Geologia stratigrafica e sedimentologia Modulo di Geologia stratigrafica

Prof. Carlo Corradini

Università di Trieste
Corso di Laurea in Geologia
A.A. 2021/22

Datazioni assolute

Introduzione

Per attribuire un età precisa, espressa in anni (o milioni di anni) a una roccia si utilizzano metodi geochimici basati sul decadimento radioattivo di alcuni elementi chimici.

Gli ISOTOPI di uno stesso elemento hanno lo stesso numero di protoni (e quindi di elettroni) ma un diverso numero di neutroni N. Quindi hanno lo stesso numero atomico Z (o numero di protoni) ma un diverso numero di massa A (protoni + neutroni).

Quando n neutroni/n protoni molto diverso da 1, gli isotopi INSTABILI (radioattivi) decadono spontaneamente fino ad assumere una configurazione stabile

Introduzione

Gli elementi più utilizzati in geocronologia sono:

Sistema Potassio-Argon

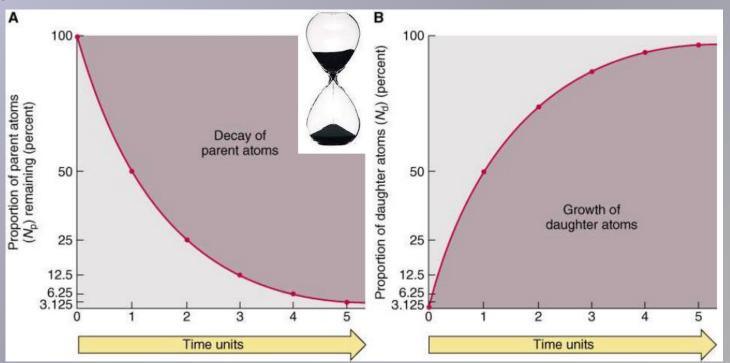
⁴⁰K -> ⁴⁰Ar tempo di dimezzamento = 1.28 10⁹ anni

Sistema Rubidio-Stronzio

87Rb -> 87Sr tempo di dimezzamento = 4.8 1010 anni

Sistema Uranio, Torio - Piombo

 238 U -> 206 Pb tempo di dimezzamento = 4.47 109 anni tempo di dimezzamento = 7.07 108 anni tempo di dimezzamento = 1.04 100 anni


Altri Sistemi

 147 Sm -> 143 Nd tempo di dimezzamento = 1,06 $^{10^{11}}$ anni tempo di dimezzamento = 2.59 $^{10^{11}}$ anni tempo di dimezzamento = 4.23 $^{10^{12}}$ anni tempo di dimezzamento = 4.23 $^{10^{12}}$ anni

Introduzione

Elementi radioattivi (padri) decadono in elementi stabili non radioattivi (figli).

Conoscendo la costante di decadimento dell'elemento padre, la sua quantità nella roccia al tempo t della misura, e la quantità di elemento figlio nella roccia al tempo t della misura, possiamo calcolare da quanto tempo la reazione di decadimento è iniziata, ovvero il tempo t trascorso da quando si è formata la roccia al momento della misura.

Decadimento

Esistono tre tipi di decadimento radioattivo:

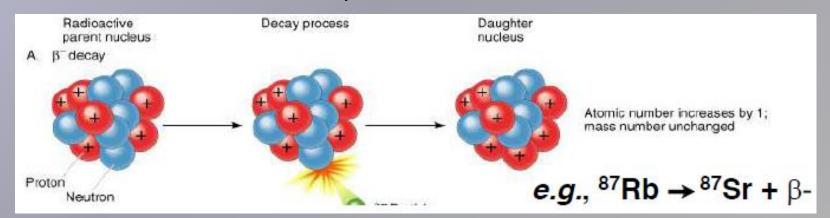
Decadimento BETA

Decadimento ALFA

Decadimento GAMMA

Decadimento per cattura elettronica

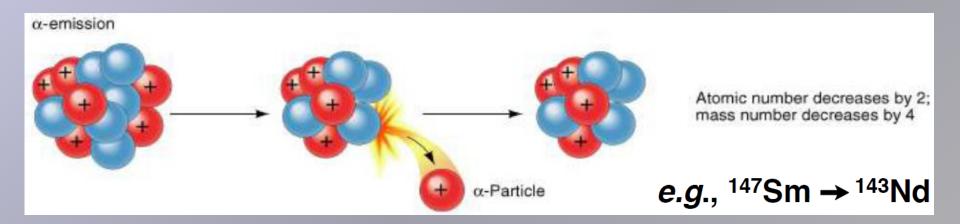
Decadimento BETA


Quando in un nucleo ci sono troppi neutroni rispetto ai protoni si ha decadimento di un neutrone in protone con emissione di un elettrone (particella β -) e un antineutrino.

neutrone->protone +
$$\beta$$
- + antineutrino

Quando in un nucleo ci sono troppi protoni rispetto ai neutroni si ha decadimento di un protone in neutrone con emissione di un positrone (particella β +) e un neutrino.

protone->neutrone +
$$\beta$$
+ + neutrino


In entrambi i casi il numero atomico cambia di 1. Il numero di massa (protoni+neutroni) non cambia. Cambiando il numero atomico, cambia l'elemento.

Decadimento ALFA

Una particella α è un nucleo di He (due protoni e due neutroni).

L'emissione di una particella α produce una diminuzione del numero atomico (protonico) di 2 e di numero di massa (protoni+neutroni) di 4. Cambiando numero atomico, cambia l'elemento.

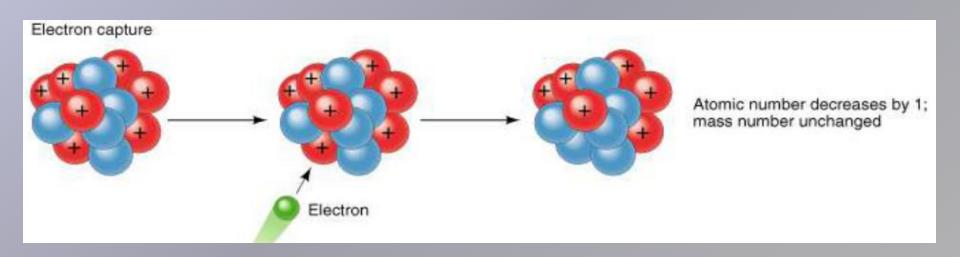
Decadimento GAMMA

Decadimento per emissione di raggi gamma, cioè fotoni ad alta energia (radiazione elettromagnetica), da un nucleo eccitato.

La frequenza del fotone emesso è funzione della differenza di energia fra stato superiore (eccitato) e stato inferiore (stabile) del nucleo.

Il numero di atomico (protonico) e il numero di numero di massa (protoni+neutroni) non cambiano.

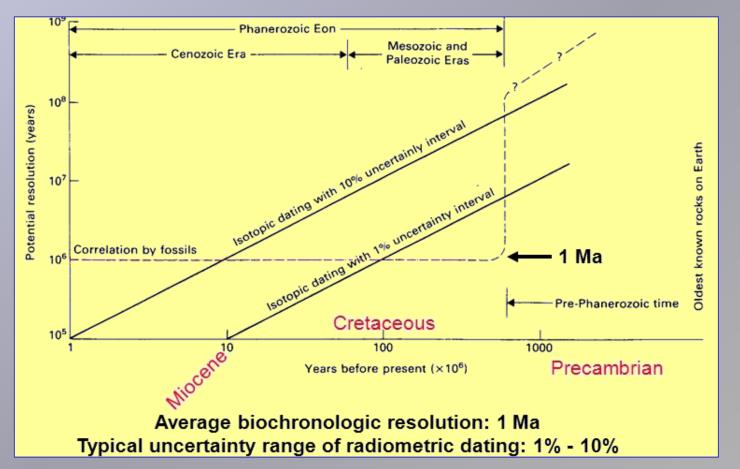
Durante il decadimento, l'elemento non cambia.


Decadimento per cattura elettronica

Un elettrone, solitamente da livello energetico K o L, è catturato da un protone, formando un neutrone e un neutrino.

Il numero di massa (protoni+neutroni) rimane invariato, mentre il numero atomico (protonico) diminuisce di 1.

Cambiando il numero atomico (protonico), cambia l'elemento.


Ad esempio, 40 K può decadere in 40 Ar tramite cattura elettronica o β + e in 40 Ca tramite β -.

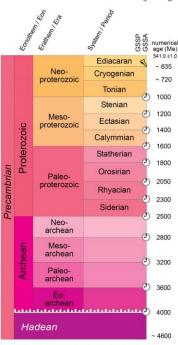
Precisione del metodo

Nella maggior parte del Fanerozoico la precisione biostratigrafica è maggiore di quella isotopica.

La datazione isotopica è però necessaria per calibrare l'età dei limiti di zona nei vari schemi biozonali.

Le datazioni della scala cronostratigrafica

International Commission on Stratigraphy


10 to 100 to 100

www.stratigraphy.org Era Police Stage / Age present 0.0042 Holocene 0.0117 Upper 0.129 Chibanian 0.774 Pleistocene 1.80 Gelasian 2.58 Piacenzian 3.600 Pliocene Zanclean 5.333 Messinian Tortonian 11.63 Serravallian 13.82 Miocene Langhian 15.97 Burdigalian 20 44 Aguitanian 23.03 Chattian 27.82 Oligocene Rupelian Priabonian Paleogene 37.71 Bartonian 41.2 Eocene Lutetian 47.8 Ypresian Thanetian 59.2 Paleocene Selandian 61.6 Danian Maastrichtian 4 Campanian 83.6 ±0.2 Santonian < 86.3 ±0.5 Coniacian 89.8 ±0.3 Turonian Cenomanian ~ 113.0 Aptian ~ 125 0 Barremian ~ 129.4 Lower Hauterivian ~ 132.6 Valanginian ~ 139.8 Berriasian ~ 145.0

Fonos	Erall	System	Se	ries / Epoch	Stage / Age	GSSP	numerical
4	~	0)	-	nes / Epoon		0	age (Ma) ~ 145.0
					Tithonian		152.1 ±0.9
				Upper	Kimmeridgian	1	157.3 ±1.0
					Oxfordian		163.5 ±1.0
				Callovian	1	166.1 ±1.2	
		SS		Middle	Bathonian Bajocian	1	168.3 ±1.3
		Triassic Jura		Aalenian	1	170.3 ±1.4 174.1 ±1.0	
			Lower		Toarcian		174.1 ±1.0
	Mesozoic				1	182.7 ±0.7	
					1	190.8 ±1.0	
					3		
					Hettangian	T	199.3 ±0.3 201.3 ±0.2
					Rhaetian		
			Upper				~ 208.5
				Upper	Norian		
						~ 227	
					Carnian	3	
						1	~ 237
Phanerozoic			Middle		Anisian	-	~ 242
OZ					Olenekian		247.2 251.2
e				Lower	Induan	3	251.902 ±0.024
an	Paleozoic	Permian	Lopingian		Changhsingian		254.14 ±0.07
F					Wuchiapingian	1	259.51 ±0.21
			Guadalupian		Capitanian	3	264.28 ±0.16
					Wordian	1	266.9 ±0.4
					Roadian	1	273.01 ±0.14
			Cisuralian		Kungurian		
					Artinskian		283.5 ±0.6
							290.1 ±0.26
					Sakmarian	1	293.52 ±0.17
					Asselian	3	298.9 ±0.15
		Carboniferous	Pennsylvaniar	Upper	Gzhelian		303.7 ±0.1
					Kasimovian		307.0 ±0.1
				Middle	Moscovian		315.2 ±0.2
				Lower	Bashkirian	3	
			_	Upper	Serpukhovian		323.2 ±0.4
				Middle	Corpuniovian		330.9 ±0.2
					Visean		
		U				1	346.7 ±0.4
				Lower	Tournaisian	1	
			1			1	358.9 ±0.4

E Grothen /	System / Er	Series / Epoch	Stage / Age	0 numerical oge (Ma) 358.9 ±0.4
		Upper	Famennian	372.2 ±1.6
	=		Frasnian	382.7 ±1.6
	onia	Middle	Givetian	387.7 ±0.8
	Devonian		Eifelian	393.3 ±1.2
	_	Lower	Emsian	
			Pragian	407.6 ±2.6 410.8 ±2.8
			Lochkovian	410.012.0
		Pridoli		419.2 ±3.2
			Ludfordian	423.0 ±2.3
	_	Ludlow	Gorstian	425.6 ±0.9
	Silurian	Wenlock	Homerian	427.4 ±0.5 430.5 ±0.7
	⋾	vverilock	Sheinwoodian	433.4 ±0.8
	S	Llandovery	Telychian .	a
			Aeronian	438.5 ±1.1
.O.			Rhuddanian	440.8 ±1.2
Z S		Upper	Hirnantian	443.8 ±1.5 445.2 ±1.4
hanerozoic Paleozoic			Katian	453.0 ±0.7
har	ian		Sandbian	458.4 ±0.9
a	ovic	Middle		a
	ĕ		Dapingian	467.3 ±1.1 470.0 ±1.4
	0	Lower	Floian	470.0 ±1.4
			Tremadocian	485.4 ±1.9
		Furongian	Stage 10	~ 489.5
			Jiangshanian	S
			Paibian	~ 494
		Miaolingian		~ 497
			Drumian	~ 500.5 ~ 504.5
	Cambrian		Wuliuan	4
		Series 2	Stage 4	~ 509
			Stage 3	~ 514
		Terreneuvian	St 2	~ 521
			Stage 2	~ 529
			Fortunian	

Units of all ranks are in the process of being defined by Global Boundary Stratotype Section and Points (GSSP) for their lower boundaries, including those of the Archean and Proterozoic, long defined by Global Standard Stratigraphic Ages (GSSA). Italic fonts indicate informal units and placeholders for unnamed units. Versioned charts and detailed information on ratified GSSPs are available at the website http://www.stratigraphy.org The URL to this chart is found below.

Numerical ages are subject to revision and do not define units in the Phanerozoic and the Ediacaran; only GSSPs do. For boundaries in the Phanerozoic without ratified GSSPs or without constrained numerical ages, an approximate numerical age (~) is provided

Ratified Subseries/Subepochs are abbreviated as U/L (Upper/Late), M (Middle) and L/E (Lower/Early). Numerical ages for all systems except Quaternary, upper Paleogene, Cretaceous, Triassic, Permian and Precambrian are taken from 'A Geologic Time Scale 2012' by Gradstein et al. (2012), those for the Quaternary, upper Paleogene, Cretaceous, Triassic, Permian and Precambrian were provided by the relevant ICS

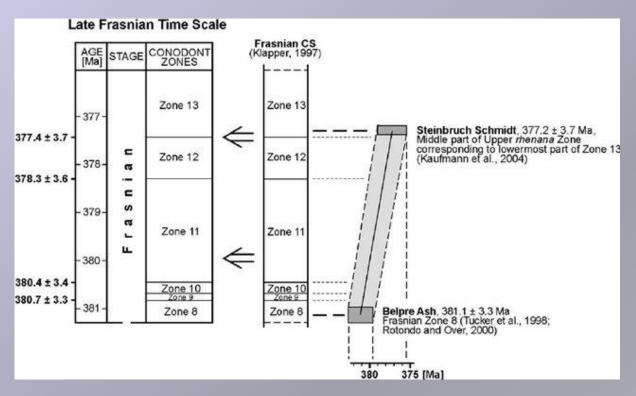
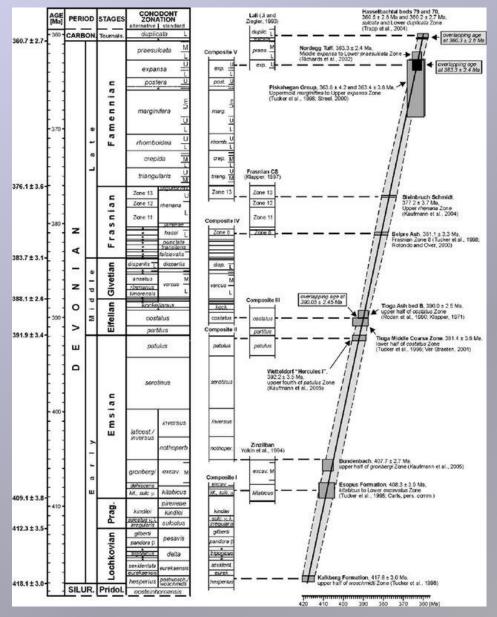

Colouring follows the Commission for the Geological Map of the World (www.ccgm.org)

Chart drafted by K.M. Cohen, D.A.T. Harper, P.L. Gibbard, N. Car

To cite: Cohen, K.M., Finney, S.C., Gibbard, P.L. & Fan, J.-X. (2013; updated The ICS International Chronostratigraphic Chart. Episodes 36: 199-204.

LIRL: http://www.stratigraphy.org/ICSchart/ChronostratChart2021-07.pdf


Le datazioni della scala cronostratigrafica

Kauffmann B. (2006). Calibrating the Devonian Time Scale: A synthesis of U–Pb ID–TIMS ages and conodont stratigraphy. *Earth-Science Reviews* 76, 175-190

Fig. 8. Example for the calibration of a biostratigraphic scale by two successive **U** – **Pb** ID – TIMS zircon ages in a Cartesian coordinate system. The Frasnian Composite Standard (CS) represents an approximately time-linear biostratigraphic scale which is converted by a regression line to a numerical scale. Note the error channel which enables the assignment of an error to each calibrated biozone boundary.

Le datazioni della scala cronostratigrafica

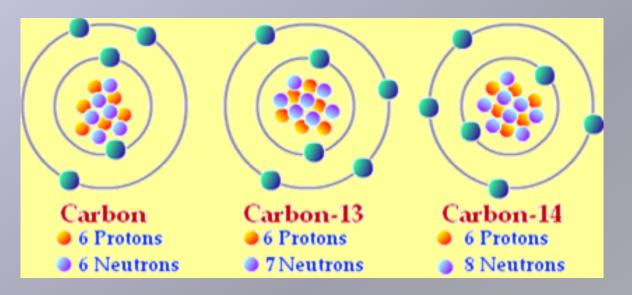
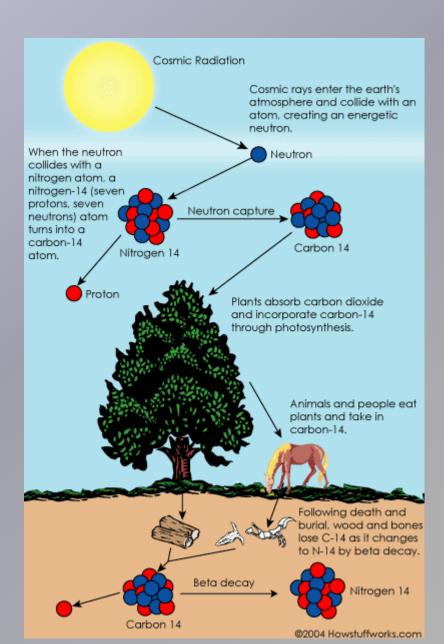

Kauffmann B. (2006). Calibrating the Devonian Time Scale: A synthesis of U–Pb ID–TIMS ages and conodont stratigraphy. *Earth-Science Reviews* 76, 175-190

Fig. 9. Calibration of the Devonian time scale. Each U - Pb ID - TIMS age (shaded rectangles) is represented by its biostratigraphic range and its 2 σ error plus 2 Ma additional uncertainty (see Section 2.1 above).

Gli isotopi del Carbonio

Il Carbonio ha tre isotopi.

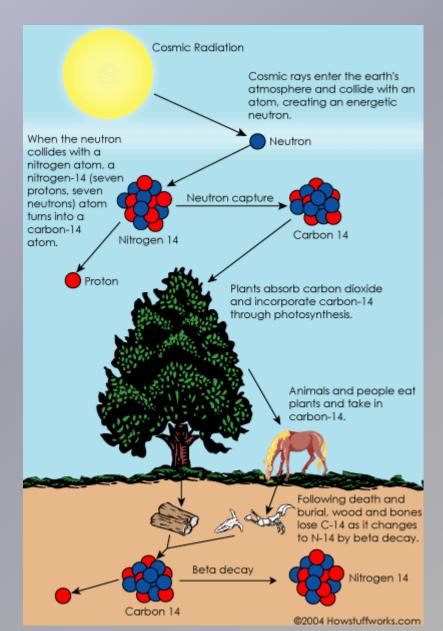
Stesso numero atomico (6), diverso numero di massa (12, 13, 14)


¹²C e ¹³C sono isotopi stabili ¹⁴C è radioattivo

14**C**

¹⁴C è continuamente creato in alta atmosfera dal bombardamento di atomi di ¹⁴N da parte dei raggi cosmici.

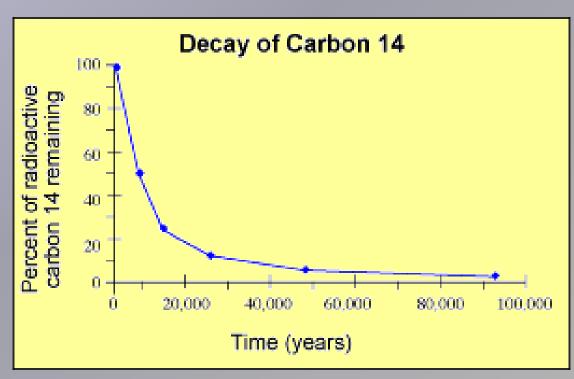
¹⁴C continuamente decade in atmosfera in ¹⁴N + β- con tempo di dimezzamento di 5740 anni.


Queste continue reazioni di creazione/decadimento determinano un rapporto ¹⁴C/¹⁴N in atmosfera che possiamo misurare e considerare in prima approssimazione stabile nel tempo.

14C

Gli organismi viventi scambiano continuamente ¹⁴C e ¹⁴N con l'atmosfera circostante (per fotosintesi, respirazione, nutrizione) , per cui finchè vivono, il loro rapporto ¹⁴C/¹⁴N sarà in equilibrio con quello atmosferico.

Alla morte dell'organismo, viene interrotto l'equilibrio di ¹⁴C e ¹⁴N con l'atmosfera circostante, e il ¹⁴C decade in ¹⁴N + b- con tempo di dimezzamento di 5740 anni.



14**C**

E' quindi possibile misurare l'alterazione del rapporto ¹⁴C/¹⁴N noto iniziale (di quando cioè l'organismo era vivo, e che coincide con quello noto atmosferico), dovuta al decadimento post-mortem di ¹⁴C in ¹⁴N. Ovvero, posso stimare l'età trascorsa dalla morte dell'organismo.

Il metodo del ¹⁴C si applica solo a resti organici (ossa, denti, legno, etc.).

Il metodo ¹⁴C è utilizzabile fino a 50.000 (massimo 75.000) anni BP, a causa del breve tempo di dimezzamento.

