟨i∇Pj(u),∇En(u)⟩ = {Pj , En}|u

But then, since {Pj , En} = 0, by (3.24) we obviously have d
dt (Pj(un(t))) = 0.

The above argument gives a link between group actions and invariants.
Step 2: Convergence un → u. Let us consider I := [−T, T ] ⊆ [−T (M), T (M)] ∩

(−T2, T1). Obviously we have

un(t) = eit△Qnu0 − iλ

∫ t

0
ei(t−s)△Qn(|Qnun(s)|p−1Qnun(s))ds.

Taking the difference with (3.5) we obtain

u(t)− un(t) = eit△(1−Qn)u0 − iλ

∫ t

0
ei(t−s)△(1−Qn)|u(s)|p−1u(s)ds

− iλ

∫ t

0
ei(t−s)△Qn

(
|u(s)|p−1u(s)− |Qnu(s)|p−1Qnu(s)

)
ds

− iλ

∫ t

0
ei(t−s)△Qn

(
|Qnu(s)|p−1Qnu(s)− |Qnun(s)|p−1Qnun(s)

)
ds.

Then we have

∥u− un∥Lq(I,W 1,p+1) + ∥u− un∥L∞(I,H1) ≤ c0∥(1−Qn)u0∥H1 + c0|λ|∥(1−Qn)|u|p−1u∥
Lq′ (I,W

1,
p+1
p )

+ c0|λ|∥|u|p−1u− |Qnu|p−1Qnu∥
Lq′ (I,W

1,
p+1
p )

+ c0|λ|∥|Qnu|p−1Qnu− |Qnun|p−1Qnun∥
Lq′ (I,W

1,
p+1
p )

.
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and so, for a fixed ϑ > 0

∥u− un∥Lq(I,W 1,p+1) + ∥u− un∥L∞(I,H1) ≤ c0∥(1−Qn)u0∥H1 + c0|λ|∥(1−Qn)|u|p−1u∥
Lq′ (I,W

1,
p+1
p )

+ c0C|λ||I|ϑ
(
∥u∥p−1

L∞(I,H1)
+ ∥Qnu∥p−1

L∞(I,H1)

)
∥(1−Qn)u∥Lq(I,W 1,p+1)

+ c0C|λ||I|ϑ
(
∥Qnu∥p−1

L∞(I,H1)
+ ∥Qnun∥p−1

L∞(I,H1)

)
∥Qn(u− un)∥Lq(I,W 1,p+1)

≤ c0∥(1−Qn)u0∥H1 + c0|λ|∥(1−Qn)|u|p−1u∥
Lq′ (I,W

1,
p+1
p )

+ c0C|λ||I|ϑ2∥u∥p−1
L∞(I,H1)

∥(1−Qn)u∥Lq(I,W 1,p+1)

+ c0C|λ||2T |ϑ
(
∥u∥p−1

L∞(I,H1)
+ (C(M))p−1

)
∥u− un∥Lq(I,W 1,p+1).

Then, taking T small so that c0C|λ||2T |ϑ
(
∥u∥p−1

L∞(I,H1)
+ (C(M))p−1

)
< 1/2 we conclude

∥u− un∥Lq(I,W 1,p+1) + ∥u− un∥L∞(I,H1) ≤ 2c0∥(1−Qn)u0∥H1+

2c0|λ|∥(1−Qn)|u|p−1u∥
Lq′ (I,W

1,
p+1
p )

+ 2c0C|λ||I|ϑ2∥u∥p−1
L∞(I,H1)

∥(1−Qn)u∥Lq(I,W 1,p+1).

But now we have r.h.s.
n→∞→ 0. Hence we have proved that there exist T > 0 s.t.

lim
n→+∞

∥u− un∥L∞([−T,T ],H1) = 0. (3.25) eq:convT

Now, taking the limit for n → +∞ in Q(un(t)) = Q(Qnu0) and Pj(un(t)) = Pj(Qnu0)
we obtain Q(u(t)) = Q(u0) and Pj(u(t)) = Pj(u0) for all t ∈ [−T, T ]. Similarly, taking
the limit for n → +∞ in En(un) = En(Qnu0) and with a little bit of work, we obtain
E(u(t)) = E(u0) for all t ∈ [−T, T ].

thm:consL2 Corollary 3.12. Let u(t) be a solution (3.5) as in Proposition 3.3. Then Q(u(t)) = Q(u0).
In particular, the solutions in in Proposition 3.3 are globally defined.

Proof. As above it is enough to show that Q(u(t)) = Q(u0) for t ∈ [−T, T ] for some T > 0.
So let us take the T in the statement of Proposition 3.3 and let us take T ′ ∈ (0, T ). There

exists a sequence u
(n)
0 ∈ H1(Rd,C) with u

(n)
0

n→∞→ u0 in L2(Rd,C). So for n ≫ 1 we

have u
(n)
0 ∈ V , the V in (3.7). In particular, for the corresponding solutions un we have

u(n)
n→∞→ u in C([−T ′, T ′], L2(Rd)). Then, since Q(u(n)(t)) = Q(u

(n)
0 ) for t ∈ ([−T ′, T ′],

taking the limit we obtain Q(u(t)) = Q(u0) for t ∈ ([−T ′, T ′]. Since T ′ ∈ (0, T ) is arbitrary
and t → Q(u(t)) is continuous, we have Q(u(t)) = Q(u0) for t ∈ ([−T, T ]. This implies that
t → Q(u(t)) is locally constant, and hence it is constant.
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3.2 The global existence
sec:NLSglobal

We start with the following observation.

lem:blowup1 Lemma 3.13. Let u ∈ C0((−S, T ),H1(Rd)) be a maximal solution as of Proposition 3.5.
Then if T < ∞ we have

lim
t↗T

∥∇u(t)∥L2(Rd) = +∞. (3.26) eq:blowup11

Analogously, limt↘−S ∥∇u(t)∥L2(Rd) = +∞ if S < ∞.

rem:subcrit Remark 3.14. Notice that it is very important for this lemma that p < d∗. Indeed, in the
energy critical case p = d∗, the above statement is false.

Proof. Suppose by contradiction that there exists a solution with T < ∞ for which there is
a sequence tj ↗ T s.t. ∥u(tj)∥H1(Rd) ≤ M < ∞. Then by Proposition 3.5 one can extend
u(t) beyond tj + T (M) > T and get a contradiction.

thm:cor1nls Corollary 3.15. If λ > 0 the solutions of Proposition 3.5 are globally defined.

Proof. Indeed if a solution has maximal interval of existence (−S, T ) with T < ∞, we must
have (3.26). But for λ > 0 we have ∥∇u(t)∥L2 ≤ 2E(u(t)) = 2E(u0).

thm:cor2nls Corollary 3.16. If λ < 0 and 1 < p < 1 + 4
d the solutions of Proposition 3.5 are globally

defined.

Proof. We have

2E(u(t)) ≥ ∥∇u(t)∥2L2(Rd) −
2|λ|
p+ 1

Cp+1
p ∥∇u(t)∥α(p+1)

L2(Rd)
∥u0∥(1−α)(p+1)

L2(Rd)
for

1

p+ 1
=

1

2
− α

d
.

Notice that

α(p+ 1) =
d

2
(p+ 1)− d < 2 ⇐⇒ (p+ 1)− 2 <

4

d
⇐⇒ p < 1 +

4

d
.

But then, if (3.26) happens, we have

2E(u0) = lim
t↗T

2E(u(t)) ≥ lim
t↗T

∥∇u(t)∥2L2(Rd)

(
1− 2|λ|

p+ 1
Cp+1
p ∥∇u(t)∥α(p+1)−2

L2(Rd)
∥u0∥(1−α)(p+1)

L2(Rd)

)
= lim

t↗T
∥∇u(t)∥2L2(Rd) = +∞,

which is absurd.

thm:cor3nls Corollary 3.17. If λ < 0 and 1 < p < 1 + 4
d the solutions of Proposition 3.5 are globally

defined.
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3.3 The L2 critical cases
sec:NLScritical

We consider now equation (3.5) for p = 1 + 4
d . Notice that in this case (p + 1, p + 1) is an

admissible pair.

thm:critL2 Theorem 3.18. For any u0 ∈ L2(Rd) there exists a unique maximal solution of (3.5) with
p = 1 + 4

d with

u ∈ C([0, T ∗), L2(Rd)) ∩ Lp+1
loc ([0, T ∗), Lp+1(Rd)) with

2

q
+

d

p+ 1
=

d

2
. (3.27) eq:lwpL2

Furthermore, the mass is preserved, we have u ∈ La([0, T ], Lb(Rd)) for any admissible pair,
if T ∈ (0, T ∗).
There is continuity with respect to the initial data. And finally, if T ∗ < ∞, then

lim
T→T ∗

∥u∥La([0,T ],Lb(Rd)) = +∞ for any admissible pair with b ≥ p+ 1. (3.28) eq:crit_blow_up_L2

prop:crtiL21 Proposition 3.19. There exists a δ > 0 such that if for some T > 0 we have

∥eit△u0∥Lp+1([0,T ),Lp+1(Rd)) < δ,

then there exists a unique solution

u ∈ C([0, T ], L2(Rd)) ∩ Lp+1([0, T ), Lp+1(Rd)).

The mass is constant. Moreover, for any T ′ ∈ (0, T ) there exists a neighborhood V of u0 in
L2(Rd) s.t. the map v0 → v(t), associating to each initial value its corresponding solution,
sends

V → C([0, T ′], L2(Rd)) ∩ Lp+1([0, T ′], Lp+1(Rd))

and is Lipschitz.
Finally, we have u ∈ La([0, T ], Lb(Rd)) for all admissible pairs (a, b).

Proof. The proof is a fixed point argument. We set like before

E(T, δ) =
{
v ∈ Lp+1([0, T ], Lp+1(Rd)) : ∥v∥Lp+1([0,T ],Lp+1(Rd)) ≤ 2δ

}
and we denote by Φ(u) the r.h.s. of (3.5).
By Strichartz’s estimates

∥Φ(u)∥Lp+1([0,T ]×Rd)) < δ + c0|λ|∥|u|p−1u∥
L

p+1
p ([0,T ]×Rd))

= δ + c0|λ|∥u∥pLp+1([0,T ]×Rd))
≤ δ + c0|λ|2pδp < 2δ,
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for δ > 0 small enough, so that the map Φ preserves E(T, δ). Now we show that Φ is a
contraction in E(T, δ). We have

∥Φ(u)− Φ(v)∥Lp+1([0,T ]×Rd)) ≤ c0|λ|∥|u|p−1u− |v|p−1v∥
L

p+1
p ([0,T ]×Rd))

≤ c0C|λ|∥(|u|p−1 + |v|p−1)|u− v|∥
L

p+1
p ([0,T ]×Rd))

≤ c0C|λ|
(
∥u∥p−1

Lp+1([0,T ]×Rd))
+ ∥v∥p−1

Lp+1([0,T ]×Rd))

)
∥u− v∥Lp+1([0,T ]×Rd))

≤ c0C|λ|2p−1δp−1∥u− v∥Lp+1([0,T ]×Rd)),

which is a contraction for δ > 0 small enough. The remaining part is also similar to that
in Proposition 3.3. In particular, let us now discuss the fact that the conservation of mass.
The first observation is that if u0 ∈ H1(Rd) then we have u ∈ C([0, T ],H1(Rd)). In fact we
have u ∈ C([0, τ ],H1(Rd)) by Proposition 3.5 and if it is not possible to take τ ≥ 0, then
we will have a maximal interval of existence u ∈ C([0, τ),H1(Rd)) with τ ∈ (0, T ) and blow
up ∥∇u(s)∥H1

s→τ−−−→ +∞. But

∥∇u∥Lp+1([0,s]×Rd)) < ∥∇eit△u0∥Lp+1([0,s]×Rd)) + c0|λ|∥u∥p−1
Lp+1([0,s]×Rd))

∥∇u∥Lp+1([0,s]×Rd))

by Gronwall’s inequality implies

∥∇u∥Lp+1([0,s]×Rd)) < ∥∇eit△u0∥Lp+1([0,s]×Rd)) exp

(
c0|λ|

∫ s

0
∥u∥p−1

Lp+1([0,s′]×Rd))
ds′
)
.

This inequality implies

lim
s→τ−

∥∇u∥Lp+1([0,s]×Rd)) = ∥∇u∥Lp+1([0,τ ]×Rd)).

feeding this back in Strichartz inequality, we have

∥∇u∥L∞([0,s],L2(Rd))) < ∥∇u0∥L2(Rd) + c0|λ|∥u∥p−1
Lp+1([0,s]×Rd))

∥∇u∥Lp+1([0,s]×Rd)),

which implies that it is not true that ∥∇u(s)∥H1
s→τ−−−→ +∞. So we conclude that u ∈

C([0, T ],H1(Rd)) and that, energy, momenta and mass of u(t) are constant in [0, T ]. If now
u0 ̸∈ H1(Rd), we consider a sequence u0n ∈ H1(Rd) with u0n

n→∞−−−→ u0 in L2(Rd). For
any T ′ ∈ (0, T ), we have by well posedness that for the corresponding solutions we have
un

n→∞−−−→ u in C([0, T ′], L2(Rd)). Then Q(un)
n→∞−−−→ Q(u) in C([0, T ′],R). Since Q(un) are

constant functions, also Q(u) is constant in [0, T ′] for all T ′ < T .

Proof of Theorem 3.18. Clearly we have ∥eit△u0∥Lp+1([0,T ),Lp+1(Rd))
T→0+−−−−→ 0, so we can

apply Proposition 3.19 for T > 0 sufficiently small. There will be a maximal interval of
existence. We now prove the blow up result (3.28). Suppose that it is false, and that there
is a maximal solution in [0, T ∗) with T ∗ < ∞ and

∥u∥La([0,T ∗),Lb(Rd)) < +∞ for an admissible pair with b ≥ p+ 1. (3.29) eq:crit_blow_up_L2proof
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Then if b > p+ 1, we have

∥u∥Lp+1([0,T ∗),Lp+1(Rd)) ≤ ∥u∥µ
L∞([0,T ∗),L2(Rd))

∥u∥1−µ
La([0,T ∗),Lb(Rd))

for µ =

1
p+1 − 1

b
1
2 − 1

b

.

So (3.29) holds also for b = p+ 1. Now, for s close to T ∗ we have from (3.5)

ei(t−s)△u(s) = u(t) + iλ

∫ t

s
ei(t−t′)△|u(t′)|p−1u(t′)dt′.

This yields

∥ei(t−s)△u(s)∥Lp+1([s,T ],Lp+1(Rd)) ≤ ∥u∥Lp+1([s,T ],Lp+1(Rd)) + C|λ|∥u∥p
Lp+1([s,T ],Lp+1(Rd))

s<T→T ∗−
−−−−−−−→ 0.

So we conclude that ∥ei(t−s)△u(s)∥Lp+1([s,T∗+ε],Lp+1(Rd)) < δ, for s close enough to T ∗ and
for ε > 0 small enough. But then the solution u can be extended beyond T ∗.

Example 3.20. In the case λ = −1 of the L2– critical focusing NLS

iut = −△u− |u|
4
du in R× Rd, (3.30) critical focusing NLS

there are related solutions in H1
(
Rd, [0,+∞)

)
to

−∆φ+ φ− |φ|p−1φ = 0. (3.31) solitond

In 1–d they are explicit,

φ(x) =
(p−1

2 + 1)
4

p−1

cosh
2

p−1 (p−1
2 x)

. (3.32) eq:sol

For d ≥ 2 there are many types of solitons. For example, the ones in (3.32) are ground
states, and they are the only ones in d = 1. But in d ≥ 2 there are also excited states.
Notice that if u(t, x) is a solution of (3.30), then also the following is a solution,

v(t, x) = t−
d
2u

(
1

t
,
x

t

)
ei

x2

4t .

Since now, given a solution φ(x) of (3.31), then u(t, x) = eit+
i
2
v·x−iv

2

4
tφ(x − tv − D) is a

solution of (3.30), it follows, choosing v = D = 0, that

S(t, x) := t−
d
2φ
(x
t

)
ei

x2

4t e−
i
t so also S(T − t, x) := (T − t)−

d
2φ

(
x

T − t

)
e
i x2

4(T−t) e−
i

T−t .

Obviously this for T > 0 has maximal positive lifespan T . Then, for any admissible pair
(q, r) with r > 2, we have

∥S(T − t, x)∥Lr(Rd) = (T − t)−
d
2
+ d

r ∥φ∥Lr(Rd) = (T − t)
− 2

q ∥φ∥Lr(Rd) ̸∈ Lq(0, T ).
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3.4 The H1 critical cases
sec:NLScriticalH^1

We consider now equation (3.5) for p = 1 + 4
d−2 . We will consider the admissible pair

ρ =
2d2

d2 − 2d+ 4
, γ =

2d

d− 2
.

thm:critH1 Theorem 3.21. For any u0 ∈ H1(Rd) there exists a unique maximal solution of (3.5) with
p = 1 + 4

d−2 with

u ∈ C([0, T ∗),H1(Rd)) ∩ C1([0, T ∗),H−1(Rd)). (3.33) eq:lwpH1

Furthermore, the mass and energy are preserved, we have u ∈ La([0, T ],W 1,b(Rd)) for any
admissible pair, if T ∈ (0, T ∗).
There is continuity with respect to the initial data in the following sense. If 0 < T ′ < T ∗ and
if u0n

n→∞−−−→ u0 in H1(Rd) then for the corresponding solutions we have we have un
n→∞−−−→ u

in Lp([0, T ′],H1(Rd)) for any p < ∞.
And finally, if T ∗ < ∞, then

lim
T→T ∗

∥u∥La([0,T ],Lb(Rd)) = +∞ for any admissible pair with d > b > 2. (3.34) eq:crit_blow_up_H1

prop:crtiH11 Proposition 3.22. There exists a δ > 0 such that if for some T > 0 we have

∥eit△u0∥Lγ([0,T ),W 1,ρ(Rd)) < δ,

then there exists a unique solution

u ∈ C([0, T ],H1(Rd)) ∩ Lγ([0, T ),W 1,ρ(Rd)).

Moreover, for any T ′ ∈ (0, T ) there exists a neighborhood V of u0 in L2(Rd) s.t. the map
v0 → v(t), associating to each initial value its corresponding solution, sends

V → C([0, T ′], L2(Rd)) ∩ Lγ([0, T ′),W 1,ρ(Rd)

and is Lipschitz.
Finally, we have u ∈ La([0, T ],W 1,b(Rd)) for all admissible pairs (a, b) and mass and

energy are preserved.

Proof (sketch). The proof is by a contraction argument. We set like before

E(T, δ) =
{
v ∈ Lγ([0, T ),W 1,ρ(Rd)) : ∥v∥Lγ([0,T ),W 1,ρ(Rd)) ≤ 2δ

}
and we denote by Φ(u) the r.h.s. of (3.5). Let us open a small parenthesis now, and let us
pick an admissible pair (a, b) with b ∈ (2, d). Notice that (γ, ρ) has this property. Now let

us set b∗ = bd
d−b = 1

b −
1
d and let (α, β) be an admissible pair such that 1

β′ =
1
β +

4
d−2

b∗

1

β′ =
1

β
+

4
d−2

b∗
or

1 =
2

β
+

4

d− 2

(
1

b
− 1

d

)
. (3.35) claim:crtiH110
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Here notice that for b∗ = ∞, that is when b = d, then β = 2, and if b∗ = 2d
d−2 , for b = 2,

we have β = 2d
d−2 , which is the endpoint. So for b ∈ (2, d) we have the intermediate cases

2 < β < 2d
d−2 . We claim that

1

α′ =
1

α
+

4
d−2

a
. (3.36) claim:crtiH11

or 1 =
2

α
+

4

d− 2

d

2

(
1

2
− 1

b

)
.

This can be checked by considering the endpoints, since from the 2nd line in (3.35)–(3.36)
we see that the curve with parameter 1/b(

1

α
,
1

β

)
=

(
1

2
− d

d− 2

(
1

2
− 1

b

)
, 1− 2

d− 2

(
1

b
− 1

d

))
is straight.

Looking at b = 2, then as we mentioned, we have the endpoint (α, β) =

(
2,

2d

d− 2

)
, which

makes (3.36) true because α′ = 2 and a = 0.
For b = d and the corresponding value a = 4

d−2 , then as we mentioned b∗ = ∞, so β = β′ = 2,
which implies α = ∞, and so (3.36) becomes

1 =
4

d−2

a
=

4
d−2
4

d−2

,

which is obviously correct.
The implication of this numbers is that by Strichartz estimates and by the Chain Rule in
Lemma 3.1, we have

∥Φ(u)∥Lα([0,T ),W 1,β(Rd)) ≤ ∥eit△u0∥Lα([0,T ),W 1,β(Rd)) + c0|λ|∥up−1 ⟨∇⟩u∥Lα′ ([0,T ),W 1,β′ (Rd))

≤ ∥eit△u0∥Lα([0,T ),W 1,β(Rd)) + c0|λ|∥u∥p−1

La([0,T ],Lb∗ )
∥u∥Lα([0,T ),W 1,β(Rd))

≤ ∥eit△u0∥Lα([0,T ),W 1,β(Rd)) + c′0|λ|∥u∥
p−1
La([0,T ],W 1,b)

∥u∥Lα([0,T ),W 1,β(Rd))

Now, returning to case (ρ, γ), it turns out that for (a, b) = (ρ, γ) we have (α, β) = (ρ, γ),
which is left to be checked as an exercise. So, in this case

∥Φ(u)∥Lγ([0,T ),W 1,ρ(Rd)) ≤ ∥eit△u0∥Lγ([0,T ),W 1,ρ(Rd)) + c′0|λ|∥u∥
p
Lγ([0,T ),W 1,ρ(Rd))

Hence in E(T, δ) we have

∥Φ(u)∥Lγ([0,T ),W 1,ρ(Rd)) < δ + c′0|λ|2pδp < 2δ,

for δ > 0 small enough, so that the map Φ preserves E(T, δ). In a similar fashion we prove
that Φ is a contraction in E(T, δ). We skip the proof on the conservation of mass, energy
and momenta.
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Proof of Theorem 3.21. Clearly we have ∥eit△u0∥Lγ([0,T ),W 1,ρ(Rd))
T→0+−−−−→ 0, so we can

apply Proposition 3.22 for T > 0 sufficiently small. There will be a maximal interval of
existence. We now prove the blow up result (3.34), but only in the case (a, b) = (γ, ρ).
Suppose that it is false, and that there is a maximal solution in [0, T ∗) with T ∗ < ∞ and

∥u∥La([0,T ∗),W 1,b(Rd)) < +∞. (3.37) eq:crit_blow_up_H1proof

But then

∥u∥Lα([s,T ],W 1,β(Rd)) ≤ ∥ei(t−s)△u(s)∥Lα([s,T ],W 1,β(Rd)) + c′0|λ|∥u∥
p−1
La([0,T ],W 1,b)

∥u∥Lα([0,T ),W 1,β(Rd))

and the fact that ∥u∥p
La([s,T ],W 1,b(Rd))

s<T→T ∗−
−−−−−−−→ 0, implies

∥u(s)∥Lα([s,T ],W 1,β(Rd)) ≤ 2∥ei(t−s)△u(s)∥Lα([s,T ],W 1,β(Rd))

for s < T < T ∗ close to s. This implies in fact that also

∥u∥Lα([0,T ∗),W 1,β(Rd)) < +∞. (3.38) eq:crit_blow_up_H1proofpr

Then, by

ei(t−s)△u(s) = u(t) + iλ

∫ t

s
ei(t−t′)△|u(t′)|p−1u(t′)dt′,

∥ei(t−s)△u(s)∥Lγ([s,T ],W 1,ρ(Rd)) ≤ ∥u∥Lγ([s,T ],W 1,ρ(Rd)) + c′0|λ|∥u∥
p−1
La([s,T ],W 1,b)

∥u∥Lα([s,T ),W 1,β(Rd))

s<T→T ∗−
−−−−−−−→ 0.

So we can arrange ∥ei(t−s)△u(s)∥Lγ([s,T∗+ε],W 1,ρ(Rd)) < δ, for s close enough to T ∗ and for
ε > 0 arbitrarily small. But then the solution u can be extended beyond T ∗.

We skip here the discussion of the well posedness.

4 The dispersive equation
sec:dispersive

Here we will consider dispersive equations{
iut = −△u+ |u|p−1u for (t, x) ∈ [0,∞)× Rd

u(0, x) = u0(x)
(4.1) eq:NLSdispersive

with 1 + 4/d < p < d∗.
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thm:scatt_disp Theorem 4.1. Consider the unique solution u ∈ C0(R,H1(Rd)). Then

u ∈ La(R,W 1,b(Rd)) for any admissible pair (4.2) eq:scatt1

and there exist u± ∈ H1(Rd) s.t.

lim
t→±∞

∥u(t)− eit△u±∥H1(Rd) = 0. (4.3) eq:scatt2

Here the key deep statement is (4.2). In fact, (4.2) implies easily (4.3), as we show now
in the case +. So, assume (4.2), and in particular let

u ∈ Lq(R+,W
1,p+1(Rd)) with

2

q
+

d

p+ 1
=

d

2
. (4.4) eq:scatt11

From (3.5) with λ = 1, we have

e−it△u(t) = u0 − i

∫ t

0
e−is△|u(s)|p−1u(s)ds,

so that, for t1 < t2, we have

e−it2△u(t2)− e−it1△u(t1) = −i

∫ t2

t1

e−is△|u(s)|p−1u(s)ds.

Then

∥e−it2△u(t2)− e−it1△u(t1)∥H1 ≤
∥∥∥∥∫ t2

t1

e−is△|u(s)|p−1u(s)ds

∥∥∥∥
H1

≤ ∥u∥p−1
Lα([t1,t2],Lp+1)

∥u∥Lq([t1,t2],W 1,p+1) (4.5) scatt16

where p−1
α + 1

q = 1
q′ . It can be checked that α > q. Otherwise α ≤ q and so

p

q
≤ 1

q′
⇔ p+ 1 ≤ q.

So, from p > 1 + 4
d , (q, p + 1) is an admissible pair with both entries > 2 + 4

d . But(
2 + 4

d , 2 +
4
d

)
is an admissible pair, so we get an absurd and we conclude α > q.

So, let us (α, β) be admissible. We claim that

1

p+ 1
=

1

β
− τ

d
with τ ∈ [0, 1]. (4.6) admissiblepair31

Assuming this, (4.5) can be majorized yielding

∥e−it2△u(t2)− e−it1△u(t1)∥H1 ≤ c0∥u∥p−1
Lα([t1,t2],W 1,β)

∥u∥Lq([t1,t2],W 1,p+1)
t1<t2→+∞−−−−−−−→ 0.
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This implies that there exists

u+ = lim
t→+∞

e−it△u(t) in H1(Rd).

Then we have

eit△u+ − u(t) = −i

∫ ∞

t
ei(t−s)△|u(s)|p−1u(s)ds.

As above,

∥eit△u+ − u(t)∥H1 ≤ ∥u∥p−1
Lα([t,∞),W 1,β)

∥u∥Lq([t,∞),W 1,p+1)
t→+∞−−−−→ 0,

which proves the limit (4.3).
Turning to the proof of (4.6), obviously α > q implies β < p+ 1 so that

1

p+ 1
=

1

β
− τ

d

with τ > 0. Since 2 ≤ β < p + 1 < +∞, for d = 1, 2 we have τ < 1. For d ≥ 3 we have
2 ≤ β < p+ 1 < 2d

d−2 . Since
d−2
2d = 1

2 − 1
d ,

1

p+ 1
=

1

β
− τ

d
>

d− 2

2d
=

1

2
− 1

d

which implies τ < 1 by

1− τ

d
>

1

2
− 1

β
.

As we indicated above, in Theorem 4.1, the deep statement in (4.2). The proof is rather
complicated. For this we will need the following which we will discuss only for dimension
d ≥ 3.

thm:decay Theorem 4.2. Let d ≥ 3. Then given a solution u ∈ C0(R,H1(Rd)) we have

lim
t→±∞

∥u(t)∥Lr(Rd) = 0 for all 2 < r <
2d

d− 2
. (4.7) eq:decay1

This deep result implies (4.2) rather easily as we see now. We will use the following
elementary lemma.

lem:el_lem_zeros Lemma 4.3. consider a function f(x) = a−x+bxα for x ≥ 0, a, b > 0, α > 1. We assume
that there are 0 < x0 < x1 s.t. f(x0) = f(x1) = 0, which is the case if b is small. Let now
φ ∈ C(I, [0,+∞)) be such that φ(t) ≤ a+ bφα(t) for all t ∈ I and that there exists a point
t0 ∈ I s.t. φ(t0) ≤ x0. Then φ(t) ≤ x0 for all t ∈ I
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Proof. Since f(φ(t)) ≥ 0 for all t, and φ is continuous, the image of φ is either in [0, x0] or
in [x1,+∞). Obviously, the first case needs to occur.

Proof that Theorem 4.2 implies (4.2) (sketch). Consider

u(t) = ei(t−S)△u(S)− i

∫ t

S
ei(t−s)△|u(s)|p−1u(s)ds,

Then by the Strichartz estimates

∥u∥Lq((S,t),W 1,p+1) ≤ C∥u(S)∥H1 + C
∥∥∥∥u∥p−1

Lp+1
x

∥u∥
W 1,p+1

x

∥∥∥
Lq′ (S,t)

= C∥u(S)∥H1 + C

(∫ t

S
∥u∥(p−1)q′−(q−q′)

Lp+1
x

∥u∥q−q′

Lp+1
x

∥u∥q
′

W 1,p+1
x

ds

) 1
q′

≤

C∥u(S)∥H1 + C∥u∥
p− q

q′

L∞((S,t),Lp+1
x )

∥u∥
q
q′

Lq([S,t],W 1,p+1)
.

Here

p− q

q′
= p+ 1− q > 0 ⇔ p > 1 + 4/d.

From Theorem 4.2, applied to r = p+1, we know ∥u∥
p− q

q′

L∞((S,t),Lp+1
x )

S→+∞−−−−−→ 0. Furthermore,

using conservation of mass and energy, there is a uniform upper bound for ∥u(S)∥H1 . There
exists a constant C0 > 0 s.t. for any ε > 0 there is S0 > 0 such that for any S0 < S < t,

∥u∥Lq((S,t),W 1,p+1) ≤ C0 + ε∥u∥
q
q′

Lq([S,t],W 1,p+1)
.

Picking ε > 0 sufficiently small, by Lemma 4.3 we conclude that there exists a fixed constant
X0 s.t.

∥u∥Lq((S,t),W 1,p+1) ≤ X0 for any S0 < S < t.

In particular we can take t = ∞. Since we know that u ∈ Lq
loc(R,W

1,p+1), we conclude that
∥u∥Lq(R+,W 1,p+1) < +∞. Time reversibility of the NLS, yields the same result for negative

times. The Strichartz estimates, yield u ∈ Lα(R,W 1,β) for any admissible pair.

5 Proof of Theorem 4.2
sec:proof_moraw

lem:mor1 Lemma 5.1. Let p ∈ [1,∞) and q < d with 0 ≤ q ≤ p. Then we have∫
Rd

|u(x)|p

|x|q
dx ≤

(
p

d− q

)
∥u∥p−q

Lp(Rd)
∥∇u∥q

Lp(Rd)
. (5.1) eq:mor11
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Proof. The general case u ∈ W 1,p(Rd) reduces to the special case u ∈ C∞
c (Rd). In fact,

if (5.1) is valid for all u ∈ C∞
c (Rd), then for a u ∈ W 1,p(Rd) with u ̸∈ C∞

c (Rd), we can

consider a sequence C∞
c (Rd) ∋ un

n→+∞−−−−−→ u in W 1,p(Rd). Then, up to subsequence, we

have un(x)(
n→+∞−−−−−→ u(x) for a.a. x ∈ Rd, see p. 94

brezis
[2]. Then, by Fathou’s Lemma∫

Rd

|u(x)|p

|x|q
dx ≤ lim inf

n→∞

∫
Rd

|un(x)|p

|x|q
dx

≤ lim
n→∞

(
p

d− q

)
∥un∥p−q

Lp(Rd)
∥∇un∥qLp(Rd)

=

(
p

d− q

)
∥u∥p−q

Lp(Rd)
∥∇u∥q

Lp(Rd)
.

So we will prove (5.1) for u ∈ C∞
c (Rd). Let z(x) := |x|−qx. Then

∇ · z = ∇(|x|−q) · x+ |x|−q∇ · x = −q|x|−q−1 x

|x|
· |x|+ d|x|−q = (d− q)|x|−q.

Integrating the identity

|u|p∇ · z = ∇ · (|u|pz)− p|u|p−1∇|u| · z,

we obtain for arbitrary r > 0

(d− q)

∫
|x|>r

|u(x)|p

|x|q
dx =

∫
|x|>r

∇ · (|u|pz) dx− p

∫
|x|>r

|u|p−1∇|u| · zdx

≤ −p

∫
|x|>r

|u|p−1∇|u| · zdx ≤ p

∫
|x|>r

|u|p−1|∇u|
|x|q−1

dx,

where we used∫
|x|>r

∇ · (|u|pz) dx = −
∫
|x|=r

|u|pz · x

|x|
dS = −

∫
|x|=r

|u|p|x|−q+1dS ≤ 0.

Using 1− 1
q +

p−q
pq + 1

p = 1 and Hölder inequality, we have

p

∫
|x|>r

|u|p−1|∇u|
|x|q−1

dx = p

∫
|x|>r

|u|
p(q−1)

q

|x|q−1
|u|

p−q
q |∇u|dx

≤ p

(∫
|x|>r

|u|p

|x|q
dx

) q−1
q

∥u∥
p−q
q

Lp(Rd)
∥∇u∥Lp(Rd).

This yields ∫
|x|>r

|u(x)|p

|x|q
dx ≤

(
p

d− q

)
∥u∥p−q

Lp(Rd)
∥∇u∥q

Lp(Rd)

and, taking r → 0+, we obtain (5.1).

34



lem:mor2 Lemma 5.2. For d ≥ 4 there exists a Cd s.t. we have∫
Rd

|u(x)|2

|x|3
dx ≤ Cd∥u∥2H2(Rd). (5.2) eq:mor21

Proof. We proceed as above for q = 3 and p = 2, to obtain

(d− 3)

∫
|x|>r

|u(x)|2

|x|3
dx ≤ −p

∫
|x|>r

|u|p−1∇|u| · zdx ≤ 2

∫
|x|>r

|u||∇u|
|x|2

dx

≤ 2

(∫
|x|>r

|u|2

|x|2
dx

) 1
2
(∫

|x|>r

|∇u|2

|x|2
dx

) 1
2

.

In the 2nd line we apply (5.1) for p = q = 2 to both u and ∇u, to obtain

(d− 3)

∫
|x|>r

|u(x)|2

|x|3
dx ≤ 2

(∫
|x|>r

|u|2

|x|2
dx

) 1
2
(∫

|x|>r

|∇u|2

|x|2
dx

) 1
2

≤ 2

(
2

d− 2

)
∥∇u∥L2(Rd)∥∇2u∥L2(Rd)

Then (5.2) follows sending r → 0.
Let u0 ∈ H2. Then u ∈ C0([0, T ),H2) by the theory by Kato. Then equation (4.1)

holds also in a differential sense as

iut = −△u+ |u|p−1u in L2(Rd,C).

Notice that u ∈ C1([0, T ), L2). Let us now consider the quadratic form

1

2

〈
i

(
∂r +

d− 1

2r

)
u, u

〉
. (5.3) lem:quadrmor_1

Notice that it is well defined and self–adjoint. Then, taking the derivative for u ∈ C0([0, T ),H2)∩
C1([0, T ), L2) we have

d

dt
2−1

〈
i

(
∂r +

d− 1

2r

)
u, u

〉
= −

〈(
∂r +

d− 1

2r

)
u, iu̇

〉
.

which can be proved assuming first u ∈ C∞([0, T ),H2) and then proceeding by a density
argument. In our case we get

d

dt
2−1

〈
i

(
∂r +

d− 1

2r

)
u, u

〉
=〈(

∂r +
d− 1

2r

)
u,−iu̇

〉
= −

〈(
∂r +

d− 1

2r

)
u,−△u+ |u|p−1u

〉
. (5.4) eq:virial_1

The equality (5.4) is crucial, indeed we will use it to prove

d

dt
⟨∂ru, iu⟩ ≥ (d− 1)

p− 1

p+ 1

∫
Rd

|u|p+1

r
dx, (5.5) eq:virial_1disp
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which is crucial in our argument.
The first observation to obtain (5.5), is that the following is true,〈(

∂r +
d− 1

2r

)
u, iu̇

〉
=

1

2

d

dt
⟨∂ru, iu⟩ . (5.6) 7.6.9

Indeed, notice that

1

2
∂tRe (iuur) +

1

2
∇ ·
(x
r
Re (iu̇u)

)
=

1

2
Re (iu̇ur) +

������1

2
Re
(
iuu̇r

)
+

1

2

(
∇ · x

r

)
Re (iu̇u) +

������1

2
Re (iu̇ru) +

1

2
Re (iu̇ur)

= Re (iu̇ur) +
d− 1

2r
Re (iu̇u) ,

so that integrating in x we obtain exactly (5.6).
The next step to prove (5.5), is the following inequality.

claim:7.6.10 Claim 5.3. Let u ∈ H2(Rd,C). Then〈(
∂r +

d− 1

2r

)
u,△u

〉
≤ 0. (5.7) 7.6.10

Proof. The proof is based on the identity

∇ · Re
{
∇u

(
ur +

d− 1

2r
u

)}
= Re

{
△u

(
ur +

d− 1

2r
u

)}
−∇ ·

{ x

2r
|∇u|2

}
(5.8) 7.6.10_1

+∇ ·
(
d− 1

4

x

r3
|u|2
)
− 1

r

(
|∇u|2 − |ur|2

)
− (d− 1)(d− 3)

4r3
|u|2,

which we check now. We have

∇ · Re
{
∇u

(
ur +

d− 1

2r
u

)}
= Re

{
△u

(
ur +

d− 1

2r
u

)}
+Re

{
∂ju∂j

(xk
r
∂ku
)}

+Re

{
∂ju∂j

(
d− 1

2r
u

)}
= Re

{
△u

(
ur +

d− 1

2r
u

)}
+

xk
2r

∂k|∇u|2 + 1

r
|∇u|2 − Re

{xkxj
r3

∂ju∂ku
}
+

d− 1

2r
|∇u|2

− d− 1

2

xj
r3

Re {∂juu}

= Re

{
△u

(
ur +

d− 1

2r
u

)}
+ ∂k

(xk
2r

|∇u|2
)
− |∇u|2∂k

(xk
2r

)
+

|∇u|2 − |ur|2

r
+

d− 1

2r
|∇u|2

− ∂j

(
d− 1

4

xj
r3

|u|2
)
− d− 1

4
|u|2∂j

(xj
r3

)
.

Now we use

∂k

(xk
2r

)
=

d− 1

2r

∂j

(xj
r3

)
=

d− 3

r3
,
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to conclude

∇ · Re
{
∇u

(
ur +

d− 1

2r
u

)}
=

= Re

{
△u

(
ur +

d− 1

2r
u

)}
+ ∂k

(xk
2r

|∇u|2
)
+

|∇u|2 − |ur|2

r

− ∂j

(
d− 1

4

xj
r3

|u|2
)
− (d− 1)(d− 3)

4r3
|u|2,

which is (5.8). Now, applying the Divergence Theorem to (5.8) and Lemma 5.1, we have〈(
∂r +

d− 1

2r

)
u,△u

〉
≤ −

∫
Rd

1

r

(
|∇u|2 − |ur|2

)
dx− (d− 1)(d− 3)

4
lim

a→0+

∫
r≥a

|u|2

r3
dx

− lim inf
a→0+

∫
r=a

[
Re

{
ur

(
ur +

d− 1

2a
u

)}
− |∇u|2

2
+

d− 1

4

|u|2

a2

]
dS.

Let us now suppose that u ∈ C∞(Rd,C). Then

lim
a→0+

∫
∂B(x,a)

|∇u|2dS = 0

Similarly, for d > 3 and u ∈ C∞(Rd,C) we have

lim
a→0+

∫
r=a

|u|2

a2
dS = 0

Hence, for d > 3 and u ∈ C∞(Rd,C) we obtain 5.1, we have〈(
∂r +

d− 1

2r

)
u,△u

〉
≤ −

∫
Rd

1

r

(
|∇u|2 − |ur|2

)
dx− (d− 1)(d− 3)

4

∫
Rd

|u|2

r3
dx ≤ 0.

(5.9) eq:limit1

For u ∈ H2(Rd,C) and, u ̸∈ C∞(Rd,C) considered a sequence un
n→∞−−−→ u in H2(Rd,C), we

have〈(
∂r +

d− 1

2r

)
un,△un

〉
≤ −

∫
Rd

1

r

(
|∇un|2 − |unr|2

)
dx− (d− 1)(d− 3)

4

∫
Rd

|un|2

r3
dx

which in the limit converges to (5.9).
For d = 3 then u ∈ C0(R3) and so

lim
a→0+

∫
∂B(0,a)

|u|2dS
a2

= 4π|u(0)|2,

so that we obtain〈(
∂r +

d− 1

2r

)
u,△u

〉
= −

∫
R3

1

r

(
|∇u|2 − |ur|2

)
dx− 2π|u(0)|2.
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The next step to prove inequality (5.5) is the following identity,〈(
∂r +

d− 1

2r

)
u, |u|p−1u

〉
=

d− 1

2

p− 1

p+ 1

∫
|u|p+1

r
. (5.10) eq:virial_2

Indeed 〈(
∂r +

d− 1

2r

)
u, |u|p−1u

〉
=

d− 1

2

∫
Rd

|u|p+1

r
+

1

2

∫
Rd

(|u|2)
p−1
2 ∂r|u|2dx

=
d− 1

2

∫
Rd

|u|p+1

r
+

1

2

2

p+ 1

∫
Rd

∂r(|u|2)
p+1
2 dx

=
d− 1

2

∫
Rd

|u|p+1

r
− d− 1

p+ 1

∫
Rd

|u|p+1

r
=

d− 1

2

p− 1

p+ 1

∫
Rd

|u|p+1

r
.

So now we can prove (5.5). Indeed, from (5.6), (5.4), (5.6) and (5.10), we obtain

− 1

2

d

dt
⟨∂ru, iu⟩ =

〈(
∂r +

d− 1

2r

)
u,−iu̇

〉
= −

〈(
∂r +

d− 1

2r

)
u,−△u+ |u|p−1u

〉
≤ −

〈(
∂r +

d− 1

2r

)
u, |u|p−1u

〉
= −d− 1

2

p− 1

p+ 1

∫
Rd

|u|p+1

r
,

which yields (5.5).

lem:mor4 Lemma 5.4. We have∫
R
dt

∫
Rd

|u|p+1

r
≤ 2

d− 1

p+ 1

p− 1
∥u0∥L2(Rd)∥∇u∥L∞(R,L2(Rd)) ≤

2
3
2

d− 1

p+ 1

p− 1
∥u0∥L2(Rd)E(u0).

(5.11) eq:mor41

furthermore, we have u(t)
t→∞
⇀ 0 in H1(Rd).

Proof. To get (5.11) it is enough to integrate. We skip the proof of the weak limit.
We now start directly to prove Theorem 4.2.

lem:step1 Lemma 5.5. We have ∫
|x|≥t log t

|u|p+1dx
t→+∞−−−−→ 0. (5.12) eq:step11

Proof. We consider for M > 0

θM (x) =

{ |x|
M for |x| ≤ M
1 for |x| ≥ M
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Then θM ∈ W 1,∞(Rd) with ∥∇θM∥L∞ ≤ 1/M . Now we have u ∈ C0(R,H1) ∩ C1(R,H−1).
Then, it can be proved, by a density argument, that t → 2−1 ⟨θMu(t), u(t)⟩ ∈ AC([−T, T ])
for any T > 0 with

d

dt
2−1 ⟨θMu(t), u(t)⟩ = ⟨θMu(t), u̇(t)⟩ .

Since we have iu̇(t) = −△u+ |u|p−1u in D′(R,H−1), we have∣∣∣∣ ddt2−1 ⟨θMu(t), u(t)⟩
∣∣∣∣ = ∣∣〈θMu(t), i△u− i|u|p−1u

〉∣∣ = |⟨θMu(t), i△u⟩| ≤ ∥∇u∥L2∥u∥L2∥∇θM∥L∞

≤ ∥∇u∥L2∥u∥L2∥∇θM∥L∞ ≤ CM−1.

Then it follows, for a C independent from M ,

⟨θMu(t), u(t)⟩ ≤ CM−1t+ ⟨θMu0, u0⟩ .

Setting M = t log t, we obtain by dominated convergence∫
|x|≥t log t

|u(t)|2dx ≤ ⟨θt log tu(t), u(t)⟩

≤ C

log t
+

∫
|x|≤t log t

|x|
t log t

|u0|2dx+

∫
|x|≥t log t

|u0|2dx
t→+∞−−−−→ 0.

Finally

∥u(t)∥Lp+1(|x|≥t log t) ≤ ∥u(t)∥αL2(|x|≥t log t)∥u(t)∥
1−α
Ld∗+1(Rd)

≤ C∥u(t)∥αL2(|x|≥t log t)∥∇u(t)∥1−α
L2(Rd)

≤ C ′∥u(t)∥αL2(|x|≥t log t)
t→+∞−−−−→ 0.

lem:step2 Lemma 5.6. For any ε > 0 , t > 1 and τ > 0 there exists t0 > max(t, 2τ) s.t.∫ t0

t0−2τ

∫
|x|≤s log s

|u|p+1dxds ≤ ε. (5.13) eq:step21

Proof. The starting point is Lemma 5.4. We have

∞ >

∫
R
dt

∫
Rd

|u|p+1

r
≥
∫ ∞

2

ds

s log s

∫
|x|≤s log s

|u|p+1dx

≥
∞∑
k=0

∫ t+2(k+1)τ

t+2kτ

ds

s log s

∫
|x|≤s log s

|u|p+1dx

≥
∞∑
k=0

1

(t+ 2(k + 1)τ) log(t+ 2(k + 1)τ)

∫ t+2(k+1)τ

t+2kτ
ds

∫
|x|≤s log s

|u|p+1dx.
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From this inequality we derive

lim inf
k→+∞

∫ t+2(k+1)τ

t+2kτ
ds

∫
|x|≤s log s

|u|p+1dx = 0,

because otherwise the series would diverge. Hence for any ε > 0 there exists k0 arbitrarily
large with ∫ t+2(k0+1)τ

t+2k0τ
ds

∫
|x|≤s log s

|u|p+1dx < ε.

So for t0 = t+ 2(k0 + 1)τ we obtain (5.13).

lem:step3 Lemma 5.7. For any ε, a, b ∈ R+ there exists t0 > max(a, b) s.t.

sup
s∈[t0−b,t0]

∥u(s)∥Lp+1 ≤ ε. (5.14) eq:step31

Proof. We have

u(t) = eit△u0 − i

∫ t

0
ei(t−s)△|u(s)|p−1u(s)ds

= eit△u0−i

∫ t−τ

0
ei(t−s)△|u(s)|p−1u(s)ds︸ ︷︷ ︸

w(t,τ)

−i

∫ 1

t−τ
ei(t−s)△|u(s)|p−1u(s)ds︸ ︷︷ ︸

z(t,τ)

= eit△u0 + w(t, τ) + z(t, τ).

Now we consider each of the last three terms.

cl:lim1 Claim 5.8. We have

∥eit△u0∥Lp+1
t→+∞−−−−→ 0. (5.15) eq:lim11

Proof. Indeed, if u0 ∈ L
p+1
p , then

∥eit△u0∥Lp+1 ≤ Ct
−d

(
1
2
− 1

p+1

)
∥u0∥

L
p+1
p

t→+∞−−−−→ 0.

The general case follows from the special one using the fact that H1 ∩ L
p+1
p is dense in

H1.

cl:lim2 Claim 5.9. There is a constant C independent from t and τ s.t.

∥w(t, τ)∥Lp+1 ≤ Cτ
− d(p−1)−2max(1,p−1)

2(p+1) . (5.16) eq:lim21
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Proof. We define

q =

{
∞ if p ≥ 2
2

2−p if p < 2.

Then we have

∥w(t, τ)∥Lq ≤
∫ t−τ

0
(t− s)

−d
(

1
2
− 1

q

)
∥u∥p

Lpq′ds.

Here we claim

d

(
1

2
− 1

q

)
> 1. (5.17) eq:lim22

This is obvious by d ≥ 3 if q = ∞. Otherwise, for p < 2

d

(
1

2
− 1

q

)
= d

(
1

2
− 2− p

2

)
=

d

2
(p− 1) > 1 ⇐⇒ p > 1 +

2

d
,

where the last inequality follows from p > 1 + 4
d . So we have

∥w(t, τ)∥Lq ≤ Cτ
−d

(
1
2
− 1

q

)
+1

sup
s

∥u(s)∥p
Lpq′ . (5.18) eq:lim23

We claim now that 2 ≤ pq′ ≤ p+ 1. Indeed, for p ≥ 2 we have q′ = 1 and the claim holds.
If p < 2 then

1

q′
= 1− 1

q
= 1− 2− p

2
=

p

2

so that pq′ = 2. So in all cases we have H1 ↪→ Lpq′ and we can uniformly bound the last
factor on the right in (5.18).

Next, we claim ∥w(t, τ)∥L2 ≤ 2∥u0∥L2 , which follows from

w(t, τ) = −i

∫ t−τ

0
ei(t−s)△|u(s)|p−1u(s)ds = eiτ△

(
−i

∫ t−τ

0
ei(t−τ−s)△|u(s)|p−1u(s)ds

)
= eiτ△

(
u(t− τ)− ei(t−τ)△u0

)
= eiτ△u(t− τ)− eit△u0.

Finally, we claim p+1 ≤ q. This is obviously the case if q = ∞. Otherwise p < 2, and then

q > p+ 1 ⇐⇒ 2

2− p
> p+ 1 ⇐⇒ 2 > (p+ 1)(2− p) = 2 + p− p2

where the last inequality follows from p > 1 and so from p − p2 < 0. Finally by Hölder
inequality

∥w(t, τ)∥Lp+1 ≤ ∥w(t, τ)∥1−α
L2 ∥w(t, τ)∥αLq where

1

p+ 1
=

1− α

2
+

α

q
.
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Notice that α =

1
2 − 1

p+1
1
2 − 1

q

. So

∥w(t, τ)∥Lp+1 ≤ Cτ
−d

(
1
2
− 1

p+1

)
+

1
2− 1

p+1
1
2− 1

q . (5.19) eq:lim24

We now examine the exponent in (5.19). If q = ∞ the exponent equals

− (d− 2)

(
1

2
− 1

p+ 1

)
= −d(p− 1)− 2(p− 1)

2(p+ 1)
= −d(p− 1)− 2max(1, p− 1)

2(p+ 1)
.

In the case q < ∞, then(
1

2
− 1

p+ 1

)(
−d+

1
1
2 − 1

q

)
= − p− 1

2(p+ 1)

(
d− 2

p− 1

)
= −d(p− 1)− 2

2(p+ 1)
= −d(p− 1)− 2max(1, p− 1)

2(p+ 1)
.

So we have proved that the exponent in (5.19) is exactly the one in (5.16), which is then
proved.

We now consider

z(t, τ) = −i

∫ t

t−τ
ei(t−s)△|u(s)|p−1u(s)ds.

We have

∥z(t, τ)∥Lp+1 .
∫ t

t−τ
(t− s)

−d
(

1
2
− 1

p+1

)
∥u∥p

Lp+1ds. (5.20) eq:dispers_z

Notice that p < d∗, that is p+ 1 < 2d
d−2 is equivalent to d

(
1
2 − 1

p+1

)
< 1. Indeed,

1

p+ 1
>

d− 1

2d
=

1

2
− 1

d
.

We now pick q ∈
(
1, 2(p+1)

d(p−1)

)
. Notice that this implies qd

(
1
2 − 1

p+1

)
< 1. Then

∥z(t, τ)∥Lp+1 .
(∫ t

t−τ
(t− s)

−dq
(

1
2
− 1

p+1

)
ds

)1/q (∫ t

t−τ
∥u∥pq

′

Lp+1ds

) 1
q′

= Cτα
(∫ t

t−τ
∥u∥pq

′

Lp+1ds

) 1
q′
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for some α > 0. Now we claim q′p > p+ 1 or, equivalently, 1
q′ <

p
p+1 Indeed

1

q
>

d

2
− d

p+ 1
⇐⇒ 1

q′
= 1− 1

q
< 1− d

2
+

d

p+ 1
⇐⇒ 1

q′
<

2− d

2
+

d

p+ 1

=
2(p+ 1)− (p+ 1)d+ 2d

2(p+ 1)
=

p

p+ 1
+

2− (p+ 1)d+ 2d

2(p+ 1)
<

p

p+ 1
,

where the last inequality holds because

2− (p+ 1)d+ 2d = 2− pd+ d < 0 ⇐⇒ p > 1 +
2

d
,

with the latter true because, in our case, p > 1 + 4
d .

From q′p > p+ 1 it follows that

∥z(t, τ)∥Lp+1 ≤ Cτα
(∫ t

t−τ
∥u∥p+1

Lp+1ds

)µ

= Cτα

(∫ t

t−τ
ds

∫
|x|≥s log s

|u|p+1dx+

∫ t

t−τ
ds

∫
|x|≤s log s

|u|p+1dx

)µ

≤ 2µCτ δ+µ

(
sup

s∈[t−τ,t]
∥u(s)∥p+1

Lp+1(|x|≥s log s)

)µ

+ 2µCτ δ

(∫ t

t−τ
ds

∫
|x|≤s log s

|u|p+1dx

)µ

.

(5.21) record1

Let us take now τ > b such that

∥w(t, τ)∥Lp+1 ≤ Cτ
− d(p−1)−2max(1,p−1)

2(p+1) <
ε

4
. (5.22) ineq1

Next, using Lemma 5.5 and Claim 5.8 let us take t1 > max(a, b) such that for t ≥ t1

∥eit△u0∥Lp+1 + 2µCτ δ+µ

(
sup

s∈[t−τ,t]
∥u(s)∥p+1

Lp+1(|x|≥s log s)

)µ

<
ε

4
. (5.23) ineq2

Using Lemma 5.6 there exists t2 > t1 + 2τ such that for t ∈ [t2, t2 − τ ]

2µCτ δ

(∫ t

t−τ
ds

∫
|x|≤s log s

|u|p+1dx

)µ

≤ 2µCτ δ

(∫ t2

t2−2τ
ds

∫
|x|≤s log s

|u|p+1dx

)µ

<
ε

4
.

(5.24) ineq3

Making careful choices, we conclude the proof of Lemma 5.7.

We now move to complete the proof of Theorem 4.2.
Let us fix ε > 0. Pick t > τ > 0. Then, in view of u(t) = eit△u0 +w(t, τ) + z(t, τ), we have
that by Claims 5.8–5.9 there exists t1 ≥ 0 and τϵ with

∥u(t)∥Lp+1 ≤ ∥eit△u0∥Lp+1 + Cτ
− d(p−1)−2max(1,p−1)

2(p+1)
ϵ + ∥z(t, τ)∥Lp+1 ≤ ε

2
+ ∥z(t, τϵ)∥Lp+1 ,
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where we chose ∥eit△u0∥Lp+1 < ϵ
4 for t > t1 and

Cτ
− d(p−1)−2max(1,p−1)

2(p+1)
ϵ =

ε

4
. (5.25) choice_tau

In turn by (5.20)

∥z(t, τϵ)∥Lp+1 .
∫ t

t−τϵ

(t− s)
−d

(
1
2
− 1

p+1

)
∥u∥p

Lp+1ds ≤ Cτ
1− d(p−1)

2(p+1)
ϵ sup

s∈[t−τϵ,t]
∥u(s)∥p

Lp+1

From Lemma 5.7 we know that there exists t0 > max(t1, τϵ) s.t.

sup
s∈[t0−τϵ,t0]

∥u(s)∥Lp+1 ≤ ε

4
. (5.26) induct_decay

Consider now

tϵ = sup{t ≥ t0 : ∥u(s)∥Lp+1 ≤ ε for all s ∈ [t0 − τϵ, t]},

where (5.26) guarantees that the set on the right hand side is non empty.
If tϵ = +∞ we will have proved the desired result. So, let us suppose that tϵ < ∞. Then,
by u ∈ C0(R,H1), we have ∥u(tϵ)∥Lp+1 = ε. Then we have

ε <
ε

2
+ ∥z(tϵ, τϵ)∥Lp+1 ≤ ε

2
+ Cτ

1− d(p−1)
2(p+1)

ϵ sup
s∈[tϵ−τϵ,tϵ]

∥u(s)∥p
Lp+1 ,

so that we conclude

ε <
ε

2
+

(
Cτ

1− d(p−1)
2(p+1)

ϵ εp−1

)
ε.

We now need to check that it is possible to choose τϵ such that both

Cτ
1− d(p−1)

2(p+1)
ϵ εp−1 <

1

2
(5.27) choice_tau1

and (5.25) are true. This will lead to a contradiction. Suppose that for τϵ which satisfies
(5.25) inequality (5.27) is false. This implies

1

2C
≤ τ

1− d(p−1)
2(p+1)

ϵ εp−1 = C14
p−1τ

1− d(p−1)
2(p+1)

− d(p−1)2−2(p−1)max(1,p−1)
2(p+1)

ϵ , (5.28) contradict_1

where we substituted εp−1 using the equality (5.25). We will show now that the exponent
of τϵ is negative, so that taking τϵ ≫ 1 formula (5.28) leads to a contradiction. Taking a
unique fraction in the exponent and focusing on the numerator, we have

2(p+ 1)− d(p− 1)− d(p− 1)2 + 2(p− 1)max(1, p− 1)

= (p− 1) (2max(1, p− 1)− d− d(p− 1)) + 2(p+ 1)

= (p− 1) (2max(1, p− 1) + 2− d(p− 1))− d(p− 1)− 2(p− 1) + 2(p+ 1)

= (p− 1) (2max(1, p− 1) + 2− d(p− 1))− d(p− 1) + 4. (5.29) contradict_2
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For p− 1 ≤ 1 the quantity in line (5.29) becomes

(p− 1) (4− d(p− 1))− d(p− 1) + 4 = p (4− d(p− 1)) < 0

by p > 1 + 4/d and this completes the proof for p− 1 ≤ 1.
For p− 1 > 1 the quantity in line (5.29) becomes

(p− 1) (2(p− 1) + 2− d(p− 1))− d(p− 1) + 4

= (p− 1) (2− (d− 2)(p− 1))− d(p− 1) + 4.

For d ≥ 4

(p− 1) (2− (d− 2)(p− 1))− d(p− 1) + 4

≤ (p− 1) (2− 2(p− 1))− 4(p− 1) + 4 = −2(p− 1)p− 4(p− 2) < 0.

Finally, for d = 3 and p− 1 > 1 the quantity in line (5.29) becomes, for α = p− 1,

(p− 1) (2(p− 1) + 2− 3(p− 1))− 3(p− 1) + 4

= −α2 − α+ 4 =: −q(α).

Now, q(α) = 0 for α± = −1/2 ±
√
17
2 . This means that q(α) < 0 for p − 1 >

√
17−1
2 .

The completion of the proof of Theorem 4.2 for the remaining cases, that is d = 3 and

2 < p ≤
√
17+1
2 is not in

caz
[4].
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