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PART ONE

MRNA and IncRNA characteristics




tRNA

ACts as adapior between
mRNA and amino acids

RNA @0

Forms the ribosome

RNA

d S
Y P—’\..,

regulatory ncRNA— microRNA -, <2

Regulates gene expression

. snoRNA “==0u
< 200 nucleotides

Facilitates chemical
modification of RNAs

L small neRNA-L_ GiRNA # > -

Silences gene expression

f‘

snRNA

Functions in various nuclear

DIRNA ;_J(__I{_

(PIWl-interacting RNA)

M



Messanger RNA

5 - @O0 TIEEREEN /a3
|

Cap Poly A-Tail

| |

* Recogniction of MRNA in protein biosynthesis * Prevent from 3'-exonucleases activities
* Prevent from 5’-exonucleases activities * Helps in exporting mRNA from nucleus to cytosol




Long non-coding RNA

Longer than 200 nucleotides

Are not translated into functional proteins
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a mRNA IncRNA Mechanisms of IncRNA nuclear retention
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IncRNAs have less exons (tipically two)

Exons pear transcript
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IncRNASs

IncRNAs have longer exons

Exon / Intron Size Distribution
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IncRNASs are usually shorter than mRNAs

C Processed Transcript Size Distributions
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IncRNASs

IncRNAs tend to have less GC content than mRNA
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RNA editing
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N — methyladenosine (m°®A)

* N®-methyladenosine in mRNA N®-methyladenosine (m®A) is the more
prevalent internal modification in eukaryotic mRNA, occurring on an average
of three sites per given mRNA molecule.

* m6A can be also found in IncRNAs N °- methyladenosine
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mM6A effects in

IncRNAs

Changing in the structure of IncRNAs and their
interactions with proteins

Could mediate gene transcription repression
Alters subcellular distribution of IncRNAs
Regulates IncRNAs stability



PART TWO

Nuclear export of RNA




Principal export mechanisms
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Elements involved in RNA export or retention
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TREX complex

Intramolecular Interaction Between These Domains In the Absence of TREX
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(THOCS, CHTOP, RBM15, CPSF6)

TREX plays a central role in mRNA export and this activity is
governed by its ability to act as a binding platform for NXF1.



MRNAs nuclear export pathway

1. TREX
2. TREX-2
3. a subset of MRNAs involved
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MRNAs nuclear export pathway
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MRNAs nuclear export pathway
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IncRNAs nuclear export pathway

snRNA,
rRNA,

Coemd

It is known that some IncRNA
use CRMaz for their export

Could they use NXF1 too?
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Efficiency of the nuclear export
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Selectivity of canonical RNA export factors
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Protein Coding Genes VS IncRNAs
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Gene architecture and sequence
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Single molecule FISH analysis
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Single molecule FISH analysis
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Single molecule FISH analysis

Cyto/Nuc (log,)

Transcripts with few exons are retained in the nucleus
after NXF1 or TREX depletion



Subnuclear distribution of RNA

Nuclear speckles or interchromatin
granule clusters (green)

* Enriched in pre-mRNA splicing factors

* Located in the interchromatin regions of the
nucleoplasm of mammalian cells

* Involved in the export of intronless transcripts

(From The Human Protein Atlas)



Subnuclear distribution of RNA
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Subnuclear distribution of RNA
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NORAD accumulates in nuclear speckles after
NXF1 depletion, but not in TREX-depleted cells

Export factors depletion differencially
affects the subnuclear RNA distribution



Differencial nuclear enrichment with siTREX and siNXFa
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Potential export associated elements

siNXF1 and siTREX ——> Analysis of the enrichment of IcnRNAs whit specific elements

Recruitment of splicing related factors is partially <U1 binding site had minor effect)
involved in the protection against NXF1 depletion
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Export of genes with few exons

A Mﬁlxl':% B-globin mRNA Aintrons
" »oa — = —
. 2,545 ti!es of
Nuclear export of intronless | cytoplasmic RNas j

transcripts is NXFi-dependent = —

Il
MCF7 cells 24h |

¥
Subcellular fractionation

{/’/ \ _— Nuclear RNA RT-PCR
q /* Cytoplasmic RNA - mmm — Sequencing
———~ WCE
B . ATXN7L3B . SINT GC %
Is i db ifi U Affected tiles | iNxF1 20 wmmmmm 90
s it promoted by specific s
o
o
sequences? s ; Aa A
3‘5 (=% ": :l{ »’l 1 ~ ,' :‘ ““ .’““,v'l ‘T‘-,‘ o 1 I . “‘.
9 J '.I N ! “"‘ 1RV, ‘l} Vi1 \ i/ ' ‘1} I |
< < VI ! |/ ' p ;
£ 97 U ! | f ¥
> | | ' 1
o
[ «] - - 8 sEmsmEEmEsssesn smsmssmEsssns T TT T B T T T R ———— T T
7 : . "
0 50 ) 100 150
Tile number
NORAD - 1-200
0 _
- ©
(_C‘)’ N pAas o .\x"‘.-.‘ A
s 71 | WA LAY T Sl
g w : iy {
g 71
> ! |
z _ "
2 1 I
=
O 0
'S -
0 50 100 150 200

Tile number



Workflow

Relatively inefficiently exported
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Combined the results from five

Cyto/Nuc ratio (log,)
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Characteristics of tiles driving NXF1-dependet export
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Important function

IncRNA with one or few exons that are efficiently exported contain
focal regions able to drive the NXF1-dependent export
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|ldentification of proteins binding the tiles

Intersection between the 181 tiles
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RBMi5 and m6A involvement

Tiles that overlap experimentally determined m6A
& sites significantly increased export in an NXFz-
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RBMa5 and m6A involvement
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Splicing efficiency and NXFa1 export
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Testing the relationship

Increase in splicing efficiency in the nuclear
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sequence variants
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Low splicing efficiency of some transcripts

might activate NXF1-dependent nuclear export

(Maybe to overcome nuclear
retention sequences in their introns)



Gene Architecture and Sequence Composition

Underpin Selective Dependency of Nuclear Export
of Long RNAs on NXFi1 and the TREX Complex

Paper discussion




Viral infections and NXF1 export

CYTOPLASM

NUCLEAR

ENVELOPE
Nucleus
NUCLEUS
Cytoplasm I Nu p1 5
mRNA nuclear export
A4
M Flu NS1 protein inhibits host mMRNA nuclear export 7
(Zhang et al., 2019)
NXT1/
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Export block occurs with selectivity both for viral L

and host mRNa in infected cells

“~—— Correlation with different sensitivity to
NXF1 depletion? (Kuss et al, 2013)
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NXFz is used for export of RNA with few exons
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The selective sensitivity to NXFa has
consequences during viral infections



Low splicing efficiency might activate it

Splicing enhances non-NFXa export

m6A is important for export of IncRNAs
with few exons

™~

NXF1 dependent
IncRNAs export

Exons number regulate sensitivy to
NXF1 depletion

Single exon transcripts

NXFa is necessary for export of / Transcripts with long exons

\ AJU-rich multi-exons transcripts

IncRNA exported contain focal regions
to drive NXF1 dependent export







