

1

Rivelatori e Apparati Slides_9 – MAPS, DMAPS, LGAD

giacomo.contin@ts.infn.it - RAFNeS_9 MAPS, DMAPS, LGAD

Hybrid Pixel Detectors

Monolithic Pixels

Monolithic Pixels

Depleted Monolithic Pixels

Fill factor

Resistivita' substrato DEGLISTL

La tecnologia MAPS

Volume sensibile e logica CMOS di prima elaborazione del segnale nello stesso cristallo di silicio

ionizing particle

- Monolithic Active Pixel Sensor
- Tecnologia industriale standard CMOS
- **Room temperature** operation
- Sensore e processazione del segnale integrati nello stesso silicio
- Il segnale e' creato nell'epitassiale (tipicamente ~10-15 μ m) a basso drogaggio \rightarrow segnale di un MIP limitato a <1000 elettroni
- La raccolta di carica avviene soprattutto per diffusione termica (lenta, ~100 ns), anche grazie ai confini "riflettenti reflective boundaries at p-well and substrate.
- Epitassiali ad alta resistivita' per ottenere zone svuotate piu' spesse \rightarrow raccolta della carica piu' efficiente, piu' tollerante alle radiazioni
- 100% fill-factor

STAR HFT PXL sensor: Ultimate-2

- Ultimate-2: third generation sensor developed for PXL by the PICSEL group of IPHC, Strasbourg
- Monolithic Active Pixel Sensor technology, MIMOSA series

CMOS Pixel Sensor using TowerJazz 0.18µm CMOS Imaging Process

ALPIDE sensor (developed within ALICE)

- ~28 μm pitch
- Integration time: < 20 μ s
- Trigger rate: 100 kHz
- Read out up to 1.2 Gbit/s
- Power: 40 mW/cm²
- Priority encoder sparsified readout
- Rad. Tolerant: 700krad -10¹⁴ IMeV n_{eq}/cm²
- High-resistivity (> $1k\Omega$ cm) p-type epitaxial layer (20μ m 40μ m thick) on p-type substrate
- Small n-well diode (2-3 μ m diameter), ~100 times smaller than pixel => low capacitance
- Application of (moderate) reverse bias voltage to substrate can be used to increase depletion zone around NWELL collection diode
- Quadruple well process: deep PWELL shields NWELL of PMOS transistors, allowing for full CMOS circuitry within active area

metaltia

substrat

ALICE ITS Upgrade sensor: ALPIDE Amplification Priority Encoder (AE-RD) In pixel: Discrimination 3 hit storage registers (MEB) 1024 pixel columns (32 regions x 16 double-columns) AMP COMP rows external trigger epitaxial layer 512 or Continuous Bias, Data Buffering, Interface IB: 50µm thick ALPIDE 130,000 pixels / cm² 27x29x25 µm³ 30mm OB: 100µm thick spatial resolution: ~ $5 \mu m$ (3-D) Power: 40 mW/cm² Max particle rate: 100 MHz / cm² Trigger rate: 100 kHz 5mm Integration time: $< 20 \ \mu s$ fake-hit rate: ~ 10⁻¹⁰ pixel / event Read out up to 1.2 Gbit/s. pads over matrix power : ~ 300 nW /pixel

giacomo.contin@ts.infn.it - RAFNeS 9 MAPS, DMAPS, LGAD 8

giacomo.contin@ts.infn.it - RAFNeS_9 MAPS, DMAPS, LGAD

IDEGLISTUS

Rivelatori al silicio per misure di tempo

- Low Gain Avalanche Detectors (LGAD):
 - Rivelatori a valanga a basso guadagno
- SPAD
 - Single-photon avalanche photodiode: fotodiodo usato in regime valanga, come un interruttore seguito da una resistenza di quenching che spegne la valanga
- SiPM
 - Silicon Photo-Multiplier: matrici di SPAD in parallelo, non usato per imagine perche somma i segnali dalle diverse celle

Acquisition of timing information

- - LHCb Upgrade II (Run 5~2030)
- Time tagging at each point
 Timing in the event reconstruction
 - HL-LHC: ATLAS and CMS

Gain mechanism in LGADs

- Planar silicon sensors (n+/p/p-)
 - n+ implant, p substrate
 - p-type multiplication layer

High electric field region in the multiplication layer

- Charges undergo impact ionisation
- Gain depends on:
 - multiplication layer doping
 - bias voltage
 - temperature

S. Otero Ugobono et al., IEEE TNS (2018) vol. 6, no. 8, pp. 1667-1675

LGAD: simulazioni

gracomo.contin@ts.infn.it - RAFNeS 9 MAPS, DMAPS, LGAD

LGAD: misure TCT

• Principio di funzionamento (Edge-)Transient Current Technique

Misura TCT su LGAD con diversi

Guadagni e a diverse Vbias

Time resolution

Time resolution is affected by:

- each step in the read-out process
- any effect that changes the shape of the signal

Time resolution

amplitude $\sigma_{\rm Time \ walk} \propto \left[\frac{N \sigma_n}{{\rm dV/dt}} \right]_{RMS}$ Vth Δt = 'time walk'

- Variation in time of arrival due to different signal amplitudes
- Can be compensated by electronics

- saturated drift velocity
- optimised geometry

 \Rightarrow negligible

- V_{th}: threshold voltage to determine the time of arrival
- $N\sigma_n$: the threshold is usually expressed in multiples of the system noise

Time resolution

• Vth: threshold voltage to determine the time of arrival

4-D Ultra-Fast Si Detectors in pCT **P**

In support of Hadron Therapy, the relative stopping power (RSP) is being reconstructed in 3D.

The UCSC-LLU pCT scanner uses Si strip sensors to locate the proton and heavy scintillator stages to measure its energy loss (WEPL).

Protons of 200 MeV have a range of \sim 30 cm in plastic scintillator. The resulting straggling limits the WEPL resolution.

Replace calorimeter/range counter by UFSD:

Combine tracking with WEPL measurement where the ToF of the proton measures the residual energy., with comparable or better resolution than the scintillator.

Light-weight, all silicon construction ideal for installation Into the gantry

PD and SPAD

Structure of a SPAD

Structure of a *thick* SPAD

Structure of a *thin* SPAD. This structure is used in SPAD arrays.

Figures from Zappa et al. 2007

Operation of a SPAD

Without quenching, SPAD operates as a light switch.

Operation of a SPAD (passive quenching)

Operation of SPAD (passive quenching)

Si-PM Silicon photomultiplier: structure

Each microcell is a SPAD in series with a quench resistor. All microcells are connected in parallel. SiPM is **not** an imaging device because all microcells share a common current summing node.

Silicon photomultiplier: operation

Example of single-photoelectron waveform (1 p.e.)

Gain = area under the curve in electrons

Silicon photomultiplier: modes of operation

If the pulses are distinguishable, SiPM can be operated in a **photon** counting mode.

- Applicazione rivelatori al silicio in calorimetria:
 - Calorimetri a campionamento

Sampling calorimeters

- Use different media
 - High density absorber
 - Interleaved with active readout devices
 - Most commonly used: sandwich structures ->
 - But also: embedded fibres,
- Sampling fraction
 - $f_{sampl} = E_{visible} / E_{total deposited}$
- Advantages:
 - Cost, transverse and longitudinal segmentation
- Disadvantages:
 - Only part of shower seen, less precise

Forward Calorimeter

- Physics Goal: unravel nucleus structure at small-x
 - Unique capabilities to measure direct photons in pp and p-Pb
 - Study the gluon distributions at small-x scale and low Q

(baseline design @ 7 m from IP)

FoCal-H and FoCal-E

FoCal-H: Conventional sampling hadronic calorimeter (Cu + scintillating fibres)

 \bullet Providing γ isolation through direct detection of high energy hadrons

FoCal-E: high-granularity Si-W electromagnetic calorimeter for γ and π_0

- Main challenge for Focal-E: γ/π₀ separation at high energy
 two photon separation from π⁰ decay: ~2 mm
 - needs small Molière radius and high granularity readout
 - → Si-W calorimeter with effective granularity of ~1 mm²

FoCal-E detector technologies

Studied in simulations: 20 layers W (3.5 mm $\sim 1X_0$) + silicon

- 18 Pad layers
 - Low granularity (LG), provide shower profile and total energy
- 2 Pixel layers (ALPIDE)
 - High granularity (HG), provide position resolution to resolve overlapping showers

FoCal-E layout and prototypes

Module: 18 pad layers + 2 pixel layers

• Readout, power, cooling connected on one side

EPICAL all-pixel small E-cal

Pixel string prototype: 9x SpTAB bonded ALPIDE Final pixel layer will have 3x 15-ALPIDEs strings