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- rilasciamo l’ipotesi di ioni rigidamente bloccati nei 
siti {R} dei reticoli di Bravais (e 
eventualmente posizioni di base)
- queste posizioni vanno considerate di equilibrio
- con spostamenti u(R) “piccoli” rispetto alle 
distanze interatomiche





ovviamente una configurazione di un solido cristallino 
con spostamenti “piccoli” degli ioni è ben diversa da 
una configurazione di liquido
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(a) Solido. (b) Liquido.

Figura 5.2: Distanza quadratica media dei core durante la simulazione di solido
e liquido termalizzati. Vengono rappresentati i valori per i singoli core e la curva
che indica media e deviazione standard di questi. Il comportamento dei valori
medi conferma che le fasi assunte dal sistema durante la simulazione sono quelle
effettivamente desiderate. I parametri di simulazione sono quelli della tabella 5.1.

Per il liquido, è stato calcolato il coefficiente lineare della curva media,
in modo da ottenere una stima della diffusività dei core, che dovrebbe essere
proporzionale alla pendenza della retta per t ! 1. I risultati, indicati nella
tabella 5.2, rivelano una diffusività in linea con quella del riferimento, anche
se la temperatura di simulazione è maggiore di quella di equilibrio.

Tabella 5.2: Diffusività dei core del ferro liquido a ⇠ 6500 K, ottenuta, in questo
lavoro (riga centrale), a partire dai risultati del fit lineare sulla distanza quadratica
media. Si confronta con i risultati ottenuti in [18], dove, però, la temperatura è di
6000 K.

Densità Diffusività Media Deviazione Standard
[ kg m3 ] [ 10�9 m2 s-1 ]

12130 6 0.9 [18]
12980 5.5 0.5
13300 5 0.5 [18]

È stata anche calcolata la funzione di distribuzione radiale g(r) dei co-
re e resa, per ogni fase, nella figura 5.3, dalla quale si osserva il distinto
comportamento dei due sistemi ed anche, nel solido, il lisciamento dei picchi
per effetto della temperatura, rispetto alla tipica presenza di picchi ben più
marcati a bassa temperatura.

Energia e Tensore degli Sforzi È stata estratta la serie temporale del-
l’energia, della temperatura, del tensore degli sforzi e della pressione.
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(a) Solido. (b) Liquido.

Figura 5.3: Funzione di distribuzione radiale dei core durante la simulazione di
solido e liquido termalizzati. I parametri di simulazione sono quelli della tabella 5.1.

Le fluttuazioni di energia e temperatura sono fisiologiche e “corrette”,
avendo campionato un sistema canonico con una dimensione relativamente
piccola (si veda [31]).

Si ritrova, come nel caso della termalizzazione, una temperatura media
sistematicamente maggiore di ⇠ 380 K rispetto a quella impostata nell’input.
Non avendo studiato il comportamento del termostato, i risultati ottenuti
sono stati riferiti, quindi, alla temperatura ottenuta dalla simulazione.

È stata anche estratta la serie temporale delle componenti diagonali dei
tensori degli sforzi, illustrate nella figura 5.7: oltre a riprodurre il gap fra
solido e liquido, si nota la differenza del valor medio dello sforzo lungo la
direzione z, specie nel solido, che implica la non idrostaticità del sistema.
Questa tara è causata dall’aver utilizzato un valore di c/a minimizzato per
il ferro HCP a T ! 0 K e non alle condizioni del nucleo.

La convergenza del tensore degli sforzi, e della pressione, è stata con-
fermata ripetendo, su un numero limitato di configurazioni, il calcolo scf
utilizzando una griglia 3⇥ 3⇥ 3 di punti ~k.

5.2 Autocorrelazione Temporale e Scelta delle Con-

figurazioni

Per poter calcolare la differenza di potenziale chimico fra solido e nel liqui-
do, è necessario selezionare, a partire dai risultati della dinamica molecola-
re, delle configurazioni non correlate fra loro. Se si selezionassero configu-
razioni correlate, le varianze sull’energia di formazione che si otterrebbero
risulterebbero sottostimate.

Mean 
square 

distance

Radial 
distribution 

function

La differenza tra 
solido cristallino e 
liquido si vede bene 
quantitativamente 
attraverso queste 
quantità (tesi LM W. 
Zuccolin, Dic. 2022):



as sum of 2-body terms ( Φ effective potential !)

Including displacements:

(no self-interaction)



≠

 X

In general, an “effective” potential between two atoms or 
molecules is different from the “bare” potential between 

them!
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Figure 8.1: Plot of the Lennard-Jones potential u(r). Note that the potential is characterized by
a length σ and an energy ϵ.

What is the value of u(r) for r = 0.8σ? How much does u increase if r is decreased to r = 0.72σ,
a decrease of 10%? What is the value of u at r = 2.5σ? At what value of r does the force equal
zero?

8.3 The Numerical Algorithm

Now that we have specified the interaction between the particles, we need to introduce a numerical
integration method for computing the trajectory of each particle. As might be expected, we need
to use at least a second-order algorithm to maintain conservation of energy for the times of interest
in molecular dynamics simulations. We adopt the commonly used algorithm:

xn+1 = xn + vn∆t + 1
2an(∆t)2 (8.4a)

vn+1 = vn + 1
2 (an+1 + an)∆t. (8.4b)

To simplify the notation, we have written the algorithm for only one component of the particle’s
motion. The new position is used to find the new acceleration an+1 which is used together with
an to obtain the new velocity vn+1. The algorithm represented by (8.4) is a convenient form of
the Verlet algorithm (see Appendix 5A).

repulsion

attraction
minimum

general form
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are averages over the trajectories, rather than the trajectories themselves. Questions such as these
are addressed by statistical mechanics and many of the ideas of statistical mechanics are discussed
in this chapter. However, the only background needed for this chapter is a knowledge of Newton’s
laws of motion.

8.2 The Intermolecular Potential

The first step is to specify the model system we wish to simulate. For simplicity, we assume that
the dynamics can be treated classically and that the molecules are spherical and chemically inert.
We also assume that the force between any pair of molecules depends only on the distance between
them. In this case the total potential energy U is a sum of two-particle interactions:

U = u(r12) + u(r13) + · · · + u(r23) + · · · =
N−1
∑

i=1

N
∑

j=i+1

u(rij), (8.1)

where u(rij) depends only on the magnitude of the distance rij between particles i and j. The
pairwise interaction form (8.1) is appropriate for simple liquids such as liquid argon.

In principle, the form of u(r) for electrically neutral molecules can be constructed by a first
principles quantum mechanical calculation. Such a calculation is very difficult, and it usually is
sufficient to choose a simple phenomenological form for u(r). The most important features of u(r)
for simple liquids are a strong repulsion for small r and a weak attraction at large r. The repulsion
for small r is a consequence of the Pauli exclusion principle. That is, the electron clouds of two
molecules must distort to avoid overlap, causing some of the electrons to be in different quantum
states. The net effect is an increase in kinetic energy and an effective repulsive force between the
electrons, known as core repulsion. The dominant weak attraction at larger r is due to the
mutual polarization of each molecule; the resultant attractive force is called the van der Waals
force.

One of the most common phenomenological forms of u(r) is the Lennard-Jones potential:

u(r) = 4 ϵ
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A plot of the Lennard-Jones potential is shown in Figure 8.1. The r−12 form of the repulsive part of
the interaction has been chosen for convenience only. The Lennard-Jones potential is parameterized
by a length σ and an energy ϵ. Note that u(r) = 0 at r = σ, and that u(r) is essentially zero
for r > 3 σ. The parameter ϵ is the depth of the potential at the minimum of u(r); the minimum
occurs at a separation r = 21/6σ. The parameters ϵ and σ of the Lennard-Jones potential which
give good agreement with the experimental properties of liquid argon are ϵ = 1.65 × 10−21 J and
σ = 3.4 Å.
Problem 8.1. Qualitative properties of the Lennard-Jones interaction
Write a short program or use a graphics package to plot the Lennard-Jones potential (8.1) and the
magnitude of the corresponding force:

f(r) = −∇u(r) =
24 ϵ

r
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r̂. (8.3)
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u(r) small => Taylor expansion of U about its eq. value

U({R};{u})

=0 at equilibrium

=Ueq

=Uharm



with

let’s rearrange terms in the sum =>



with

with

1
2

3
4



normal modes - 1D monoatomic chain (=Bravais lattice)

Suppose only NN interactions



normal modes - 1D monoatomic chain (=Bravais lattice)
equivalent model



Apply PBC to a chain of N atoms:

 and seek solutions of the form:

PBC => =>

(allowed k defined 
for n=0... N-1 or 

=-N/2,... N/2
mod.          )



Substituting the allowed values of k:

ω(k)=ω(-k)



=> Re or Im

k,-ω(k) equivalent to -k,ω(k)





Eccitazioni vibrazionali: Fononi in un Reticolo Semplice (monoatomico)

Velocità di propgazione di un onda è:

A bassa frequenza (Ka<<1) posso stimare la 
costante di accopiamento studiando la velocità del 
suono in un materiale:

Velocità del suono tipiche dei materiali sono
Oro: 3240m/s
Alluminio: 6320m/s

Fononi acustici 

(D. Fausti - corso di Struttura - LT Fisica UniTS)



normal modes - 1D monoatomic chain with a basis



Apply PBC and seek solutions of the form:



=> coupled eqs.

=> impose Det=0



acoustic

optical


