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Appropriate gene expression is essential for producing the

correct amount of proteins at the right time, which is critical for

living organisms. In the three-dimensional (3D) space of the

nucleus, genomes are folded into higher order chromatin

structures that are intimately associated with epigenetic

factors, including histone modifications and nuclear long non-

coding RNAs (lncRNAs). LncRNAs regulate transcription for

both activation and repression, either in cis or in trans. Many

ncRNAs are expressed in development-specific,

differentiation-specific, and disease-specific manners,

suggesting that they are critical regulators for organ generation

and maintenance. In this review, we mainly describe the

following ncRNAs: Xist, involved in X chromosome inactivation,

Firre, which serves as a platform for trans-chromosomal

associations, and UMLILO and ELEANORS, which co-regulate

genes involved in the immune response and breast cancer,

respectively. These ncRNAs are gene regulators in the context

of the 3D genome structure.
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Introduction
In eukaryotes, the genomic DNA is packaged into chroma-

tin, in which the fundamental repeating unit is a nucleosome

consisting of 180 bp DNA and four histone proteins, H2A,

H2B, H3, and H4 [1]. The array of nucleosomes are folded

into multiple layers, from lower to higher order, involving

hundreds of kbs of chromatin loops, approximately 1 Mb of

TADs (topologically associated domains), mega-bases of A

and B compartments, and individual chromosome territories

[2–8]. Chromatin loops contain long-range chromosomal

contacts and local chromatin loops, such as in enhancer–

promoter interactions. TAD is a self-interacting chromatin
www.sciencedirect.com 
region that compartmentalizes genomes. Enhancers can co-

regulate genes within the TAD, but not outside of it.

Disruption of the TAD boundaries leads to impaired gene

expression, and corresponds to certain diseases [9,10]. The A

and B compartments are much larger chromatin domains,

and roughly correspond to euchromatin with active histone

marks and heterochromatin with repressive histone marks,

respectively [5,11]. This finding implies that the 3D genome

structures originating from chromatin interactions play a key

role in the regulation of gene expression.

Over 40 years ago, chromatin was found to cofractionate with

RNAs, thussuggestingthe presence ofchromatin-associated

RNAs [12–14]. More recent experiments with the Drosoph-

ila cell line have demonstrated that chromatin is increasingly

endonuclease-resistant when cellular RNAs are hydrolyzed

with RNaseA [15]. In this case, small nucleolar RNAs bind to

chromatin though their associated proteins, and this is

responsible for the chromatin inaccessibility. The possible

involvement of other less-abundant RNAs remains to be

investigated. These indicate that nuclear RNAs may

facilitate the formation of an open euchromatin structure,

and regulate gene expression under certain circumstances.

Recenthighthroughputsequenceanalyseshaverevealedthat

the genome is pervasively transcribed [16]. It is estimated that

over 100 000 RNAs lacking protein coding potential, referred

to as non-coding RNAs (ncRNAs), exist in cells [16]. ncRNAs

with lengths longer than 200 nt are long ncRNAs (lncRNAs),

and some play key roles in development. One of the best-

studied examples is the Xist RNA, which is involved in

X-chromosome inactivation (XCI) in mammalian females,

asdescribedbelow.Xist isproducedfromtheuniquelocus,Xic
(X chromosome inactivation center), which contains a cluster

of ncRNA genes including RepA, Tsix, Xite, Jpx, Ftx, and Tsx.
These ncRNAs are involved in the regulation of Xist
expression and function, as well as XCI. This implies that

ncRNAs are important cellular regulatory factors.

In this review article, we discuss the recent work on the

ncRNAs thatare involved in generegulation, mainly through

modulatinghigherorderchromatinstructuresandepigenetic

marks. We also consider the significance of ncRNAs in

mammalian development, immunity, and cancer.

Xist functions in X chromosome inactivation
during female early embryonic development
During early development in female mammals, one of the

two X chromosomes (XX) is silenced as dosage compensa-

tion, relative to males with only one X chromosome (XY).
Current Opinion in Genetics & Development 2020, 61:69–74
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Xist lncRNA is required for X chromosome inactivation.

During early female embryonic development, Xist is produced from

one of the two X chromosomes, and spread along the chromosome to

form the highly condensed and inactive X chromosome (Xi). Xist

expression is repressed by CTCF protein binding to the promoter, and

CTCF is evicted by another lncRNA, Jpx. The produced Xist then

recruits PRC1, PRC2 and HDAC3, through hnRNPK and SHARP,

respectively, resulting in the accumulation of repressive histone

modifications.
This is referredto as X-chromosome inactivation(XCI). The

X chromosome carries over 1000 genes essential for

development and cell viability, and their overexpression

due to XCI failure is potentially harmful [17,18]. The key

regulator of XCI is the Xist (X-inactive–specific transcript)
RNA, a 17 kb lncRNA expressed from the inactive X

chromosome (Xi) [19–22]. The depletion of Xist results

in the failure of XCI initiation [23,24], while the forced

Xist expression on autosomes leads to silencing of the

neighboring genes [25,26].

Xist is produced and spread in cis along the X chromosome

to highly condense the chromosome, leading to silencing of

the X-linked genes. Eventually, Xist covers the entire Xi

and forms an RNA cloud, which is often found near the

nuclear membrane or one of the nuclear substructures, the

nucleolus. At the beginning of XCI, Xist expression is

repressed by the binding of the CTCF (CCCTC-binding

factor) protein to the Xist promoter (Figure 1), and the

CTCF protein is evicted by another lncRNA, Jpx, which

acts as the activator for the Xist expression [27] (Figure 1).

The produced Xist then interacts with hnRNP K (hetero-

geneous nuclear ribonucleic protein K) and recruits PRC1

(Polycomb group protein complex 1) leading to accumula-

tion of PRC2 [28��,29–32] for the trimethylation of histone

H3 at lysine 27 (H3K27me3). Xist also interacts directly

with SHARP (SMRT/HDAC1 associated repressor

protein) to silence nearby transcription, through histone

deacetylation by HDAC3 (histone deacetylase 3) (Figure 1)

[33]. These combinations of lncRNAs and epigenetic

modifiers contribute to the constitutive heterochromatin

formation of Xi. Although Xist deletion from the previously

established Xi disrupts the heterochromatin conformation,

it has little effect on X-linked gene silencing [34,35]. This

suggests that Xist is essential for the Xi-specific chromo-

some structure, but dispensable for the established Xi,

perhaps due to the existence of other epigenetic marks.

Other ncRNAs that recruit repressive and
active factors to chromatin
Several genes are expressed from only the maternal or

paternal chromosome, in a phenomenon referred to as

genomic imprinting. In addition to DNA methylation and

histone modifications, ncRNAs are involved in this

process. The Airn (Antisense Igf2r RNA non-coding) ncRNA

is expressed only from the paternal allele, and required

for the paternal-specific silencing of the multiple

neighboring imprinted genes, Slc22a3, Slc22a2, and Igf2r,
in the mouse placenta [36–38]. As with Xist, Airn forms an

RNA cloud in the nucleus, covers the paternal Slc22a3,
and recruits the histone methyltransferase G9a, for the

repressive histone mark (H3K9me3).

Unlike Xist and Airn, the HOTAIR (HOX transcript antisense
RNA) ncRNA functions in trans. It is produced from the

HOXC locus on chromosome 12, and functions on the

HOXD locus on chromosome 2 [39]. HOTAIR demarcates
Current Opinion in Genetics & Development 2020, 61:69–74 
the silent and active chromatin domains in the HOXD locus,

by recruiting PRC2 to accumulate the repressive

histone mark (H3K27me3), and LSD1 (Lysine-specific

demethylase 1) to demethylate and erase the active histone

mark (H3K4me1).
www.sciencedirect.com
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Firre serves as a platform for trans-
chromosomal associations
The long-range chromatin interaction analyses identified

a genomic region that interacts with the X-linked macro-

satellite region, DXZ4. It is the Firre (Functional intergenic
repeating RNA element) locus that abundantly produces the

Firre lncRNA, primarily from the active X chromosome

[40,41�]. Firre forms RNA clouds in the nucleus, and

serves as a platform for trans-chromosomal associations.

Firre has 156 nt repeats, termed the repeating RNA

domain (RRD), and they bind to the nuclear-matrix

protein hnRNP U, which may connect Firre with other

genomic loci, including Ppp1r10, Slc25a12, and Ype14 on

other chromosomes [40] (Figure 2). The Firre locus

deletion changes gene expression in a hematopoietic

progenitor cell type, which can be rescued by expressing

Firre RNAs from an autosomal transgene [41�]. Firre also

functions in anchoring Xi to the nucleolus, and maintains

H3K27me3 for silencing genes [42]. Taken together,

Firre is a trans-acting RNA molecule that constructs

the 3D genome architecture.

UMLILO primes immune-genes for robust
transcription in trained immunity
For an enhanced innate immune response, or trained

immunity, immune-related gene promoters are primed

for robust transcription. The active histone mark

H3K4me3 is accumulated at their promoters, before

immune stimulations. IPLs (Immune-gene priming
Figure 2
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lncRNAs) are a collection of lncRNAs expressed from

the TAD containing the TNF (tumor-necrosis factor)

responsive genes, and regulate them in cis [43��]. Among

them is the UMLILO (Upstream Master LncRNA of the
Inflammatory chemokine Locus) lncRNA, and it is produced

within the TAD where the chemokine genes IL8, CXCL1,
CXCL2, and CXCL3 are transcribed (Figure 3). UMLILO
interacts with the WDR5 protein (WD repeat-containing

protein 5) [44], a component of the MLL1 complex, which

catalyzes the methylation of histone H3 at lysine 4 for

H3K4me3. UMLILO depletion decreases the H3K4me3

level at the CXCL promoters. Intriguingly, HOTTIP (HOXA
transcript at the distal tip), another lncRNA, can replace the

functions of UMLILO, because HOTTIP also interacts with

WDR5and promotes the H3K4me3-mediated activation of

the HOXA genes [44,45]. These findings demonstrate that

lncRNAsmediate TAD regulation,which may be central to

trained immunology.

ELEANORS delineate the active TAD and the
long-range chromatin interactions in breast
cancer recurrence
Gene expression profiles are remodeled in cancers. For

example, the ESR1 gene is upregulated when ER (estrogen

receptor)-positivebreastcanceracquiresendocrine therapy

resistance. In this recurrence process, estrogen is deprived

due to the therapy, and a cluster of lncRNAs, ELEANORS
(ESR1 locus enhancing and activating noncoding RNAs), are

produced from the TAD including the ESR1 gene, termed
us 
some)

a12 locus
osome 2)

Ypel4 locus
(chromosome 2)
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omain (RRD) in Firre binds to the hnRNPU protein, which connects
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Figure 3
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UMLILO mediates immune-gene priming for robust transcription in trained immunity.

UMLILO is produced from the TAD where the immune genes IL8, CXCL1, CXCL2, and CXCL3 are also transcribed. UMLILO interacts with the

WDR5 protein, a component of the MLL1 complex, and accelerates H3K4me3 enrichment in the genes before immune stimulation.
the ELEANOR TAD. ELEANORS remain at their own

transcription sites, form the RNA cloud, and activate all of

the genes within the TAD [46�,47,48�] (Figure 4, from left

to middle).

ER-positive breast cancer patients who relapse after endo-

crine therapies can be treated with estrogen. This paradoxi-

cal therapy may represent the cancer fragility in which the
Figure 4
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recurrent breast cancer is primed for cell death, before the

estrogen treatment. This is explained at least partly by the

long-range chromatin interaction. In the recurrent model

cells, a subset of apoptotic genes are upregulated, including

FOXO3. Furthermore, the ESR1 gene interacts with

the FOXO3 (forkhead box O3) gene, and both are

co-upregulated in the A compartment. The two genes are

encoded on chromosome 6 and approximately 40 Mb apart,
FOXO3ESR13

proliferation

ELEANORS
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ion in breast cancer recurrence.

luster of lncRNAs, ELEANOR RNAs, is produced from the TAD

 the genes within the TAD, and establish the long-range chromatin

RS, the chromatin interaction is reduced and the genes in the

(right). This unbalanced gene expression induces apoptosis, which may

www.sciencedirect.com
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and this long-range interaction is mediated by ELEANORS.
ELEANORS may balance the genes for cell proliferation

(ESR1) and cell death (FOXO3) [46�] (Figure 4, middle).

Inhibition of ELEANORS by the estrogen-related

compound, resveratrol, resolves the chromatin interaction

and represses the genes in the ELEANOR TAD, while

maintaining the high FOXO3 expression. This unbalanced

gene expression induces cell death, which may recapitulate

the paradoxical estrogen treatment (Figure 4, right). These

findings suggest that lncRNAs may be novel therapeutic

targets for cancers.

Conclusion and perspectives
In this review, we have described examples of lncRNAs that

are involved in the 3D genome structure and gene regulation.

The modes of action for lncRNAs are diverse, and they

participate intranscriptionactivationor repression,byrecruit-

ing epigenetic modifiers, organizing nuclear substructures,

co-regulating multiple genes in the same TAD, and mediat-

ing long-range chromatin interactions. LncRNAs are also

involved in many different events, including development,

immune responses, and diseases. Consequently, lncRNAs

are expected to serve as novel biomarkers and therapeutic

targets [49]. More details remain to be elucidated.

Although nuclear lncRNAs function in a wide variety of

events, the fundamental property that shared among all

RNAs and RNA binding proteins may exist. Identification

of the property and elucidation of how it is regulated in the

nucleus remain to be investigated. The mechanism by

which each lncRNA is expressed, localized, or recruited

to the specific sites in the genome may be another layer

of gene regulation, in the context of the 3D genome

architecture.
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